Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 484
Filtrar
1.
Molecules ; 29(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39125093

RESUMO

Porphyrins were identified some years ago as a promising, easily accessible, and tunable class of organic photoredox catalysts, but a systematic study on the effect of the electronic nature and of the position of the substituents on both the ground-state and the excited-state redox potentials of these compounds is still lacking. We prepared a set of known functionalized porphyrin derivatives containing different substituents either in one of the meso positions or at a ß-pyrrole carbon, and we determined their ground- and (singlet) excited-state redox potentials. We found that while the estimated singlet excited-state energies are essentially unaffected by the introduction of substituents, the redox potentials (both in the ground- and in the singlet excited-state) depend on the electron-withdrawing or electron-donating nature of the substituents. Thus, the presence of groups with electron-withdrawing resonance effects results in an enhancement of the reduction facility of the photocatalyst, both in the ground and in the excited state. We next prepared a second set of four previously unknown meso-substituted porphyrins, having a benzoyl group at different positions. The reduction facility of the porphyrin increases with the proximity of the substituent to the porphine core, reaching a maximum when the benzoyl substituent is introduced at a meso position.

2.
Small ; : e2400483, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092666

RESUMO

The development of high-energy-density cathode materials is regarded as the ultimate goal of alkali metal-ion batteries energy storage. However, the strategy of regulating specific capacity is limited by the theoretical capacity, and meanwhile focusing on improving capacity will lead to structural destructions. Herein, a novel perspective is proposed that tuning the electronic band structure by introducing highly electronegative fluoride atoms in NaxTMO2-yFy (0 < x < 1, 0 < y < 2) model compounds to improve redox potential for developing high-energy-density layered oxides. Highly electronegative fluoride atoms is introduced into P2-type Na0.67Fe0.5Mn0.5O2 (NFM), and the thus fluoride NFM (F-NFM) cathode achieved high redox potential (3.0 V) and high energy density (446 Wh kg-1). Proved by structural characterizations, fluorine atoms are successfully incorporated into oxygen sites in NFM lattice. Ultraviolet photoelectron spectroscopy is applied to quantitatively analyze the improved redox potential of F-NFM, which is achieved by the decreased valence band energy in electronic band structure due to the strongly electrophilic fluoride ions. Moreover, fluoride atoms can stabilize the local environment of NFM and improve its redox potential. The work provides a perspective to improve redox potential by tuning the electronic band structure in layered oxides and developing high-energy-density alkali metal-ion batteries.

3.
Adv Mater ; : e2406106, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39108043

RESUMO

The strong Coulombic interactions between Al3+ and traditional inorganic crystalline cathodes present a significant obstacle in developing high-performance rechargeable aluminum batteries (RABs) that hold promise for safe and sustainable stationary energy storage. While accommodating chloroaluminate ions (AlCl4 -, AlCl2+, etc.) in redox-active organic compounds offers a promising solution for RABs, the issues of dissolution and low ionic/electronic conductivities plague the development of organic cathodes. Herein, electron donors are synthetically connected with acceptors to create crosslinked, bipolar-conjugated polymer cathodes. These cathodes exhibit overlapped redox potential ranges for both donors and acceptors in highly concentrated AlCl3-based ionic liquid electrolytes. This approach strategically enables on-site doping of the polymer backbones during redox reactions involving both donor and acceptor units, thereby enhancing the electron/ion transfer kinetics within the resultant polymer cathodes. Based on the optimal donor/acceptor combination, the bipolar polymer cathodes can deliver a high specific capacity of 205 mAh g-1 by leveraging the co-storage of AlCl4 - and AlCl2+. The electrodes exhibit excellent rate performance, a stable cycle life of 60 000 cycles, and function efficiently at high mass loadings, i.e., 100 mg cm-2, and at low temperatures, i.e., -30 °C. The findings exemplify the exploration of high-performing conjugated polymer cathodes for RABs through rational structural design.

4.
Crit Rev Biotechnol ; : 1-18, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134447

RESUMO

Ene-reductase (ER) has been widely applied for asymmetrical synthesis of chiral intermediates due to its substrate promiscuity, photoexcited reactivity, and excellent property with producing two chiral centers at a time. Natural ERs often exhibit the same stereoselectivity, and they need to be engineered for opposite configuration of chiral compounds. The hydrogenation process toward activated alkenes by ERs is composed of reductive half reaction and oxidative half reaction, which are dependent upon two cofactors NAD(P)H and flavin mononucleotide. The catalytic activity of ERs will be affected by the size of the substrate, the activating strength of the electron-withdrawing groups, redox potential of cofactors, and the loop flexibility around catalytic cavity. Currently, protein engineering to ERs has been successfully employed to enhance various catalytic properties, including photoexcited asymmetric synthesis. This review summarizes the approaches to reverse the stereoselectivity and enhance catalytic activity of ERs and new applications of the engineered ERs in photobiocatalytic asymmetric synthesis, besides the discussion with the existing molecular mechanisms of mutants regarding the improved catalytic performance.

5.
J Microbiol Biol Educ ; : e0004424, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158290

RESUMO

Anaerobic respiration reactions are of fundamental importance to global biogeochemical cycling of elements. Yet, the idea that cellular respiration can occur not only in the absence of oxygen but also involve the oxidation of inorganic substrates (e.g., AsO33-, Fe2+, H2, H2S, Mn2+, NH3, and S0) is often foreign to many undergraduate students. This article describes a problem-solving exercise where students are introduced to the thermodynamic fundamentals of respiration with a particular focus on the role of redox (reduction-oxidation) potentials (E0´). In the exercise, the students investigate how the difference in redox potential (ΔE0´) between different pairs of reductants and oxidants affects the range of permissible microbial metabolic reactions in natural environments when oxygen is absent.

6.
Environ Sci Pollut Res Int ; 31(38): 50372-50387, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39090300

RESUMO

Potentially harmful element (PHE) bioavailability is important to environmental contamination and must be checked under several soil conditions. This study aimed to assess Fe, Mn, and PHE uptake by rice (Oryza sativa) grown on flooded and non-flooded Fe tailings collected from the Doce River basin after its collapse in Brazil. After 65 days of sowing, shoots and roots were harvested to determine PHE concentrations. The mean concentrations of Mn in shoots and Fe in the roots of rice grown on the flooded tailings were 2140 mg kg-1 and 15,219 mg kg-1, respectively. Mn was extensively translocated from roots to shoots (translocation factor (TF) = 2). Conversely, Fe accumulated in roots (TF = 0.015) and caused morphological damage to this rice organ. The application of macro and micronutrients lessened Fe toxicity in the roots of rice cultivated on the flooded tailings. The flooding of tailings influenced more Fe accumulation than Mn accumulation by rice plants. The PHE Ag, As, Cd, Ni, Hg, Pb, and Sb exhibited low total concentrations (maximum of 9 mg kg-1 for Ni and a minimum of 0.2 mg kg-1 for Cd, Hg, and Sb), and it was not observed an increase in their availability under tailings flooding conditions.


Assuntos
Ferro , Manganês , Oryza , Rios , Brasil , Ferro/metabolismo , Inundações , Poluentes do Solo/metabolismo , Monitoramento Ambiental , Raízes de Plantas/metabolismo
7.
MethodsX ; 13: 102811, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39022177

RESUMO

The time-consuming nature of culturing methods has urged the exploration of rapid modern technologies. One promising alternative utilizes redox potential, which describes the oxidative changes within complex media, indicating oxygen and nutrient consumption, as well as the production of reduced substances in the investigated biological system. Redox potential measurement can detect microbial activity within 16 h, what is significantly faster than the minimum 24 h incubation time of the reference plate counting technique. The redox potential based method can be specific with selective media, but bacterial strains have unique kinetic pattern as well. The proposed method suggests evaluation of the curve shape for the differentiation of environmental contaminant and pathogenic microbial strains. Six bacterial species were used in validation (Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica, Listeria innocua, Listeria monocytogenes, and Listeria ivanovii). Descriptive parameters reached 98.2 % accuracy and Gompertz model achieved 91.6 % accuracy in classification of the selected 6 bacteria species.•Mathematical model (Gompertz function) and first order descriptive parameters are suggested to describe the specific shape of redox potential curves, while Support Vector Machine (SVM) is recommended for classification.•Due to the concentration dependent time to detection (TTD), pre-processing applies standardization according to the inflection point time.

8.
FEBS J ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946302

RESUMO

Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.

9.
Angew Chem Int Ed Engl ; : e202410110, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972839

RESUMO

Nonaqueous organic aluminum batteries are considered as promising high-safety energy storage devices due to stable ionic liquid electrolytes and Al metals. However, the stability and capacity of organic positive electrodes are limited by their inherent high solubility and low active organic molecules. To address such issues, here porphyrin compounds with rigid molecular structures present stable and reversible capability in electrochemically storing AlCl2 +. Comparison between the porphyrin molecules with electron-donating groups (TPP-EDG) and with electron-withdrawing groups (TPP-EWG) suggests that EDG is responsible for increasing both highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels, resulting in decreased redox potentials. On the other hand, EWG is associated with decreasing both HOMO and LUMO energy levels, leading to promoted redox potentials. EDG and EWG play critical roles in regulating electron density of porphyrin π bond and electrochemical energy storage kinetics behavior. The competitive mechanism between electrochemical redox reaction and de/adsorption processes suggests that TPP-OCH3 delivers the highest specific capacity ~171.8 mAh g-1, approaching a record in the organic Al batteries.

10.
Planta ; 260(2): 51, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995415

RESUMO

MAIN CONCLUSION: Reactive nitrogen species mitigate the deteriorative effect of accelerated seed ageing by affecting the glutathione concentration and activities of GR and GPX-like. The treatment of apple (Malus domestica Borkh.) embryos isolated from accelerated aged seeds with nitric oxide-derived compounds increases their vigour and is linked to the alleviation of the negative effect of excessive oxidation processes. Reduced form of glutathione (GSH) is involved in the maintenance of redox potential. Glutathione peroxidase-like (GPX-like) uses GSH and converts it to oxidised form (GSSG), while glutathione reductase (GR) reduces GSSG into GSH. The aim of this work was to investigate the impact of the short-time NOx treatment of embryos isolated from apple seeds subjected to accelerated ageing on glutathione-related parameters. Apple seeds were subjected to accelerated ageing for 7, 14 or 21 days. Isolated embryos were shortly treated with NOx and cultured for 48 h. During ageing, in the axes of apple embryos, GSH and GSSG levels as well as half-cell reduction potential remained stable, while GR and GPX-like activities decreased. However, the positive effect of NOx in the vigour preservation of embryos isolated from prolonged aged seeds is linked to the increased total glutathione pool, and above all, higher GSH content. Moreover, NOx increased the level of transcripts encoding GPX-like and stimulated enzymatic activity. The obtained results indicate that high seed vigour related to the mode of action of NO and its derivatives is closely linked to the maintenance of higher GSH levels.


Assuntos
Glutationa , Malus , Sementes , Malus/genética , Malus/metabolismo , Sementes/metabolismo , Sementes/genética , Glutationa/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Glutationa Redutase/metabolismo , Glutationa Redutase/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Oxirredução , Óxido Nítrico/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Small ; : e2403156, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874058

RESUMO

Energy-efficient glass windows are pivotal in modern infrastructure striving toward the "Zero energy" concept. Electrochromic (EC) energy storage devices emerge as a promising alternative to conventional glass, yet their widespread commercialization is impeded by high costs and dependence on external power sources. Addressing this, redox potential-based self-powered electrochromic (RP-SPEC) devices are introduced leveraging established EC materials like tungsten oxide (WO3) and vanadium-doped nickel oxide (V-NiO) along with aluminum (Al) as an anode. These devices produce open circuit voltages (OCV) exceeding ±0.3 V, enabling autonomous operation for multiple cycles. The WO3 film exhibits 1% transmission and 88% modulation in the colored state at 550 nm with a mere 260 nm thickness. The redox interactions facilitate coloring and bleaching cycles without external power, while photo-charging rejuvenates the system. Notably, the inherent voltages of the RP-SPEC device offer dual functionality, powering electronic devices for up to 81 h. Large-area (≈28 cm2) device feasibility is demonstrated, paving the way for industrial adoption. The RP-SPEC device promises to revolutionize smart window technology by offering both energy efficiency and autonomous operation, thus advancing sustainable infrastructure.

12.
Small ; : e2402278, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822712

RESUMO

The rapid proliferation of power sources equipped with lithium-ion batteries poses significant challenges in terms of post-scrap recycling and environmental impacts, necessitating urgent attention to the development of sustainable solutions. The cathode direct regeneration technologies present an optimal solution for the disposal of degraded cathodes, aiming to non-destructively re-lithiate and straightforwardly reuse degraded cathode materials with reasonable profits and excellent efficiency. Herein, a potential-regulated strategy is proposed for the direct recycling of degraded LiFePO4 cathodes, utilizing low-cost Na2SO3 as a reductant with lower redox potential in the alkaline systems. The aqueous re-lithiation approach, as a viable alternative, not only enables the re-lithiation of degraded cathode while ignoring variation in Li loss among different feedstocks but also utilizes the rapid sintering process to restore the cathode microstructure with desirable stoichiometry and crystallinity. The regenerated LiFePO4 exhibits enhanced electrochemical performance with a capacity of 144 mA h g-1 at 1 C and a high retention of 98% after 500 cycles at 5 C. Furthermore, this present work offers considerable prospects for the industrial implementation of directly recycled materials from lithium-ion batteries, resulting in improved economic benefits compared to conventional leaching methods.

13.
J Comput Chem ; 45(28): 2383-2396, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38923574

RESUMO

The evaluation of oxidation and reduction potentials is a pivotal task in various chemical fields. However, their accurate prediction by theoretical computations, which is a complementary task and sometimes the only alternative to experimental measurement, may be often resource-intensive and time-consuming. This paper addresses this challenge through the application of machine learning techniques, with a particular focus on graph-based methods (such as graph edit distances, graph kernels, and graph neural networks) that are reviewed to enlighten their deep links with theoretical chemistry. To this aim, we establish the ORedOx159 database, a comprehensive, homogeneous (with reference values stemming from density functional theory calculations), and reliable resource containing 318 one-electron reduction and oxidation reactions and featuring 159 large organic compounds. Subsequently, we provide an instructive overview of the good practice in machine learning and of commonly utilized machine learning models. We then assess their predictive performances on the ORedOx159 dataset through extensive analyses. Our simulations using descriptors that are computed in an almost instantaneous way result in a notable improvement in prediction accuracy, with mean absolute error (MAE) values equal to 5.6 kcal mol - 1 for reduction and 7.2 kcal mol - 1 for oxidation potentials, which paves a way toward efficient in silico design of new electrochemical systems.

14.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857378

RESUMO

Antibiotic-induced gut dysbiosis (AID) presents a big challenge to host health, and the recovery from this dysbiosis is often slow and incomplete. AID is typically characterized by elevation in redox potential, Enterobacteriaceae load, and aerobic metabolism. In our previous study, a pectin-enriched diet was demonstrated to decrease fecal redox potential and modulate the gut microbiome. Therefore, we propose that pectin supplementation may modulate gut redox potential and favor post-antibiotic gut microbiome reconstitution from dysbiosis. In the present study, rats with AIDwere used to investigate the effects of pectin supplementation on post-antibiotic gut microbiome reconstitution from dysbiosis. The results showed that pectin supplementation accelerated post-antibiotic reconstitution of gut microbiome composition and function and led to enhancement of anabolic reductive metabolism and weakening of catabolic oxidative pathways. These results were corroborated by the measurement of redox potential, findings suggesting that pectin favors post-antibiotic recovery from dysbiosis. Pectin-modulated fecal microbiota transplantation accelerated the decrease in antibiotics-elevated redox potential and Enterobacteriaceae load similarly to pectin supplementation. Moreover, both pectin supplementation and Pectin-modulated fecal microbiota transplantation enriched anaerobic members, primarily from Lachnospiraceae orchestration with enhancement of microbial reductive metabolism in post-antibiotic rats. These findings suggested that pectin supplementation accelerated post-antibiotic gut microbiome reconstitution orchestrated with reduced gut redox potential and that the effect of pectin on redox potential was mediated by remodeling of the intestinal microbiota.


Assuntos
Antibacterianos , Suplementos Nutricionais , Disbiose , Fezes , Microbioma Gastrointestinal , Oxirredução , Pectinas , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Pectinas/metabolismo , Disbiose/microbiologia , Ratos , Antibacterianos/farmacologia , Masculino , Fezes/microbiologia , Transplante de Microbiota Fecal , Ratos Sprague-Dawley , Bactérias/classificação , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/metabolismo
15.
Sci Total Environ ; 934: 173296, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761950

RESUMO

This study explored the redox-mediated changes in a lead (Pb) contaminated soil (900 mg/kg) due to the addition of solar cell powder (SC) and investigated the impact of biochar derived from soft wood pellet (SWP) and oil seed rape straw (OSR) (5% w/w) on Pb immobilization using an automated biogeochemical microcosm system. The redox potential (Eh) of the untreated (control; SC) and biochar treated soils (SC + SWP and SC + OSR) ranged from -151 mV to +493 mV. In SC, the dissolved Pb concentrations were higher under oxic (up to 2.29 mg L-1) conditions than reducing (0.13 mg L-1) conditions. The addition of SWP and OSR to soil immobilized Pb, decreased dissolved concentration, which could be possibly due to the increase of pH, co-precipitation of Pb with FeMn (hydro)oxides and pyromorphite, and complexation with biochar surface functional groups. The ability and efficiency of OSR for Pb immobilization were higher than SWP, owing to the higher pH and density of surface functional groups of OSR than SWP. Biochar enhanced the relative abundance of Proteobacteria irrespective of Eh changes, while the relative abundance of Bacteroidota increased under oxidizing conditions. Overall, we found that both OSR and SWP immobilized Pb in solar panel waste contaminated soil under both oxidizing and reducing redox conditions which may mitigate the potential risk of Pb contamination.


Assuntos
Compostos de Cálcio , Carvão Vegetal , Chumbo , Oxirredução , Microbiologia do Solo , Poluentes do Solo , Chumbo/análise , Carvão Vegetal/química , Poluentes do Solo/análise , Compostos de Cálcio/química , Óxidos/química , Titânio/química , Solo/química , Bactérias
16.
Chemphyschem ; 25(16): e202400092, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38743866

RESUMO

Bispyridinylidenes are neutral organic molecules capable of two-electron oxidation at a range of redox potentials that are widely tunable by choice of substituent, making them attractive as homogeneous organic reductants and active materials in redox flow batteries. In an effort to readily predict the redox potentials of this important class of compounds, we have developed correlations between the experimental redox potentials and both experimental and theoretical predictors. On the experimental side, we show that multinuclear NMR chemical shifts of related pyridinium ions correlate well with the redox potentials of bispyridinylidenes, with R2 and standard errors (S) reaching 0.9810 and 0.048 V, respectively, when the 13C (N-CH3) and 1H (ortho) chemical shifts are used together. Theoretical studies of the bispyridinylidenes and their doubly oxidized bipyridinium ions gave a range of predictively valuable equations at various levels of computational cost. This ranged from a simple model using only the EHOMO of the bispyridinylidenes (R2=0.9689; S=0.060 V), to a more computationally intensive model which include solvation effects for both redox states which gave the highest predictive value for all methods (R2=0.9958; S=0.022 V). This work will guide further studies of this important class of molecules.

17.
Nanomaterials (Basel) ; 14(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38786805

RESUMO

In this study, Fe3O4/Ag magnetite-silver (MSx) nanocomposites were investigated as catalysts for advanced oxidation processes by coupling the plasmonic effect of silver nanoparticles and the ferromagnetism of iron oxide species. A surfactant-free co-precipitation synthesis method yielded pure Fe3O4 magnetite and four types of MSx nanocomposites. Their characterisation included structural, compositional, morphological and optical analyses, revealing Fe3O4 magnetite and Ag silver phases with particle sizes ranging from 15 to 40 nm, increasing with the silver content. The heterostructures with silver reduced magnetite particle aggregation, as confirmed by dynamic light scattering. The UV-Vis spectra showed that the Fe:Ag ratio strongly influenced the absorbance, with a strong absorption band around 400 nm due to the silver phase. The oxidation kinetics of organic pollutants, monitored by in situ luminescence measurements using rhodamine B as a model system, demonstrated the higher performance of the developed catalysts with increasing Ag content. The specific surface area measurements highlighted the importance of active sites in the synergistic catalytic activity of Fe3O4/Ag nanocomposites in the photo-Fenton reaction. Finally, the straightforward fabrication of diverse Fe3O4/Ag heterostructures combining magnetism and plasmonic effects opens up promising possibilities for heterogeneous catalysis and environmental remediation.

18.
Chemistry ; 30(35): e202401218, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38644346

RESUMO

High-valent Fe(IV)=O intermediates of metalloenzymes have inspired numerous efforts to generate synthetic analogs to mimic and understand their substrate oxidation reactivities. However, high-valent M(IV) complexes of late transition metals are rare. We have recently reported a novel Co(IV)-dinitrate complex (1-NO3) that activates sp3 C-H bonds up to 87 kcal/mol. In this work, we have shown that the nitrate ligands in 1-NO3 can be replaced by azide, a more basic coordinating base, resulting in the formation of a more potent Co(IV)-diazide species (1-N3) that reacts with substrates (hydrocarbons and phenols) at faster rate constants and activates stronger C-H bonds than the parent complex 1-NO3. We have characterized 1-N3 employing a combination of spectroscopic and computational approaches. Our results clearly show that the coordination of azide leads to the modulation of the Co(IV) electronic structure and the Co(IV/III) redox potential. Together with the higher basicity of azide, these thermodynamic parameters contribute to the higher driving forces of 1-N3 than 1-NO3 for C-H bond activation. Our discoveries are thus insightful for designing more reactive bio-inspired high-valent late transition metal complexes for activating inert aliphatic hydrocarbons.

19.
FEBS J ; 291(14): 3233-3248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38588274

RESUMO

Coenzyme F430 is a nickel-containing tetrapyrrole, serving as the prosthetic group of methyl-coenzyme M reductase in methanogenic and methanotrophic archaea. During coenzyme F430 biosynthesis, the tetrapyrrole macrocycle is reduced by the nitrogenase-like CfbC/D system consisting of the reductase component CfbC and the catalytic component CfbD. Both components are homodimeric proteins, each carrying a [4Fe-4S] cluster. Here, the ligands of the [4Fe-4S] clusters of CfbC2 and CfbD2 were identified revealing an all cysteine ligation of both clusters. Moreover, the midpoint potentials of the [4Fe-4S] clusters were determined to be -256 mV for CfbC2 and -407 mV for CfbD2. These midpoint potentials indicate that the consecutive thermodynamically unfavorable 6 individual "up-hill" electron transfers to the organic moiety of the Ni2+-sirohydrochlorin a,c-diamide substrate require an intricate interplay of ATP-binding, hydrolysis, protein complex formation and release to drive product formation, which is a common theme in nitrogenase-like systems.


Assuntos
Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/química , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química , Nitrogenase/metabolismo , Nitrogenase/química , Nitrogenase/genética , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/química , Cisteína/metabolismo , Enxofre/metabolismo , Enxofre/química , Metaloporfirinas
20.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673999

RESUMO

E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be -215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO2 and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO2 increases with their electron affinity (single-electron reduction potential, E17) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on E17, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π-π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO2 reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Nitrorredutases , Oxirredução , Pró-Fármacos , Nitrorredutases/metabolismo , Nitrorredutases/química , Nitrorredutases/genética , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Especificidade por Substrato , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Potenciometria , Catálise , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA