Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.813
Filtrar
1.
J Environ Sci (China) ; 150: 288-296, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306404

RESUMO

Polybrominated biphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) are commonly detected contaminants at e-waste recycling sites. Against the conventional wisdom that PBDEs and PAHs are highly immobile and persist primarily in shallow surface soils, increasing evidence shows that these compounds can leach into the groundwater. Herein, we compare the leachabilities of PBDEs vs. PAHs from contaminated soils collected at an e-waste recycling site in Tianjin, China. Considerable amounts of BDE-209 (0.3-2 ng/L) and phenanthrene (42-106 ng/L), the most abundant PBDE and PAH at the site, are detected in the effluents of columns packed with contaminated soils, with the specific concentrations varying with hydrodynamic and solution chemistry conditions. Interestingly, the leaching potential of BDE-209 appears to be closely related to the release of colloidal mineral particles, whereas the leachability of phenanthrene correlates well with the concentration of dissolved organic carbon in the effluent, but showing essentially no correlation with the concentration of mineral particles. The surprisingly different trends of the leachability observed between BDE-209 and phenanthrene is counterintuitive, as PBDEs and PAHs often co-exist at e-waste recycling sites (particularly at the sites wherein incineration is being practiced) and share many similarities in terms of physicochemical properties. One possible explanation is that due to its extremely low solubility, BDE-209 predominantly exists in free-phase (i.e., as solid (nano)particles), whereas the more soluble phenanthrene is mainly sorbed to soil organic matter. Findings in this study underscore the need to better understand the mobility of highly hydrophobic organic contaminants at contaminated sites for improved risk management.


Assuntos
Resíduo Eletrônico , Monitoramento Ambiental , Água Subterrânea , Éteres Difenil Halogenados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluentes Químicos da Água , Éteres Difenil Halogenados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Resíduo Eletrônico/análise , Poluentes do Solo/análise , China , Água Subterrânea/química , Carbono/análise , Minerais/análise , Minerais/química
2.
J Environ Sci (China) ; 147: 523-537, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003068

RESUMO

Due to its high efficiency, Fe(II)-based catalytic oxidation has been one of the most popular types of technology for treating growing organic pollutants. A lot of chemical Fe sludge along with various refractory pollutants was concomitantly produced, which may cause secondary environmental problems without proper disposal. We here innovatively proposed an effective method of achieving zero Fe sludge, reusing Fe resources (Fe recovery = 100%) and advancing organics removal (final TOC removal > 70%) simultaneously, based on the in situ formation of magnetic Ca-Fe layered double hydroxide (Fe3O4@CaFe-LDH) nano-material. Cations (Ca2+ and Fe3+) concentration (≥ 30 mmol/L) and their molar ratio (Ca:Fe ≥ 1.75) were crucial to the success of the method. Extrinsic nano Fe3O4 was designed to be involved in the Fe(II)-catalytic wastewater treatment process, and was modified by oxidation intermediates/products (especially those with COO- structure), which promoted the co-precipitation of Ca2+ (originated from Ca(OH)2 added after oxidation process) and by-produced Fe3+ cations on its surface to in situ generate core-shell Fe3O4@CaFe-LDH. The oxidation products were further removed during Fe3O4@CaFe-LDH material formation via intercalation and adsorption. This method was applicable to many kinds of organic wastewater, such as bisphenol A, methyl orange, humics, and biogas slurry. The prepared magnetic and hierarchical CaFe-LDH nanocomposite material showed comparable application performance to the recently reported CaFe-LDHs. This work provides a new strategy for efficiently enhancing the efficiency and economy of Fe(II)-catalyzed oxidative wastewater treatment by producing high value-added LDHs materials.


Assuntos
Oxirredução , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Catálise , Ferro/química
3.
J Environ Sci (China) ; 147: 93-100, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003087

RESUMO

Polybromodiphenyl ethers (PBDEs), the widely used flame retardants, are common contaminants in surface soils at e-waste recycling sites. The association of PBDEs with soil colloids has been observed, indicating the potential risk to groundwater due to colloid-facilitated transport. However, the extent to which soil colloids may enhance the spreading of PBDEs in groundwater is largely unknown. Herein, we report the co-transport of decabromodiphenyl ester (BDE-209) and soil colloids in saturated porous media. The colloids released from a soil sample collected at an e-waste recycling site in Tianjin, China, contain high concentration of PBDEs, with BDE-209 being the most abundant conger (320 ± 30 mg/kg). The colloids exhibit relatively high mobility in saturated sand columns, under conditions commonly observed in groundwater environments. Notably, under all the tested conditions (i.e., varying flow velocity, pH, ionic species and ionic strength), the mass of eluted BDE-209 correlates linearly with that of eluted soil colloids, even though the mobility of the colloids varies markedly depending on the specific hydrodynamic and solution chemistry conditions involved. Additionally, the mass of BDE-209 retained in the columns also correlates strongly with the mass of retained colloids. Apparently, the PBDEs remain bound to soil colloids during transport in porous media. Findings in this study indicate that soil colloids may significantly promote the transport of PBDEs in groundwater by serving as an effective carrier. This might be the reason why the highly insoluble and adsorptive PBDEs are found in groundwater at some PBDE-contaminated sites.


Assuntos
Coloides , Retardadores de Chama , Água Subterrânea , Éteres Difenil Halogenados , Poluentes do Solo , Solo , Poluentes Químicos da Água , Éteres Difenil Halogenados/análise , Coloides/química , Água Subterrânea/química , Poluentes do Solo/análise , Poluentes do Solo/química , Solo/química , Poluentes Químicos da Água/análise , China , Retardadores de Chama/análise , Monitoramento Ambiental , Modelos Químicos
4.
J Environ Sci (China) ; 149: 234-241, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181638

RESUMO

Reducing the cost of RuO2/TiO2 catalysts is still one of the urgent challenges in catalytic HCl oxidation. In the present work, a Ce-doped TiO2 supported RuO2 catalyst with a low Ru loading was developed, showing a high activity in the catalytic oxidation of HCl to Cl2. The results on some extensive characterizations of both Ce-doped TiO2 carriers and their supported RuO2 catalysts show that the doping of Ce into TiO2 can effectively change the lattice parameters of TiO2 to improve the dispersion of the active RuO2 species on the carrier, which facilitates the production of surface Ru species to expose more active sites for boosting the catalytic performance even under some harsh reaction conditions. This work provides some scientific basis and technical support for chlorine recycling.


Assuntos
Cério , Ácido Clorídrico , Oxirredução , Titânio , Titânio/química , Catálise , Cério/química , Ácido Clorídrico/química , Compostos de Rutênio/química , Cloretos/química , Modelos Químicos , Cloro/química
6.
Angew Chem Int Ed Engl ; : e202415707, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39307689

RESUMO

Developing plastics that fill the need of polyolefins yet are more easily recyclable is a critical need to address the plastic waste crisis. However, most efforts in this vein have focused on high-density polyethylene (PE), while many different types of PE exist. To create broadly sustainable PE with modular properties, we present the synthesis, characterization, and demonstration of materials applications for chemically recyclable PE-like multiblock polymers prepared from distinct hard and soft blocks using ruthenium-catalyzed dehydrogenative polymerization. By altering the branching pattern within the soft blocks, a series of PE-like multiblock polymers were synthesized with tunable glass transition temperatures (Tg) while maintaining consistent high melting temperatures (Tm). A clear U-shape trend between Tg and mechanical properties was found, showcasing their potential as sustainable materials with tailored properties spanning commercial linear low-density polyethylene (LLDPE) and low-density polyethylene (LDPE). These materials offer adjustable adhesive strength to metal and demonstrate chemical recyclability and selective depolymerization in mixed plastic streams, promoting circularity and separation.

7.
Molecules ; 29(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274951

RESUMO

Solketal, a widely used glycerol-derived solvent, can be efficiently synthesized through heterogeneous catalysis, thus avoiding the significant product losses typically encountered with aqueous work-up in homogeneous catalysis. This study explores the catalytic synthesis of solketal using solid acid catalysts derived from recovered carbon blacks (rCBs), which are obtained through the pyrolysis of end-of-life tires. This was further converted into solid acid catalysts through the introduction of acidic functional groups using concentrated H2SO4 or 4-benzenediazonium sulfonate (BDS) as sulfonating agents. Additionally, post-pyrolytic rCB treated with glucose and subsequently sulfonated with sulfuric acid was also prepared. Comprehensive characterization of the initial and modified rCBs was performed using techniques such as elemental analysis, powder X-ray diffraction, thermogravimetric analysis, a back titration method, and both scanning and transmission electron microscopy, along with X-ray photoelectron spectroscopy. The catalytic performance of these samples was evaluated through the batch mode glycerol acetalization to produce solketal. The modified rCBs exhibited substantial catalytic activity, achieving high glycerol conversions (approximately 90%) and high solketal selectivity (around 95%) within 30 min at 40 °C. This notable activity was attributed to the presence of -SO3H groups on the surface of the functionalized rCBs. Reusability tests indicated that only rCBs modified with glucose demonstrated acceptable catalytic stability in subsequent acetalization cycles. The findings underscore the potential of utilizing end-of-life tires to produce effective acid catalysts for glycerol valorization processes.

8.
MAbs ; 16(1): 2404064, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39289783

RESUMO

The engineering of pH-sensitive therapeutic antibodies, particularly for improving effectiveness and specificity in acidic solid-tumor microenvironments, has recently gained traction. While there is a justified need for pH-dependent immunotherapies, current engineering techniques are tedious and laborious, requiring repeated rounds of experiments under different pH conditions. Inexpensive computational techniques to predict the effectiveness of His pH-switches require antibody-antigen complex structures, but these are lacking in most cases. To circumvent these requirements, we introduce a sequence-based in silico method for predicting His mutations in the variable region of antibodies, which could lead to pH-biased antigen binding. This method, called Sequence-based Identification of pH-sensitive Antibody Binding (SIpHAB), was trained on 3D-structure-based calculations of 3,490 antibody-antigen complexes with solved experimental structures. SIpHAB was parametrized to enhance preferential binding either toward or against the acidic pH, for selective targeting of solid tumors or for antigen release in the endosome, respectively. Applications to nine antibody-antigen systems with previously reported binding preferences at different pHs demonstrated the utility and enrichment capabilities of this high-throughput computational tool. SIpHAB, which only requires knowledge of the antibody primary amino-acid sequence, could enable a more efficient triage of pH-sensitive antibody candidates than could be achieved conventionally. An online webserver for running SipHAB is available freely at https://mm.nrc-cnrc.gc.ca/software/siphab/runner/.


Assuntos
Endossomos , Neoplasias , Engenharia de Proteínas , Concentração de Íons de Hidrogênio , Humanos , Engenharia de Proteínas/métodos , Neoplasias/imunologia , Neoplasias/terapia , Endossomos/metabolismo , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Microambiente Tumoral/imunologia , Animais
9.
Heliyon ; 10(17): e37202, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296023

RESUMO

With the yearly increasing market penetration of new-energy vehicles in China, the retirement of power batteries has gradually become a scale, and most of the waste batteries have entered informal recycling channels, which has induced a series of environmental problems. Considering this issue, we introduced the system dynamics (SD), stimulus organism response (SOR), and the theory of planned behavior (TPB) in behavioral economics to establish the environmental economic benefit evaluation model of power battery recycling strategies, and we performed a dynamic simulation analysis on the effect of government subsidy policy, policy advocacy, and other recycling strategies. The results show that: (1) the recovery subsidy policy can improve the formal recycling quantity and economic benefits of recovery, but the effect on the degree of environmental pollution is limited. (2) The combination of environmental awareness promotion strategy and subsidy policy can overcome the shortcomings of subsidy policy and has significant environmental and economic performance. (3) Compared with the benchmark scenario, the formal recycling quantity, the CO2 emission reduction, and the economic benefits of recovery in scenario 4 (high subsidy-high policy propaganda strategy) increased by approximately 112 %, 208 %, and 223 %, respectively, and the degree of environmental pollution decreased by approximately 65 %.

10.
Front Cell Dev Biol ; 12: 1442198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39296936

RESUMO

A comprehensive study of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) in the fly genome by RNAi in Drosophila photoreceptors indicated that knockdown of any of the COPI-SNAREs, Syx18, Sec20, and Use1, resulted in the same characteristic phenotypes: Golgi stacks gathering on their trans-side, laterally expanded Golgi cisternae, and a reduced number of discrete Golgi stacks. These Golgi stacks are reminiscent of mammalian Golgi ribbons and Brefeldin A (BFA)-bodies in Drosophila S2 cells. As previously reported, BFA suppresses trans-Golgi network (TGN) fission and Golgi stack separation to form a BFA-body, which is a cluster of Golgi stacks cored by recycling endosomes. We found that the impairing each of COPI-SNAREs results in clustered Golgi stacks similar to BFA-bodies, indicating that COPI-SNAREs have a role to separate clustered Golgi stacks. These results further support the idea that the movement of Golgi stacks and the balance of fusion and fission of the TGN determine the level of clustering and ribbon formation of Golgi stacks within cells.

11.
Waste Manag Res ; : 734242X241276089, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301986

RESUMO

Textile waste is mostly incinerated because few recycling processes are available to recover valuable materials. In this work, a feasible chemo-enzymatic recycling process of wool/polyethylene terephthalate (PET)/elastane blends to recover pure PET is for the first time successfully demonstrated. Two novel enzyme formulations were selected for wool hydrolysis, whereas the recovered amino acids were quantified using high-performance liquid chromatography and two assays (Ninhydrin and Folin-Ciocalteu). Kinetic studies on the amino acid formation alongside reaction observations by scanning electron microscopy proved sufficient removal of wool within 8 hours with the new enzyme formulation, marking an acceleration compared to previous studies. Finally, elastane was separated with a non-hazardous solvent to obtain pure PET. Tensile tests on the recovered PET fibres reveal only slight changes through the enzymatic treatment and no changes induced by the applied solvent. The enzyme formulation was successfully tested on five different post-consumer wool/PET textile waste samples. This valorization approach enhances the circular economy concept for textile waste recycling.

12.
Extremophiles ; 28(3): 45, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316163

RESUMO

Hydrometallurgical bioprocesses for base metal recovery in environmentally friendly electronic device waste (e-waste) recycling are typically studied under neutral pH conditions to avoid competition between metals and hydrogen ions. However, metal leachate is generally strongly acidic, thus necessitating a neutralisation process in the application of these bioprocesses to e-waste recycling. To solve this pH disparity, we focused on acid-tolerant bacteria for metal recovery under strongly acidic conditions. Four acid-tolerant bacterial strains were isolated from neutral pH environments to recover base metals from simulated waste metal leachate (pH 1.5, containing 100 or 1000 mg L-1 of Co, Cu, Li, Mn, and Ni) without neutralisation. The laboratory setting for sequential metal recovery was established using these strains and a reported metal-adsorbing bacterium, Micrococcus luteus JCM1464. The metal species were successfully recovered from 100 mg L-1 metal mixtures at the following rates: Co (8.95%), Cu (21.23%), Li (5.49%), Mn (13.18%), and Ni (9.91%). From 1000 mg L-1 metal mixtures, Co (7.23%), Cu (6.82%), Li (5.85%), Mn (7.64%), and Ni (7.52%) were recovered. These results indicated the amenability of acid-tolerant bacteria to environmentally friendly base metal recycling, contributing to the development of novel industrial application of the beneficial but unutilised bioresource comprising acid-tolerant bacteria.


Assuntos
Resíduo Eletrônico , Concentração de Íons de Hidrogênio , Micrococcus luteus/metabolismo , Micrococcus luteus/efeitos dos fármacos , Micrococcus luteus/crescimento & desenvolvimento , Metais Pesados/metabolismo
13.
Waste Manag ; 190: 122-130, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39317057

RESUMO

This work investigates the use of toluene, d-limonene and three deep eutectic solvents (based on choline chloride, urea and zinc chloride) for the delamination process of recovered and de-glassed end-of-life solar panels. The organic solvents that have been previously investigated for delamination such as toluene and trichloroethylene are generally hazardous and fossil fuel derived. To evaluate and compare the effectiveness of separation of alternative solvents to toluene, solar panel laminates recovered from end-of-life solar modules were exposed to the respective solvent at 30 °C, 90 °C and (for deep eutectic solvents) 160 °C for 30 - 60 min at each temperature. After chemical treatment the recovered photovoltaic material and encapsulant was sieved into the size fractions > 1.0 mm, 1.0 - 0.5 mm and < 0.5 mm before being oxidised at 550 °C to quantify the remaining encapsulant in each fraction by mass change. It was found that d-limonene has a similar degree of separation as toluene. Moreover, d-limonene showed an improved recovery of up to 4.5 times more photovoltaic cell material below the 1.0 mm size fraction making it a more effective alternative. No discernible effects were observed for either of the three deep eutectic solvent combinations tested. The experimental data obtained was used to model and compare a separation process based on toluene and d-limonene, with maximal solar photovoltaic cell recoveries of 10 % for toluene delamination and 39 % for d-limonene delamination in size fractions < 1.0 mm.

14.
Ecotoxicol Environ Saf ; 285: 117087, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39317069

RESUMO

Tailwater-based hydroponic vegetable is a promising strategy for domestic wastewater recycling. However, the effect of residual antibiotics on the hydroponic vegetable system and the relation between hydroponic culture parameters and the residual water quality are still unclear. Here, the typical antibiotic Levofloxacin (LVFX) was employed, and the effect of LVFX (5 mg/L) on the residual water quality, plant growth and microbial community of water spinach hydroponic culture system were investigated under different hydraulic residence times (HRT). Obvious toxic effects on water spinach were observed, and the highest removal rate of LVFX (about 6 %) and TN (25.67±1.43 %) was observed when HRT was 7 days. Hydroponic culture increased the microbial abundance, diversity, and microbial community stability. To optimize the hydroponic culture, actual sewage plant tailwater spiked with 20 µg/L LVFX, along with three common planting substrates (sponge, ceramsite, and activated carbon) were used for the hydroponic culture of lettuce (seasonal reasons). The inhibition effect of LVFX on the removal of NO3--N and TN was observed even as the LVFX concentration decreased significantly (from 14.62 ± 0.44 µg/L to 0.65 ± 0.07 µg/L). The best growth situation of lettuce and removal rates of NH4+-N, NO3--N, TN, especially LVFX (up to 95.65 ± 0.54 %) were observed in the activated carbon treated group. The overall results indicate the negative effect of residual antibiotics on the hydroponic vegetable systems, and adding activated carbon as substrate is an effective strategy for supporting plant growth and controlling discharged risk.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39317898

RESUMO

Plastics are known for their durability and long decomposition time in the environment, which make plastic recycling an effective approach to mitigate plastic waste risks. However, the global plastic recycling rate is less than 10% mainly due to the labor-intensive and time-consuming nature of the manual recycling process, which poses high health risks and costs. Therefore, the development of a fast, effective, and operational process in current recycling plants is crucial to address the environmental concerns associated with plastics. In the current study, the feasibility of starch/Fe3O4/TiO2 bio-nanocomposite (SFT) as photo-modifiable and photo-degradable was investigated to reduce the workforce in recycling packaging material. The SFT was modified by different UV-C exposure times, which significantly altered its functional properties. The UV-C exposure increased the hydrophobicity of the SFT films and led to a homogenous distribution of Fe3O4/TiO2 nanoparticles (FT). It also increased tensile strength (TS) and decreased elongation at break (EB) of the films. It seems that producing shorter polymer chains, creating new linkages among the polymeric chains, and the homogenous distribution of FT in the matrix of biopolymer by UV-C are the main reasons for these changes. Moreover, the photo-degradation of SFT specimens increased significantly with longer UV-C exposure times. The utilization of magnetic properties in bio-based nanocomposites holds promising potential for streamlining labor-intensive processes in waste recycling plants. However, the inappropriate visual properties of SFT remain a significant obstacle that requires further attention to enable its commercial viability.

16.
Adv Sci (Weinh) ; : e2406842, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301890

RESUMO

Prussian blue (PB) is regarded as a promising cathode for sodium-ion batteries because of its sustainable precursor elements (e.g., Mn, Fe), easy preparation, and unique framework structure. However, the unstable structure and inherent crystal H2O restrain its practical application. For this purpose, a self-constructed trace Mg2+/K+ co-doped PB prepared via a sea-water-mediated method is proposed to address this problem. The Mg2+/K+ co-doping in the Na sites of PB is permitted by both thermodynamics and kinetics factors when synthesized in sea water. The results reveal that the introduced Mg2+ and K+ are immovable in the PB lattices and can form stronger K‒N and Mg‒N Coulombic attraction to relieve phase transition and element dissolution. Besides, the Mg2+/K+ co-doping can reduce defect and H2O contents. As a result, the PB prepared in sea water exhibits an extremely long cycle life (80.1% retention after 2400 cycles) and superior rate capability (90.4% capacity retention at 20 C relative to that at 0.1 C). To address its practical applications, a sodium salts recycling strategy is proposed to greatly reduce the PB production cost. This work provides a self-constructed Mg2+/K+ co-doped high-performance PB at a low preparation cost for sustainable, large-scale energy storage.

17.
Adv Sci (Weinh) ; : e2405168, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302846

RESUMO

Recycling of spent lead-acid batteries (LABs) is extremely urgent in view of environmental protection and resources reuse. The current challenge is to reduce high consumption of chemical reagents. Herein, a closed-loop spent LABs paste (SLBP) recovery strategy is demonstrated through Na2MoO4 consumption-regeneration-reuse. Experimental and DFT calculations verify that MoO4 2- competes Pb/Ca ions and weakens the metal-oxygen bond of PbSO4/CaSO4.2H2O in SLBP, facilitating PbMoO4/CaMoO4 formation and 99.13 wt% of SO4 2- elimination. Pb of 99.97 wt% is obtained as zero-carbon precursors (PbO2 and PbMoO4) by green leaching coupled with re-crystallization. The regeneration of Na2MoO4 is realized at 600 ℃ using LABs polypropylene shells and NaOH as reagents. Compared with the traditional smelting technologies, the temperature is reduced from >1000 to 600 °C. The extraction of Na2MoO4 require only water, and satisfactory re-used desulfurization efficiency (98.67 wt%) is achieved. For the residual Na2MoO4 after first SLBP desulfurization, the desulfurization efficiency remains above 97.36 wt% after adding fresh reagents for two running cycles. The new principle enables the reuse of 99.83 wt% of Na2MoO4 and the recycling of 95.27 wt% of Pb without generating wastewater and slags. The techno-economic analysis indicates this strategy is efficient, economical, and environmentally-friendly.

18.
Environ Evid ; 13(1): 9, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-39294823

RESUMO

BACKGROUND: The development of cities and transport infrastructure produces a large volume of mineral waste (e.g. excavated earth material). At the same time, cities are increasingly trying to develop green infrastructures, given the ecosystem services they provide to people, but this comes with considerable economic and environmental costs associated with the transfer of fertile soil from rural areas to cities. In a circular economy approach, the reuse of mineral waste to build fertile soil is a substantial opportunity to reduce the economic and environmental costs of both mineral waste management and green infrastructure development. Soils constructed from these materials (constructed Technosols) must be able to support vegetation growth and become a suitable living environment for soil organisms. This requires ecological engineering to maximise the potential of constructed soils for biodiversity, both from a taxonomic and functional perspective. In this context, we systematically mapped the evidence related to the ability of soils constructed from mineral wastes to support biodiversity. METHODS: We gathered published and grey literature through searches in two publications databases (Scopus and Web of Science Core Collection), one search engine (Google Scholar), nine organisational websites and through a call for literature. Titles, abstracts, and full-texts were successively screened using eligibility criteria. All included studies were described with coded variables and a database was produced. The extent of evidence was assessed and knowledge clusters and gaps were identified. REVIEW FINDINGS: The searches yielded 9265 articles, and 153 articles were retained after the screening process. More than half of these articles were from European countries, with France leading the field with 40 articles, followed by Spain (15 articles) and Italy (10 articles). Most of the articles (75%) were produced after 2015. The main reasons for constructing soils from mineral waste were for mine rehabilitation (35%), waste recycling (16%) and experimental purpose (15%). The 153 articles were divided into 1962 studies, a study being a combination of a taxon, an intervention (i.e. soil construction) and a measured outcome. Among these studies, the most studied biological group is plants (69% of studies) and especially herbaceous species (32%), followed by microorganisms (17%) and invertebrates (14%). The most used type of mineral waste is mine waste (31% of studies) followed by excavated soil (16%) and demolition waste (14%). Finally, the most frequently measured outcome is plant growth (42% of studies), followed by organism abundance (16%) and diversity (10%). CONCLUSIONS: Three main knowledge clusters were identified which could be addressed in the future for full synthesis of the results: (1) How well do plants grow in soils constructed from mineral wastes? (2) What is the potential of soils constructed from mineral wastes to support biodiversity? and (3) How do microbial communities develop in soils constructed from mineral wastes? There is a lack of studies investigating several biological groups at the same time: only 6 articles out of 153 investigated the response of both plants, invertebrates and microorganisms to soil construction. More research is therefore needed on the ability to support a diversity of organisms.

19.
Sci Total Environ ; 954: 176438, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39307361

RESUMO

The objectives of this study were to produce biochars using sulfur-rich acidified lignin discharged from a biorefinery process and to evaluate their physicochemical properties and Pb adsorption capacity. As the pyrolysis temperature increased, the lignin acidified by the desulfurization process was converted to neutralized biochar (LBC), which exhibited high carbon content and stability. The carbon content of biochar manufactured at a pyrolysis temperature of 600 °C or higher was over 90 % and showed no significant difference, and their surface structures were found to be different, as revealed through XRD and FTIR analyses. The adsorption capacity of Pb by LBC increased with increasing pyrolysis temperature, and their adsorption capacity was well described by the pseudo-second-order model and the Langmuir isotherm adsorption model. In particular, the internal diffusion effect on the adsorption capacity of Pb was greater for LBC900 than for LBC600. In complex heavy metal solutions, LBC selectively exhibited high affinity for Pb, while the adsorption capacity of other metals was significantly reduced. The adsorption mechanism of Pb by LBC was verified through various analytical methods, and these results demonstrated that the adsorption of Pb by LBC was influenced by functional groups existing on the surface and inside of LBC and by some cation exchange.

20.
Sheng Wu Gong Cheng Xue Bao ; 40(9): 3127-3141, 2024 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-39319729

RESUMO

Salidroside is a functional ingredient with wide applications in food and pharmaceutical fields. It is conventionally produced by extraction from plants, the application of which is limited by the scarcity of raw materials and cumbersome process. This study achieved the efficient production of salidroside by biosynthesis with tyrosol as the substrate. While utilizing glycosyltransferases for tyrosol glycosylation, we introduced sucrose synthase to construct the uridine diphosphate glucose (UDPG) recycling system. The glycosyltransferase UGT33 and sucrose synthase AtSUS were screened out by comparison, and the recombinant strain Escherichia coli BL21/pETDuet-AtSUS-UGT33 was constructed. The copy number of the gene was optimized and the optimal copy number ratio of glycosyltransferase to sucrose synthase was determined to be 3:1. The whole-cell transformation conditions (temperature, pH, inoculum amount, substrate concentration, and concentrations of metal ions) of the recombinant strain were optimized, and the highest yield of salidroside reached 8.17 g/L after fermentation under the optimal conditions in a 5 L fermenter for 24 h. This study provides a reference for the efficient production of salidroside by microorganisms.


Assuntos
Escherichia coli , Glucosídeos , Glucosiltransferases , Fenóis , Álcool Feniletílico , Uridina Difosfato Glucose , Fenóis/metabolismo , Glucosídeos/biossíntese , Glucosídeos/metabolismo , Álcool Feniletílico/metabolismo , Álcool Feniletílico/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Uridina Difosfato Glucose/metabolismo , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosilação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA