Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.820
Filtrar
1.
Semina cienc. biol. saude ; 45(2): 113-126, jul./dez. 2024. Tab, Ilus
Artigo em Português | LILACS | ID: biblio-1513051

RESUMO

A síndrome respiratória aguda grave (SRAG) é caracterizada por sintomas de febre alta, tosse e dispneia, e, na maioria dos casos, relacionada a uma quantidade reduzida de agentes infecciosos. O objetivo foi avaliar a prevalência dos vírus respiratórios Influenza A (FluA), vírus sincicial respiratório (RSV) e do novo coronavírus (SARS-CoV-2) em pacientes com internação hospitalar por SRAG. Estudo transversal, com pacientes em internação hospitalar com SRAG entre novembro de 2021 e maio de 2022. Dados sociodemográficos e clínicos e amostras da nasofaringe foram coletados/as, as quais foram submetidas à extração de RNA e testadas quanto à positividade para Influenza A, RSV e SARS-CoV-2 por meio da técnica de PCR em tempo real pelo método SYBR Green. Foram incluídos 42 pacientes, sendo 59,5% do sexo feminino, 57,1% idosos, 54,8% com ensino fundamental. A maior parte dos pacientes reportou hábito tabagista prévio ou atual (54,8%), não etilista (73,8%) e 83,3% deles apresentavam alguma comorbidade, sendo hipertensão arterial sistêmica e diabetes mellitus tipo 2 as mais prevalentes. Um total de 10,5% dos pacientes testou positivo para FluA, nenhuma amostra positiva para RSV e 76,3% positivos para SARS-CoV-2. Na população estudada, SRAG com agravo hospitalar foi observado em maior proporção, em mulheres, idosos e pessoas com comorbidades, embora sem significância estatística, sendo o novo coronavírus o agente etiológico mais relacionado, o que evidencia a patogenicidade desse agente e suas consequências ainda são evidentes após quase 2 anos de período pandêmico.


Severe acute respiratory syndrome (SARS) is characterized by symptoms of high fever, cough and dyspnea, and is in most cases related to a reduced amount of infectious agents. The objective was to assess the prevalence of respiratory viruses Influenza A (FluA), respiratory syncytial virus (RSV) and the new coronavirus (SARS-CoV-2) in patients hospitalized for SARS. Cross-sectional study, with patients hospitalized with SARS between November 2021 and May 2022. Sociodemographic and clinical data and nasopharyngeal samples were collected, which were subjected to RNA extraction and tested for positivity for Influenza A, RSV and SARS-CoV-2 using the real-time PCR technique using the SYBR Green method. 42 patients were included, 59.5% female, 57.1% elderly, 54.8% with primary education. Most patients reported previous or current smoking habits (54.8%), non-drinkers (73.8) and 83.3% of them had some comorbidity, with systemic arterial hypertension and type 2 diabetes mellitus being the most prevalent. A total of 10.5% of patients tested positive for FluA, no samples positive for RSV, and 76.3% positive for SARS-CoV-2. In the studied population, SARS with hospital injury was observed more frequently in women and the elderly, with associated comorbidities, with the new coronavirus being the most related etiological agent, which shows, although not statistically significant, that the pathogenicity of this agent and its consequences are still evident after almost 2 years of period pandemic.


Assuntos
Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade
2.
Biochem Genet ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320417

RESUMO

The c-Jun N-terminal kinase (JNK) pathway is a signal transduction pathway that plays a critical role in cell growth and survival. Its dysregulation is related to various cancers, including adult T-cell leukemia/lymphoma (ATLL), an aggressive peripheral T-cell malignancy caused by human T-cell lymphotropic virus type 1 (HTLV-1) infection. There is currently no vaccine or definitive treatment for ATLL. This research aimed to identify the JNK-MAPK pathway checkpoints to identify possible therapeutic targets using Boolean network analysis. First, the genes involved in the JNK pathway and their interactions were identified and mapped. Next, a Boolean network analysis was performed using the R programming language, which suggested protein kinase B (AKT) and MAP kinase phosphatase (MKP) for further evaluation. Finally, to confirm the effect of these two genes, a clinical study was conducted among ATLL patients and healthy individuals. The quantitative real time polymerase chain reaction (qRT‒PCR) results revealed a statistically significant decrease in the expression of AKT and MKP in ATLL patients compared to normal controls. This highlights the potential role of these two genes as potential therapeutic targets in ATLL.

3.
Antibiotics (Basel) ; 13(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39335051

RESUMO

Advanced diagnostic technologies have made accurate and precise diagnosis of pathogens easy. Herein, we present a new diagnostic method, droplet digital PCR (ddPCR), to detect and quantify Acinetobacter baumannii in mini bronchoalveolar lavage (mini-BAL) samples. A. baumannii causes ventilator-associated pneumonia (VAP), a severe healthcare infection affecting patients' lungs. VAP carries a high risk of morbidity and mortality, making its timely diagnosis crucial for prompt and effective management. Methodology. The assay performance was evaluated by comparing colonization data, quantitative culture results, and different generations of PCR (traditional PCR and Real-Time PCR-qPCR Taqman® and SYBR® Green). The ddPCR and qPCR Taqman® prove to be more sensitive than other molecular techniques. Reasonable analytical specificity was obtained with ddPCR, qPCR TaqMan®, and conventional PCR. However, qPCR SYBR® Green technology presented a low specificity, making the results questionable in clinical samples. DdPCR detected/quantified A. baumanni in more clinical samples than other methods (38.64% of the total samples). This emerging ddPCR technology offers promising advantages such as detection by more patients and direct quantification of pathogens without calibration curves.

4.
Foods ; 13(18)2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39335932

RESUMO

Staphylococcus (S.) aureus is a pathogenic bacterium able to cause several diseases in humans and animals as well as foodborne intoxications. S. argenteus, being phenotypically and genotypically related to S. aureus, is part of the so-called S. aureus complex and recently recognized as an emerging pathogen able to cause, like S. aureus, several diseases both in humans and animals, and foodborne poisoning outbreaks. However, it has been reported that the widely used conventional PCR of Brakstad et al. [Journal of Clinical Microbiology, 30(7), 1654-1660, (1992)] targeting the thermostable nuclease gene may provide false-positive S. aureus, as it is able to amplify also S. argenteus. Here, we developed a novel two-step approach that, following the PCR of Brakstad et al. (1992), discriminates S. aureus from S. argenteus by a real-time PCR with high-resolution melting analysis (rt-PCR-HRM). In particular, targeting a polymorphic 137 bp region of the sodA gene, our developed rt-PCR-HRM method clearly discriminated S. aureus from S. argenteus, showing a remarkable difference in their amplification product melting temperatures (approximately 1.3 °C) as well as distinct melting curve shapes. The good sensitivity, reproducibility, user friendliness, and cost effectiveness of the developed method are advantageous attributes that will allow not only its easy employment to correctly identify misidentified isolates present in various collections of S. aureus, but also expand the still lacking knowledge on the prevalence and distribution of S. argenteus.

5.
Food Sci Biotechnol ; 33(14): 3313-3322, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39328221

RESUMO

Amaranthus, Sesamum indicum, and Linum usitatissimum are the most popular oilseed grains worldwide. Protein-rich Amaranthus contains bioactive peptides, is nutritious, and exhibits anti-allergic properties. Sesamum indicum is a primary trigger of anaphylaxis. Linum usitatissimum also displays allergenic properties. A DNA marker assessable using quantitative real-time PCR was developed to detect S. indicum and L. usitatissimum as allergenic contaminants of anti-allergenic Amaranthus. The efficiency of each primer set ranged from 90-98%, and high linear correlation (R2 > 0.99) was obtained between crossover values and the log DNA concentration. We established a Ct value of 0.1% of the binary as a cutoff. The practical application of the designed marker was confirmed by analyzing 20 commercial products. The qPCR system developed for detecting flaxseed and sesame can be applied for regulatory monitoring of allergenic substances in commercial amaranth-containing foods, thus contributing to protecting public health and safety. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01584-2.

6.
Vaccines (Basel) ; 12(9)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39340026

RESUMO

The study conducted in Morocco focused on addressing the challenges posed by canine parvovirus (CPV-2) through comprehensive research, vaccine development, and efficacy assessment. Through real-time PCR screening and genotyping, CPV-2 variants were identified circulating in the region. An inactivated vaccine, derived from a CPV-2 strain isolated from a symptomatic dog, was produced and evaluated for safety and efficacy. The vaccine, from the strain named "CaPV M/3-2022", demonstrated safety in vaccinated puppies, with no adverse reactions observed during the trial period. Efficacy trials showed that vaccinated puppies remained healthy and exhibited lower viral excretion post-challenge compared to unvaccinated controls. These results indicate that the vaccine effectively protects against illness related to CPV-2 and reduces viral shedding. The study provides valuable insights into CPV-2 epidemiology in Morocco, offers a promising vaccine solution, and underscores the importance of vaccination in controlling CPV-2 outbreaks and protecting canine health.

7.
BMC Vet Res ; 20(1): 434, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342153

RESUMO

BACKGROUND: Sodium butyrate is a potential antibiotic growth promoter and has had advantageous effects on the poultry industry. METHODS: Evaluating the effect of sodium butyrate on the intestinal villi and the humoral part of innate immunity of the male Cobb 500 broiler using scanning electron microscopy and quantitative real-time PCR analysis, the control group and treated group of Cobb 500 with SB supplemented received water containing 0.98 mg sodium butyrate. RESULTS: The administration of sodium butyrate changed the villi characters, as the shape changed from tongue to long tongue. They were mainly parallel to each other and long finger-like at the duodenum. The tips of the villi in the control group appeared thin-slight curved with a prominent center in the duodenum, thin rectangular in the jejunum, and ileum in the control group. In contrast, in the treatment group, they changed to thick rectangular in the duodenum and ileum zigzag shape in the jejunum. The epithelium lining of the duodenal villi showed a dome shape, the jejunal villi showed a polygonal shape, and the ileal villi appeared scales-like. The epithelium lining showed irregular microfolds and many different-sized pores, and the treatment group showed islands of long microvilli in the duodenum and solitary long microvilli in the ileum. Real-time PCR of AvBD 1, 2, 10, and 12 significantly (P < 0.01). The better expression of AvBD 1, 2, and 12 was determined in the duodenum, while AvBD 10 was in the jejunum. CONCLUSION: Sodium butyrate enhanced the chicks' growth and small intestine parameters, modified the morphology of the intestinal villi, and improved the humoral part of innate immunity.


Assuntos
Ácido Butírico , Galinhas , Intestino Delgado , beta-Defensinas , Animais , Galinhas/crescimento & desenvolvimento , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Ácido Butírico/farmacologia , Ácido Butírico/administração & dosagem , Masculino , beta-Defensinas/genética , beta-Defensinas/metabolismo , Ração Animal/análise , Imunidade Inata/efeitos dos fármacos , Suplementos Nutricionais , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Microscopia Eletrônica de Varredura/veterinária , Dieta/veterinária
8.
Vet Microbiol ; 298: 110268, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39342824

RESUMO

Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, causing remarkable economic losses in the global swine industry. The diversity of A. pleuropneumoniae is generally determined through serotype identification, which is commonly employed for control strategies and surveillance. However, serological methods currently in use still have significant limitations. This study explores the use of real-time polymerase chain reaction (qPCR) to detect circulating serotypes of A. pleuropneumoniae in non-diseased swine herds through testing of oral fluids. The study included three A. pleuropneumoniae-positive and three A. pleuropneumoniae-negative farms located in Quebec, Canada. Tonsil brushings, microbiological growths, and oral fluids were analyzed using qPCR to detect A. pleuropneumoniae and its distinct serotypes. Serological tests were performed using the LPS ELISA available at that time. In negative farms the absence of A. pleuropneumoniae and any serotype confirmed the specificity of the method. Positive farms, on the other hand, confirmed also the sensitivity of the analysis, with oral fluid samples consistently yielding positive results for the serotypes identified by ELISA. The qPCR test conducted on oral fluids offers a noninvasive and cost-effective method for monitoring, complementing traditional serological techniques. It provides qualitative information about serotype distribution, facilitating proactive surveillance and control strategies.

9.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273343

RESUMO

Low-temperature (LT) is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Brassinolides (BRs) have been shown to enhance LT tolerance in several plant species; the physiological and molecular mechanisms by which BRs enhance maize tolerance are still unclear. Here, we characterized changes in the physiology and transcriptome of N192 and Ji853 seedlings at the three-leaf stage with or without 2 µM 2,4-epibrassinolide (EBR) application at 25 and 15 °C environments via high-performance liquid chromatography and RNA-Sequencing. Physiological analyses revealed that EBR increased the antioxidant enzyme activities, enhanced the cell membrane stability, decreased the malondialdehyde formation, and inhibited the reactive oxygen species (ROS) accumulation in maize seedlings under 15 °C stress; meanwhile, EBR also maintained hormone balance by increasing indole-3-acetic acid and gibberellin 3 contents and decreasing the abscisic acid level under stress. Transcriptome analysis revealed 332 differentially expressed genes (DEGs) enriched in ROS homeostasis, plant hormone signal transduction, and the mitogen-activated protein kinase (MAPK) cascade. These DEGs exhibited synergistic and antagonistic interactions, forming a complex LT tolerance network in maize. Additionally, weighted gene co-expression network analysis (WGCNA) revealed that 109 hub genes involved in LT stress regulation pathways were discovered from the four modules with the highest correlation with target traits. In conclusion, our findings provide new insights into the molecular mechanisms of exogenous BRs in enhancing LT tolerance of maize at the seedling stage, thus opening up possibilities for a breeding program of maize tolerance to LT stress.


Assuntos
Brassinosteroides , Regulação da Expressão Gênica de Plantas , Esteroides Heterocíclicos , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Esteroides Heterocíclicos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Perfilação da Expressão Gênica/métodos , Espécies Reativas de Oxigênio/metabolismo , Temperatura Baixa , Estresse Fisiológico , Resposta ao Choque Frio , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
10.
Curr Issues Mol Biol ; 46(9): 9534-9554, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39329918

RESUMO

Species delimitation of Culicoides complex species can be challenging. Among species within the Culicoides variipennis complex, C. sonorensis is considered the primary vector of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in North America. Morphological identification of C. sonorensis within the C. variipennis complex is laborious, time-consuming, and requires entomology expertise. Therefore, in this study we developed and validated a multiplex real-time PCR for rapid detection and differentiation of C. sonorensis from the two other main cryptic species (C. variipennis and C. occidentalis) within the C. variipennis complex. The assay targets the EF1α gene and has a built-in internal control targeting 18 S. The specificity and the sensitivity of the multiplex real-time PCR were evaluated using morphologically identified reference and field-collected specimens. The multiplex PCR was 100% specific when nucleic acid extracted from C. variipennis, sonorensis, and occidentalis specimens was tested. When nucleic acid extracted from pools of midges was tested, the multiplex PCR was able to detect all three Culicoides species with comparable sensitivity. The multiplex assay, however, failed to detect eight morphologically identified C. sonorensis specimens collected from Alberta in 2014. The EF1α gene sequences of these specimens formed a distinct phylogenetic cluster, amongst those from C. variipennis, sonorensis, and occidentalis, suggesting that they belong to a different species. We hypothesize that those specimens might be C. albertensis, the only other species remaining in the C. variipennis complex with known geographical distribution in North America. We believe that this highly sensitive and specific multiplex real-time PCR assay could be an effective tool for rapid detection and differentiation of C. sonorensis, the known vector of BTV and EHDV, in trap collections in future vector surveillance programs.

11.
J Fungi (Basel) ; 10(9)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39330379

RESUMO

Infectious diseases caused by fungal sources are of great interest owing to their increasing prevalence. Invasive fungal infections, including invasive pulmonary aspergillosis caused by Aspergillus fumigatus, and Pneumocystis pneumonia caused by Pneumocystis jirovecii, are significant causes of morbidity and mortality among immunocompromised patients. The accurate and timely detection of these pathogens in this high-risk population is crucial for effective patient management. We developed a multiplex real-time polymerase chain reaction (PCR) assay, RF2 mRT-PCR, specifically designed to detect two respiratory fungi, P. jirovecii and A. fumigatus, and evaluated its performance in specimens of patients with lower respiratory tract infection. The performance was evaluated using 731 clinical samples, 55 reference species, and one synthetic DNA. The reproducibility test yielded a probit curve with a lower limit of detection of 19.82 copies/reaction for P. jirovecii and 64.20 copies/reaction for A. fumigatus. The RF2 mRT-PCR assay did not cross-react with non-A. fumigatus Aspergillus species or other common bacterial and viral species, and showed 100% in vitro sensitivity and specificity with reference assays. Additionally, it simultaneously detected A. fumigatus and P. jirovecii in co-infected samples. Therefore, the RF2 mRT-PCR assay is an efficient and reliable tool for in vitro diagnosis of A. fumigatus and P. jirovecii pulmonary infections.

12.
Vet Sci ; 11(9)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39330781

RESUMO

A cross-sectional study was carried out, between April 2021 and June 2022, to understand the role of dogs in the circulation of rickettsiosis in Tunisia. The presence of specific IgG antibodies against Rickettsia conorii was analyzed by indirect immunofluorescence test. By qPCR, blood and ticks were collected from 136 dogs examined at the Canine Department of National School for Veterinary Medicine of Tunisia. These dogs were also analyzed to detect Rickettsia DNA. The rate of Rickettsia seropositivity in 136 dogs was 55.14%. A total of 51 (53%) seropositive dogs showed clinical and biological signs such as fever and anorexia as well as thrombocytopenia and anemia. By qPCR, targeting the mitochondrial 16S rRNA gene, no Rickettsia DNA was detected in the blood. On the other hand, qPCR followed by sequencing revealed the presence of R. conorii subsp. raoultii in 7 tick pools of the 51 pools composed of the 227 ticks collected. A One Health approach to raise the awareness of dog owners to control tick infestations is imperative, given the dangers of canine zoonoses.

13.
Acta Trop ; 260: 107395, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39278521

RESUMO

BACKGROUND: HTLV-1/2 exhibit a widespread distribution globally and are associated with severe clinical manifestations, necessitating precise viral identification for diagnosis. Currently, there are no official diagnostic guidelines, and a variety of published protocols exists. We introduce an enhanced nested real-time PCR technique followed by high-resolution melting (rtPCR-HRM), designed to offer a cost-effective and straightforward tool for the simultaneous identification of both viruses. METHODS: The technique was tested in a retrospective, blinded study, involving a total panel of 110 samples, of which 47 were positive for HTLV-1, 12 for HTLV-2, and 51 tested negatives. Additionally, we compared the performance of this technique with a line immunoassay (LIA). RESULTS: The results demonstrate 100 % sensitivity, specificity, and diagnostic accuracy for both viruses. Sensitivity analysis indicated that at least 1 viral copy of HTLV-1 and 14.4 viral copies of HTLV-2 could be reliably detected. CONCLUSIONS: Our results indicate that rtPCR-HRM is effective in confirming HTLV-1 and HTLV-2 infection, important in Latin American countries where both viruses circulate. Furthermore, the proposed strategy provides a new tool that can be used to resolve indeterminate cases identified by Western blot, with the added advantage of being faster and simpler than n-PCR and more cost-effective than other probe-based RT-PCRs.

14.
Protein Expr Purif ; 226: 106610, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39306312

RESUMO

This research examines the impact of bacteriocin derived from Lactobacillus plantarum PTCC 1745 on the biofilm formations of A. baumannii isolates. Bacteriocin derived from L. plantarum PTCC 1745 was obtained through ammonium sulfate precipitation, cation-exchange chromatography, and reversed-phase high-performance liquid chromatography (RP-HPLC). Testing for bacteriocin susceptibility has been conducted using the broth dilution method. The anti-biofilm activity of bacteriocin was evaluated using a microtiter plate method. Quantitative real-time PCR assay evaluated bap gene expression in bacteriocin-treated cells. According to SDS-PAGE, bacteriocin from L. plantarum has a 25-kDa apparent molecular weight. The MICs of bacteriocin ranged from 30 to 120 µg/mL, while the MBCs varied between 60 and 120 µg/mL. Compared to the non-treated group, strains bacteriocin-treated isolates had 59 % less ability to form biofilm. The mean relative expression of the bap gene among the MDR A. baumannii isolates decreased by 52 % compared to the untreated control. This study demonstrated that bacteriocin derived from L. plantarum PTCC 1745 had antibacterial and antibiofilm activity against MDR A. baumannii isolates.

15.
Discov Nano ; 19(1): 154, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313578

RESUMO

Acinetobacter baumannii, an opportunistic pathogen has shown an upsurge in its multi-drug resistant isolates. OmpA of A. baumannii induces incomplete autophagy and apoptosis in host cells. Various therapeutic alternatives are under investigation against A. baumannii. Here, the major emphasis has been laid on comparing the efficacy of AgNP with different capping agents. OmpA targeted lead, Ivermectin capped AgNP (IVM-AgNP) has been compared with the antibacterial polyvinylpyrrolidone capped AgNP (PVP-AgNP) for their role in the modulations of host autophagy. Upregulation of p62 and LC3B confirmed by real-time PCR analysis indicated an increased autophagic flux upon the treatment with AgNPs. The elongation and closure of autophagic vacuoles was also supported by upregulated Atg genes (Atg4, Atg3, Atg5) in A. baumannii infected cells after treatment with AgNP. Autophagic flux increased on treatment with PVP-AgNP as suggested by the rise in mcherryLC3B fluorescence in A549 cells treated with PVP-AgNP as compared to the GFP-LC3B of IVM-AgNP. This suggests that PVP-AgNP treatment more effectively promotes the elongation and maturation stages of autophagy by increasing autophagic flux. These results indicate that capped AgNPs have the efficiency to revert the incomplete autophagy induced by A. baumannii back to normal autophagic levels.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39305413

RESUMO

Zooplankton monitoring is important for understanding their population dynamics and life history, ecosystem health, and environmental changes. Compared with traditional morphological identification, environmental DNA (eDNA) analysis allows for more sensitive and efficient monitoring of zooplankton diversity. Previous eDNA studies have primarily used metabarcoding approaches to reveal their richness and composition, whereas its performance in predicting zooplankton abundance remains understudied. We conducted water and bulk sampling in Lake Biwa, Japan, showing that the number of sequence reads by metabarcoding moderately correlated with eDNA concentrations estimated by quantitative real-time PCR (qPCR). In addition, the eDNA read number was significantly related to cladoceran and copepod abundance estimated by microscopy sorting, although there remained too much uncertainty in the read-abundance relationship. Moreover, there was a significant difference in species composition between eDNA metabarcoding and sorting. Although our results indicated the potential applicability of eDNA metabarcoding for quantifying multiple zooplankton abundance, several methodological validations in eDNA metabarcoding would also be required to optimize its performance in the future.

17.
Sci Rep ; 14(1): 21655, 2024 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289450

RESUMO

Using a modified proximity extension assay, total and immunoglobulin (Ig) class-specific anti-SARS-CoV-2 antibodies were sensitively and conveniently detected directly from ø1.2 mm discs cut from dried blood and saliva spots (DBS and DSS) without the need for elution. For total Ig detection, antigen probes were prepared by conjugating recombinant spike protein subunit 1 (S1-RBD) to a pair of oligonucleotides. To detect isotype-specific antibody reactivity, one antigen probe was replaced with oligonucleotide-conjugated antibodies specific for antibody isotypes. Binding of pairs of oligonucleotide-conjugated probes to antibodies in patient samples brings oligonucleotides in proximity. An added DNA polymerase uses a transient hybridization between the oligonucleotides to prime synthesis of a DNA strand, which serves as a DNA amplicon that is quantified by real-time PCR. The S1-RBD-specific IgG, IgM, and IgA antibodies in DBS samples collected over the course of a first and second vaccination exhibited kinetics consistent with previous reports. Both DBS and DSS collected from 42 individuals in the autumn of 2023 showed significant level of total S1-RBD antibodies with a correlation of R = 0.70. However, levels in DSS were generally 10 to 100-fold lower than in DBS. Anti-S1-RBD IgG and IgA in DSS demonstrated a correlation of R = 0.6.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunoglobulina A , Imunoglobulina G , Imunoglobulina M , SARS-CoV-2 , Saliva , Humanos , Saliva/imunologia , SARS-CoV-2/imunologia , Imunoglobulina M/imunologia , Imunoglobulina M/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Imunoglobulina A/imunologia , Imunoglobulina A/sangue , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , COVID-19/imunologia , COVID-19/diagnóstico , COVID-19/virologia , Glicoproteína da Espícula de Coronavírus/imunologia , Teste em Amostras de Sangue Seco/métodos
18.
Comp Biochem Physiol C Toxicol Pharmacol ; 287: 110047, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39313016

RESUMO

The use of marine mussels as biological models encompasses a broad range of research fields, in which the application of RNA analyses disclosed novel biomarkers of environmental stress and investigated biochemical mechanisms of action. Quantitative real-time PCR (qPCR) is the gold standard for these studies, and despite its wide use and available protocols, it may be affected by technical flaws requiring reference gene data normalization. In this study, stability of housekeeping genes commonly employed as reference genes in qPCR analyses with Mytilus galloprovincialis was explored under field conditions. Mussels were collected from farms in the Northwestern Adriatic Sea. The sampling strategy considered latitudinal gradients of environmental parameters (proxied by location), gender, and their interactions with seasonality. Analyses of gene stability were performed using different algorithms. BestKeeper and geNorm agreed that combination of the ribosomal genes 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) was the best normalization strategy in the conditions tested, which agrees with available evidence. NormFinder provided different normalization strategies, involving combinations of tubulin (TUB)/28S (Gender/Season effect) or TUB/helicase (HEL) (Location/Season effect). Since NormFinder considers data grouping and computes both intra- and inter-group stability variations, it should work better with complex experimental designs and dataset structuring. Under the selected normalization strategies, expressions of the variable housekeeping genes actin (ACT) and elongation factor-1α (EF1) correlated with seasonal and latitudinal changes of abiotic environmental factors and mussel physiological status. Results point to consider ACT and EF1 expressions as molecular biomarkers of mussel general physiological status in field studies.

19.
IDCases ; 37: e02055, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39220424

RESUMO

Background: Parvoviruses, characterized by their tropism for blood cells, can manifest as asymptomatic infections. With their ability to persist in blood, assessing the prevalence of Parvovirus B19 (B19V) and Parvovirus 4 (PARV4) among healthy blood donors is essential for evaluating the potential transmission risks through blood transfusions, emphasizing the need for comprehensive screening protocols. Methods: Four hundred blood donors participated in the study, with their blood specimens subjected to Real-Time PCR analysis for B19V and PARV4 nucleic acids after obtaining informed consent. Additionally, Complete Blood Count (CBC) assessments and determination of anti-B19 V-IgM and anti-B19 V-IgG antibody titers were performed using Enzyme-Linked Immunosorbent Assay (ELISA) for all collected samples. Results: The results reveal that 12 out of 400 individuals (3 %) exhibited positive results for B19V DNA, while 6 out of 400 individuals (1.5 %) tested positive for PARV4 DNA. Additionally, 8 out of 400 individuals (2 %) displayed positive results for anti-B19V IgM, and 306 out of 400 individuals (76.5 %) exhibited positive results for anti-B19 IgG. Notably, one donation from a donor presenting anti-IgM antibodies was subsequently confirmed as B19V DNA-positive through Real-Time PCR. In the analysis of CBC, a significant disparity in platelet levels was observed between B19V-positive donors, PARV4-positive donors, and B19V-negative donors. Conclusions: The study suggests that individuals at high risk, lacking detectable B19V antibodies, should undergo systematic screening and exclusion. This precaution is intended to minimize potential contamination risks within the studied cohort, despite the undefined pathogenesis and clinical implications of PARV4.

20.
Animals (Basel) ; 14(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39272290

RESUMO

Radiation therapy is a crucial cancer treatment, but it can damage healthy tissues, leading to side effects like skin injuries and molecular alterations. This study aimed to elucidate histological and molecular changes in canine skin post-radiation therapy (post-RT) over nine weeks, focusing on inflammation, stem cell activity, angiogenesis, keratinocyte regeneration, and apoptosis. Four male beagles received a cumulative radiation dose of 48 Gy, followed by clinical observations, histological examinations, and an RT-qPCR analysis of skin biopsies. Histological changes correlated with clinical recovery from inflammation. A post-RT analysis revealed a notable decrease in the mRNA levels of Oct4, Sox2, and Nanog from weeks 1 to 9. VEGF 188 levels initially saw a slight increase at week 1, but they had significantly declined by week 9. Both mRNA and protein levels of COX-2 and Keratin 10 significantly decreased over the 9 weeks following RT, although COX-2 expression surged in the first 2 weeks, and Keratin 10 levels increased at weeks 4 to 5 compared to normal skin. Apoptosis peaked at 2 weeks and diminished, nearing normal by 9 weeks. These findings offer insights into the mechanisms of radiation-induced skin injury and provide guidance for managing side effects in canine radiation therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA