Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834710

RESUMO

In order to analyze the axial compressive properties of ultra-high-toughness cementitious composite (UHTCC)-confined recycled aggregate concrete (RAC), a batch of UHTCC-confined RAC components was designed and manufactured according to the requirements of GB/T50081-2002 specifications. After analyzing the surface failure phenomenon, load-displacement curves, scanning electron microscope (SEM), and parameter analysis of the specimen, the result shows that UHTCC-confined RAC is an effective confinement method, which can effectively improve the mechanical properties and control the degree of surface failure of RAC structures. Compared with the unconfined specimen, the maximum peak load of the UHTCC confinement layer with a thickness of 10 mm and 20 mm increased by 44.61% and 79.27%, respectively, meeting the requirements of engineering practice. Different fiber mixing amounts have different effects on improving the mechanical performance of RAC structural. The specific rule was steel fiber (SF) > polyvinyl alcohol fiber (PVAF) > polyvinyl alcohol fiber (PEF) > no fiber mixture, and the SF improves the axial compression properties of UHTCC most significantly. When there are strict requirements for improving the mechanical properties of the structure, SF should be added to UHTCC. On the contrary, PVAF should be added to UHTCC.

2.
Polymers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335589

RESUMO

In this study, the compressive performance of sisal fiber-reinforced recycled aggregate concrete (SFRAC) composite, confined with jute fiber-reinforced polymer (JFRP) tube (the structure was termed as JFRP-SFRAC) was assessed. A total of 36 cylindrical specimens were tested under uniaxial compression. Three major experimental variables were investigated: (1) the compressive strength of concrete core (i.e., 25.0 MPa and 32.5 MPa), (2) jute fiber orientation angle with respect to the hoop direction of a JFRP tube (i.e., ß = 0°, 30° and 45°), and (3) the reinforcement of sisal fiber (i.e., 0% and 0.3% by mass of cement). This study revealed that the prefabricated JFRP tube resulted in a significant enhancement of the compressive strength and deformation ability of RAC and SFRAC. The enhancements in strength and ultimate strain of the composite columns were more pronounced for concrete with a higher strength. The strength and ultimate strain of JFRP-confined specimens decreased with an increase in fiber orientation angle ß from 0° to 45°. The sisal fiber reinforcement effectively improved the integrity of the RAC and reduced the propagation of cracks in RAC. The stress-strain behaviors of JFRP-RAC and JFRP-SFRAC were predicted by the Lam and Teng's model with the revised ultimate condition equations.

3.
Materials (Basel) ; 14(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443143

RESUMO

Using recycled aggregate in concrete is effective in recycling construction and demolition waste. It is of critical significance to understand the fatigue properties of recycled aggregate concrete (RAC) to implement it safely in structures subjected to repeated or fatigue load. In this study, a series of fatigue tests was performed to investigate the compressive fatigue behavior of RAC. The performance of interfacial transition zones (ITZs) was analyzed by nanoindentation. Moreover, the influence of ITZs on the fatigue life of RAC was discussed. The results showed that the fatigue life of RAC obeyed the Weibull distribution, and the S-N-p equation could be obtained based on the fitting of Weibull parameters. In the high cycle fatigue zone (N≥104), the fatigue life of RAC was lower than that of natural aggregate concrete (NAC) under the same stress level. The fatigue deformation of RAC presented a three-stage deformation regularity, and the maximum deformation at the point of fatigue failure closely matched the monotonic stress-strain envelope. The multiple ITZs matched the weak areas of RAC, and the negative effect of ITZs on the fatigue life of RAC in the high cycle fatigue zone was found to be greater than that of NAC.

4.
Materials (Basel) ; 14(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802294

RESUMO

Ordinary cement concrete is a popular material with numerous advantages when compared to other construction materials; however, ordinary concrete is also criticized from the public point of view due to the CO2 emission (during the cement manufacture) and the consumption of natural resources (for the aggregates). In the context of sustainable development and circular economy, the recycling of materials and the use of alternative binders which have less environmental impacts than cement are challenges for the construction sector. This paper presents a study on non-conventional concrete using recycled aggregates and alkali-activated binder. The specimens were prepared from low calcium fly ash (FA, an industrial by-product), sodium silicate solution, sodium hydroxide solution, fine aggregate from river sand, and recycled coarse aggregate. First, influences of different factors were investigated: the ratio between alkaline activated solution (AAS) and FA, and the curing temperature and the lignosulfonate superplasticizer. The interfacial transition zone of geopolymer recycled aggregate concrete (GRAC) was evaluated by microscopic analyses. Then, two empirical models, which are the modified versions of Feret's and De Larrard's models, respectively, for cement concretes, were investigated for the prediction of GRAC compressive strength; the parameters of these models were identified. The results showed the positive behaviour of GRAC investigated and the relevancy of the models proposed.

5.
Materials (Basel) ; 15(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35009300

RESUMO

Recycled aggregate concrete-filled steel tubular (RACFST) columns are widely recognized as efficient structural members that can reduce the environmental impact of the building industry and improve the mechanical behavior of recycled aggregate concrete (RAC). The objective of this study is to investigate the behavior of recycled aggregate concrete-filled circular steel tubular (RACFCST) stub columns subjected to the axial loading. Three-dimensional finite element (FE) models were established using a triaxial plastic-damage constitutive model of RAC considering the replacement ratio of recycled aggregates. The FE analytical results revealed that the decreased ultimate bearing capacity of RACFCST stub columns compared with conventional concrete infilled steel tubular (CFST) columns was mainly due to the weakened confinement effect and efficiency. This trend will become more apparent with the larger replacement ratio of recycled aggregates. A practical design formula of the ultimate bearing capacity of RACFCST stub columns subjected to axial load was proposed on the basis of the reasonably simplified cross-sectional stress nephogram at the ultimate state. The derivation process incorporated the equilibrium condition and the superposition theory. The proposed equation was evaluated by comparing its accuracy and accessibility to some well-known design formulae proposed by other researchers and some widely used design codes.

6.
Materials (Basel) ; 13(1)2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31906468

RESUMO

The use of recycled concrete aggregates (RCA) in high performance concrete (HPC) was analyzed. The paper presents the experimental studies of model reinforced concrete beams with a rectangular section using high-performance recycled aggregates. Two variable contents of recycled aggregate concrete were used in this study: 50% and 100%. The experimental analyses conducted as immediate studies concerned the following issues: short time loads-deflection, load-carrying capacity of beams, deformation of concrete, cracks, and long-term loads-deflection. The comparative analysis involves the behavior of beams made of high performance concrete-high strength concrete (HPC-HSC) recycled aggregates with model control elements made of regular concrete based on natural aggregates. The deflection values for the recycled aggregate beams were 20% higher than in the case of the control beams made of HPC-HSC exclusively. Replacement of aggregate with recycled concrete aggregate resulted in a large decrease in the value of these two parameters, i.e., compression strength by about 42% and modulus of elasticity by about 33%.

7.
Materials (Basel) ; 12(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212785

RESUMO

In this paper, a new recycled aggregate concrete (RAC) was produced with composite coarse aggregate and fine recycled aggregate. The composite coarse aggregate was mixed into continuous gradation by large particle natural aggregate with small particle recycled aggregate. To explore the time-dependent developments of the compressive strength and splitting tensile strength of this new RAC, 320 groups of cubic specimens were tested at different curing ages from 3 days to 360 days to measure the compressive and splitting tensile strengths. The amount of large particle natural aggregate varied from zero to 70% in mass of the total coarse aggregate. The water/cement ratio was taken as 0.60, 0.49, 0.41 and 0.36 to represent four strength grades of the RAC at about C20, C30, C40 and C50. Based on the tested results, the curves of the compressive and tensile strengths of the RAC that changed with curing age are plotted, which clearly exhibit that the amount of large particle natural aggregate had a rational range in different strength grades of the RAC which had better aging strength. When the RAC was no larger than C30 with a water/cement ratio of 0.60 and 0.49, the amount of large particle natural aggregate should be no more than 30%; when the RAC was no less than C40 with a water/cement ratio of 0.41 and 0.36, the amount of large particle natural aggregate should be no less than 50%. Along with the general prediction of the strength development of all the tested RAC, the optimal predictive formulas are proposed for the strength development of RAC with a rational amount of natural aggregate. Meanwhile, the strength developments of RAC with a rational amount of natural aggregate are assessed by the time-dependent models proposed by the ACI Committee 209 and CEB-FIP MC 2010.

8.
Materials (Basel) ; 12(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013758

RESUMO

This paper aims to study the effectiveness of adding waste polypropylene fibers into recycled aggregate concrete (RAC) on shrinkage cracking. The influences of fiber properties (length and content) on the shrinkage performance of RAC are investigated. Firstly, through the plat-ring-type shrinkage test and free shrinkage test, both of the early age and long-term shrinkage performance of waste fiber recycled concrete (WFRC) were measured. Then, X-ray industrial computed tomography (ICT) was carried out to reflect the internal porosity changes of RAC with different lengths and contents of fibers. Furthermore, the compressive strength and flexural strength tests are conducted to evaluate the mechanical performance. The test results indicated that the addition of waste fibers played an important role in improving the crack resistance performance of the investigated RAC specimens as well as controlling their shrinkage behaviour. The initial cracking time, amount and width of cracks and shrinkage rate of fiber-reinforced specimens were better than those of the non-fiber-reinforced specimen. The addition of waste fibers at a small volume fraction in recycled concrete had not obviously changed the porosity, but it changed the law of pore size distribution. Meanwhile, the addition of waste fibers had no significant effect on the compressive strength of RAC, but it enhanced the flexural strength by 43%. The specimens reinforced by 19-mm and 0.12% (volume fraction) waste fibers had the optimal performance of cracking resistance.

9.
Waste Manag ; 56: 367-75, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27297045

RESUMO

This paper studies the potential environmental impact of recycled coarse aggregate (RCA) for concrete production in China. According to the cradle-to-cradle theory, a closed-loop life cycle assessment (LCA) on recycled aggregate concrete (RAC) utilization in China with entire local life cycle inventory (LCI) is performed, regarding the environmental influence of cement content, aggregate production, transportation and waste landfilling. Special attention is paid on the primary resource and energy conservation, as well as climate protection induced by RAC applications. Environmental impact between natural aggregate concrete (NAC) and RAC are also compared. It is shown that cement proportion and transportation are the top two contributors for carbon dioxide (CO2) emissions and energy consumption for both NAC and RAC. Sensitivity analysis also proves that long delivery distances for natural coarse aggregate (NCA) leave a possible opportunity for lowering environmental impact of RAC in China.


Assuntos
Materiais de Construção/análise , Resíduos Industriais/análise , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , China
10.
Polymers (Basel) ; 8(10)2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-30974652

RESUMO

The in situ application of recycled aggregate concrete (RAC) is of great significance in environmental protection and construction resources sustainability. However, it has been limited to nonstructural purposes due to its poor mechanical performance. External confinement using steel tubes and fiber-reinforced polymer (FRP) can significantly improve the mechanical performance of RAC and thus the first-ever study on the axial compressive behavior of glass FRP (GFRP)-confined RAC was recently reported. To have a full understanding of FRP-confined RAC, this paper has extended the type of FRP and presents a systematic experimental study on the axial compressive performance of carbon FRP (CFRP)-confined RAC. The mechanical properties of CFRP-confined RAC from the perspective of the failure mode, ultimate strength and strain, and stress⁻strain relationship responses were analyzed. Integrated with existing experimental data of FRP-confined RAC, the paper compiles a database for the mechanical properties of FRP-confined RAC. Based on the database, the effects of FRP type (i.e., GFRP and CFRP) and the replacement ratio of recycled coarse aggregate were investigated. The results indicated that the stress⁻stain behavior of FRP-confined RAC depended heavily on the unconfined concrete strength and the FRP confining pressure instead of the replacement ratio. Therefore, this study adopted eleven high-performance ultimate strength and strain models developed for FRP-confined normal aggregate concrete (NAC) to predict the mechanical properties of FRP-confined RAC. All the predictions had good agreement with the test results, which further confirmed similar roles played by FRP confinement in improving the mechanical properties of RAC and improving those of NAC. On this basis, this paper finally recommended a stress⁻strain relationship model for FRP-confined RAC.

11.
Waste Manag ; 48: 334-343, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26452425

RESUMO

A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit.


Assuntos
Materiais de Construção , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , China , Resíduos Industriais
12.
Materials (Basel) ; 7(12): 7843-7860, 2014 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-28788279

RESUMO

In order to ascertain the fire resistance performance of recycled aggregate concrete (RAC) components with different concrete compressive strengths, four full-scaled concrete columns were designed and tested under high temperature. Two of the four specimens were constructed by normal concrete with compressive strength ratings of C20 and C30, respectively, while the others were made from recycled coarse aggregate (RCA) concrete of C30 and C40, respectively. Identical constant axial forces were applied to specimens while being subjected to simulated building fire conditions in a laboratory furnace. Several parameters from the experimental results were comparatively analyzed, including the temperature change, vertical displacement, lateral deflection, fire endurance, and failure characteristics of specimens. The temperature field of specimens was simulated with ABAQUS Software (ABAQUS Inc., Provindence, RI, USA) and the results agreed quite well with those from the experiments. Results show that the rate of heat transfer from the surface to the interior of the column increases with the increase of the concrete's compressive strength for both RAC columns and normal concrete columns. Under the same initial axial force ratio, for columns with the same cross section, those with lower concrete compressive strengths demonstrate better fire resistance performance. The fire resistance performance of RAC columns is better than that of normal concrete columns, with the same concrete compressive strength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA