Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39063709

RESUMO

Refractory metal single crystals have been applied in key high-temperature structural components of advanced nuclear reactor power systems, due to their excellent high-temperature properties and outstanding compatibility with nuclear fuels. Although electron beam floating zone melting and plasma arc melting techniques can prepare large-size oriented refractory metals and their alloy single crystals, both have difficulty producing perfect defect-free single crystals because of the high-temperature gradient. The mechanical properties of refractory metal single crystals under different loads all exhibit strong temperature and crystal orientation dependence. Slip and twinning are the two basic deformation mechanisms of refractory metal single crystals, in which low temperatures or high strain rates are more likely to induce twinning. Recrystallization is always induced by the combined action of deformation and annealing, exhibiting a strong crystal orientation dependence. The irradiation hardening and neutron embrittlement appear after exposure to irradiation damage and degrade the material properties, attributed to vacancies, dislocation loops, precipitates, and other irradiation defects, hindering dislocation motion. This paper reviews the research progress of refractory metal single crystals from three aspects, preparation technology, deformation behavior, and irradiation damage, and highlights key directions for future research. Finally, future research directions are prospected to provide a reference for the design and development of refractory metal single crystals for nuclear applications.

2.
Nanomaterials (Basel) ; 14(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38921937

RESUMO

This study investigates the phase composition, microstructure, and their influence on the properties of Mo-W-C nanocomposite films deposited by dual-source magnetron sputtering. The synthesised films consist of metal carbide nanograins embedded in an amorphous carbon matrix. It has been found that nanograins are composed of the hexagonal ß-(Mo2 + W2)C phase at a low carbon source power. An increase in the power results in the change in the structure of the carbide nanoparticles from a single-phase to a mixture of the ß-(Mo2 + W2)C and NaCl-type α-(Mo + W)C(0.65≤k≤1) solid-solution phases. The analysis of electrical properties demonstrates that the nanograin structure of the films favours the occurrence of hopping conductivity. The double-phase structure leads to a twofold increase in the relaxation time compared to the single-phase one. Films with both types of nanograin structures exhibit tunnelling conductance without the need for thermal activation. The average distance between the potential wells produced by the carbide nanograins in nanocomposite films is approximately 3.4 ± 0.2 nm. A study of tribomechanical properties showed that Mo-W-C films composed of a mixture of the ß-(Mo2 + W2)C and α-(Mo + W)C(0.65≤k≤1) phases have the highest hardness (19-22 GPa) and the lowest friction coefficient (0.15-0.24) and wear volume (0.00302-0.00381 mm2). Such a combination of electrical and tribomechanical properties demonstrates the suitability of Mo-W-C nanocomposite films for various micromechanical devices and power electronics.

3.
Materials (Basel) ; 16(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37763470

RESUMO

Refractory high-entropy alloys (RHEAs) are among the promising candidates for the design of structural materials in advanced nuclear energy systems. The effects of Cr, V, Ta, and Ti elements and ball milling on the microstructural evolution and mechanical properties of model RHEAs were investigated. The results show that W-rich BCC1 and Ta-rich BCC2 solid solution phases were generated after a long milling duration. After high-temperature sintering, the (Cr, Ta)-rich phase associated with the Laves phase was observed in the Cr-containing model RHEAs. In addition, a high level of Ti, Ta, and V contents promoted the in situ formation of oxide particles in the alloys. Complex TiTa2O7 and Ta2VO6 oxide phases were identified by TEM, which suggests a solid-state reaction of Ti-O, Ta-O, and V-O subjected to high-energy ball milling. The oxide particles are uniformly dispersed in the BCC matrix, which can result in dispersion strengthening and the enhancement of mechanical properties.

4.
Adv Sci (Weinh) ; 10(31): e2302479, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544898

RESUMO

Refractory metals offer exceptional benefits for high temperature electronics including high-temperature resistance, corrosion resistance and excellent mechanical strength, while their high melting temperature and poor processibility poses challenges to manufacturing. Here this work reports a direct ink writing and tar-mediated laser sintering (DIW-TMLS) technique to fabricate three-dimensional (3D) refractory metal devices for high temperature applications. Metallic inks with high viscosity and enhanced light absorbance are designed by utilizing coal tar as binder. The printed patterns are sintered into oxidation-free porous metallic structures using a low-power (<10 W) laser in ambient environment, and 3D freestanding architectures can be rapidly fabricated by one step. Several applications are presented, including a fractal pattern-based strain gauge, an electrically small antenna (ESA) patterned on a hemisphere, and a wireless temperature sensor that can work up to 350 °C and withstand burning flames. The DIW-TMLS technique paves a viable route for rapid patterning of various metal materials with wide applicability, high flexibility, and 3D conformability, expanding the possibilities of harsh environment sensors.

5.
Materials (Basel) ; 15(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499973

RESUMO

In as-cast (AC) or heat-treated (HT) metallic ultra-high temperature materials often "conventional" and complex-concentrated (CC) or high-entropy (HE) solid solutions (sss) are observed. Refractory metal containing bcc sss also are contaminated with oxygen. This paper studied the stability of CC/HE Nbss and the contamination with oxygen of Nbss in RM(INb)ICs, RM(Nb)ICs/RCCAs and RM(Nb)ICs/RHEAs. "Conventional" and CC/HE Nbss were compared. "Conventional" Nbss can be Ti-rich only in AC alloys. Ti-rich Nbss is not observed in HT alloys. In B containing alloys the Ti-rich Nbss is usually CC/HE. The CC/HE Nbss is stable in HT alloys with simultaneous addition of Mo, W with Hf, Ge+Sn. The implications for alloy design of correlations between the parameter δ of "conventional" and CC/HE Nbss with the B or the Ge+Sn concentration in the Nbss and of relationships of other solutes with the B or Ge+Sn content are discussed. The CC/HE Nbss has low Δχ, VEC and Ω and high ΔSmix, |ΔHmix| and δ parameters, and is formed in alloys that have high entropy of mixing. These parameters are compared with those of single-phase bcc ss HEAs and differences in ΔHmix, δ, Δχ and Ω, and similarities in ΔSmix and VEC are discussed. Relationships between the parameters of alloy and "conventional" Nbss also apply for CC/HE Nbss. The parameters δss and Ωss, and VECss and VECalloy can differentiate between types of alloying additions and their concentrations and are key regarding the formation or not of CC/HE Nbss. After isothermal oxidation at a pest temperature (800 oC/100 h) the contaminated with oxygen Nbss in the diffusion zone is CC/HE Nbss, whereas the Nbss in the bulk can be "conventional" Nbss or CC/HE Nbss. The parameters of "uncontaminated" and contaminated with oxygen sss are linked with linear relationships. There are correlations between the oxygen concentration in contaminated sss in the diffusion zone and the bulk of alloys with the parameters ΔχNbss, δNbss and VECNbss, the values of which increase with increasing oxygen concentration in the ss. The effects of contamination with oxygen of the near surface areas of a HT RM(Nb)IC with Al, Cr, Hf, Si, Sn, Ti and V additions and a high vol.% Nbss on the hardness and Young's modulus of the Nbss, and contributions to the hardness of the Nbss in B free or B containing alloys are discussed. The hardness and Young's modulus of the bcc ss increased linearly with its oxygen concentration and the change in hardness and Young's modulus due to contamination increased linearly with [O]2/3.

6.
Materials (Basel) ; 15(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079197

RESUMO

In this work, the RM(Nb)IC alloy Nb−30Ti−10Si−5Cr−5Sn−3Fe−2Al−2Hf (NV2) was studied in the as-cast and heat-treated conditions; its isothermal oxidation at 700, 800 and 900 °C and its room temperature hardness and specific strength were compared with other Sn-containing RM(Nb)ICs­in particular, the alloy Nb−24Ti−18Si−5Cr−5Fe−5Sn (NV5)­and with RCCAs and RHEAs. The addition of Fe (a) stabilised Nbss; A15−Nb3X (X = Al, Si and Sn) and Nb3Si; metastable Nb3Si-m' and Nb5Si3 silicides; (b) supported the formation of eutectic Nbss + Nb5Si3; (c) suppressed pest oxidation at all three temperatures and (d) stabilised a Cr- and Fe-rich phase instead of a C14−Nb(Cr,Fe)2 Laves phase. Complex concentrated (or compositionally complex) and/or high entropy phases co-existed with "conventional" phases in all conditions and after oxidation at 800 °C. In NV2, the macrosegregation of Si decreased but liquation occurred at T >1200 °C. A solid solution free of Si and rich in Cr and Ti was stable after the heat treatments. The relationships between solutes in the various phases, between solutes and alloy parameters and between alloy hardness or specific strength and the alloy parameters were established (parameters δ, Δχ and VEC). The oxidation of NV2 at 700 °C was better than the other Sn-containing RM(Nb)ICs with/without Fe addition, even better than RM(Nb)IC alloys with lower vol.% Nbss. At 800 °C, the mass change of NV2 was slightly higher than that of NV5, and at 900 °C, both alloys showed scale spallation. At 800 °C, both alloys formed a more or less continuous layer of A15−Nb3X below the oxide scale, but in NV5, this compound was Sn-rich and severely oxidised. At 800 °C, in the diffusion zone (DZ) and the bulk of NV2, Nbss was more severely contaminated with oxygen than Nb5Si3, and the contamination of A15−Nb3X was in-between these phases. The contamination of all three phases was more severe in the DZ. The contamination of all three phases in the bulk of NV5 was more severe compared with NV2. The specific strength of NV2 was comparable with that of RCCAs and RHEAs, and its oxidation at all three temperatures was significantly better than RHEAs and RCCAs.

7.
Materials (Basel) ; 15(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806720

RESUMO

In this paper, we present a systematic study of the as-cast and heat-treated microstructures of three refractory metal intermetallic composites based on Nb (i.e., RM(Nb)ICs), namely the alloys EZ2, EZ5, and EZ6, and one RM(Nb)IC/RCCA (refractory complex concentrated alloy), namely the alloy EZ8. We also examine the hardness and phases of these alloys. The nominal compositions (at.%) of the alloys were Nb-24Ti-18Si-5Hf-5Sn (EZ2), Nb-24Ti-18Si-5Al-5Hf-5Sn (EZ5), Nb-24Ti-18Si-5Cr-5Hf-5Sn (EZ6), and Nb-24Ti-18Si-5Al-5Cr-5Hf-5Sn (EZ8). All four alloys had density less than 7.3 g/cm3. The Nbss was stable in EZ2 and EZ6 and the C14-NbCr2 Laves phase in EZ6 and EZ8. In all four alloys, the A15-Nb3X (X = Al,Si,Sn) and the tetragonal and hexagonal Nb5Si3 were stable. Eutectics of Nbss + Nb5Si3 and Nbss + C14-NbCr2 formed in the cast alloys without and with Cr addition, respectively. In all four alloys, Nb3Si was not formed. In the heat-treated alloys EZ5 and EZ8, A15-Nb3X precipitated in the Nb5Si3 grains. The chemical compositions of Nbss + C14-NbCr2 eutectics and some Nb5Si3 silicides and lamellar microstructures corresponded to high-entropy or complex concentrated phases (compositionally complex phases). Microstructures and properties were considered from the perspective of the alloy design methodology NICE. The vol.% Nbss increased with increasing ΔχNbss. The hardness of the alloys respectively increased and decreased with increasing vol.% of A15-Nb3X and Nbss. The hardness of the A15-Nb3X increased with its parameter Δχ, and the hardness of the Nbss increased with its parameters δ and Δχ. The room-temperature-specific strength of the alloys was in the range 271.7 to 416.5 MPa cm3g-1. The effect of the synergy of Hf and Sn, or Hf and B, or Hf and Ge on the macrosegregation of solutes, microstructures, and properties of RM(Nb)ICs/RCCAs from this study and others is compared. Phase transformations involving compositionally complex phases are discussed.

8.
Materials (Basel) ; 15(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35454525

RESUMO

This paper considers metallic ultrahigh-temperature materials (UHTMs) and the alloying behaviour and properties of alloys and their phases by using maps of the parameters δ (based on atomic size), Δχ (based on electronegativity), and valence electron concentration (VEC), and discusses what connects and what differentiates material groups in the maps. The formation of high-entropy or complex concentrated intermetallics, namely 5-3 silicides, C14 Laves and A15 compounds, and bcc solid solutions and eutectics in metallic UHTMs and their co-existence with "conventional" phases is discussed. The practicality of maps for the design/selection of substrate alloys is deliberated upon. The need for environmental coatings for metallic UHTMs was considered and the design of bond coat alloys is discussed by using relevant maps.

9.
Materials (Basel) ; 14(24)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947210

RESUMO

We studied the effect of the addition of Hf, Sn, or Ta on the density, macrosegregation, microstructure, hardness and oxidation of three refractory metal intermetallic composites based on Nb (RM(Nb)ICs) that were also complex concentrated alloys (i.e., RM(Nb)ICs/RCCAs), namely, the alloys TT5, TT6, and TT7, which had the nominal compositions (at.%) Nb-24Ti-18Si-5Al-5B-5Cr-6Ta, Nb-24Ti-18Si-4Al-6B-5Cr-4Sn and Nb-24Ti-17Si-5Al-6B-5Cr-5Hf, respectively. The alloys were compared with B containing and B free RM(Nb)ICs. The macrosegregation of B, Ti, and Si was reduced with the addition, respectively of Hf, Sn or Ta, Sn or Ta, and Hf or Sn. All three alloys had densities less than 7 g/cm3. The alloy TT6 had the highest specific strength in the as cast and heat-treated conditions, which was also higher than that of RCCAs and refractory metal high entropy alloys (RHEAs). The bcc solid solution Nbss and the tetragonal T2 and hexagonal D88 silicides were stable in the alloys TT5 and TT7, whereas in TT6 the stable phases were the A15-Nb3Sn and the T2 and D88 silicides. All three alloys did not pest at 800 °C, where only the scale that was formed on TT5 spalled off. At 1200 °C, the scale of TT5 spalled off, but not the scales of TT6 and TT7. Compared with the B free alloys, the synergy of B with Ta was the least effective regarding oxidation at 800 and 1200 °C. Macrosegregation of solutes, the chemical composition of phases, the hardness of the Nbss and the alloys, and the oxidation of the alloys at 800 and 1200 °C were considered from the perspective of the Niobium Intermetallic Composite Elaboration (NICE) alloy design methodology. Relationships between properties and the parameters VEC, δ, and Δχ of alloy or phase and between parameters were discussed. The trends of parameters and the location of alloys and phases in parameter maps were in agreement with NICE.

10.
Materials (Basel) ; 14(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34683690

RESUMO

This paper is about metallic ultra-high temperature materials, in particular, refractory metal intermetallic composites based on Nb, i.e., RM(Nb)ICs, with the addition of boron, which are compared with refractory metal high entropy alloys (RHEAs) or refractory metal complex concentrated alloys (RCCAs). We studied the effect of B addition on the density, macrosegregation, microstructure, hardness and oxidation of four RM(Nb)IC alloys, namely the alloys TT2, TT3, TT4 and TT8 with nominal compositions (at.%) Nb-24Ti-16Si-5Cr-7B, Nb-24Ti-16Si-5Al-7B, Nb-24Ti-18Si-5Al-5Cr-8B and Nb-24Ti-17Si-3.5Al-5Cr-6B-2Mo, respectively. The alloys made it possible to compare the effect of B addition on density, hardness or oxidation with that of Ge or Sn addition. The alloys were made using arc melting and their microstructures were characterised in the as cast and heat-treated conditions. The B macrosegregation was highest in TT8. The macrosegregation of Si or Ti increased with the addition of B and was lowest in TT8. The alloy TT8 had the lowest density of 6.41 g/cm3 and the highest specific strength at room temperature, which was also higher than that of RCCAs and RHEAs. The Nbss and T2 silicide were stable in the alloys TT2 and TT3, whereas in TT4 and TT8 the stable phases were the Nbss and the T2 and D88 silicides. Compared with the Ge or Sn addition in the same reference alloy, the B and Ge addition was the least and most effective at 800 °C (i.e., in the pest regime), when no other RM was present in the alloy. Like Ge or Sn, the B addition in TT2, TT3 and TT4 did not suppress scale spallation at 1200 °C. Only the alloy TT8 did not pest and its scales did not spall off at 800 and 1200 °C. The macrosegregation of Si and Ti, the chemical composition of Nbss and T2, the microhardness of Nbss and the hardness of alloys, and the oxidation of the alloys at 800 and 1200 °C were also viewed from the perspective of the alloy design methodology NICE and relationships with the alloy or phase parameters VEC, δ and Δχ. The trends of these parameters and the location of alloys and phases in parameter maps were found to be in agreement with NICE.

11.
Molecules ; 26(16)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34443549

RESUMO

Hydrogen has been receiving great attention as an energy carrier for potential green energy applications. Hydrogen storage is one of the most crucial factors controlling the hydrogen economy and its future applications. Amongst the several options of hydrogen storage, light metal hydrides, particularly nanocrystalline magnesium hydride (MgH2), possess attractive properties, making them desired hydrogen storage materials. The present study aimed to improve the hydrogen storage properties of MgH2 upon doping with different concentrations of zirconium carbide (ZrC) nanopowders. Both MgH2 and ZrC were prepared using reactive ball milling and high-energy ball milling techniques, respectively. The as-prepared MgH2 powder was doped with ZrC (2, 5, and 7 wt%) and then high-energy-ball-milled for 25 h. During the ball milling process, ZrC powders acted as micro-milling media to reduce the MgH2 particle size to a minimal value that could not be obtained without ZrC. The as-milled nanocomposite MgH2/ZrC powders consisted of fine particles (~0.25 µm) with a nanosized grain structure of less than 7 nm. Besides, the ZrC agent led to the lowering of the decomposition temperature of MgH2 to 287 °C and the reduction in its apparent activation energy of desorption to 69 kJ/mol. Moreover, the hydrogenation/dehydrogenation kinetics of the nanocomposite MgH2/ZrC system revealed a significant improvement, as indicated by the low temperature and short time required to achieve successful uptake and release processes. This system possessed a high capability to tackle a long continuous cycle lifetime (1400 h) at low temperatures (225 °C) without showing serious degradation in its storage capacity.

12.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34443871

RESUMO

In this paper, we designed an ultra-wideband solar energy absorber and approved it numerically by the finite-difference time-domain simulation. The designed solar energy absorber can achieve a high absorption of more than 90% of light in a continuous 3.506 µm (0.596 µm-4.102 µm) wavelength range. The basic structure of the absorber is based on silicon dioxide colloidal crystal and Ti. Since the materials have a high melting point, the designed solar energy absorber can work normally under high temperature, and the structure of this solar energy absorber is simpler than most solar energy absorbers fabricated with traditional metal. In the entire wavelength band researched, the average absorption of the colloidal crystal-based solar energy absorber is as high as 94.3%, demonstrating an excellent performance under the incidence light of AM 1.5 solar spectrum. In the meantime, the absorption spectrum of the solar energy absorber is insensitive to the polarization of light. In comparison to other similar structures, our designed solar energy absorber has various advantages, such as its high absorption in a wide spectrum range and that it is low cost and easy to make.

13.
Materials (Basel) ; 14(7)2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800669

RESUMO

Tungsten heavy alloys are two-phase metal matrix composites that include W-Ni-Fe and W-Ni-Cu. The significant feature of these alloys is their ability to acquire both strength and ductility. In order to improve the mechanical properties of the basic alloy and to limit or avoid the need for post-processing techniques, other elements are doped with the alloy and performance studies are carried out. This work focuses on the developments through the years in improving the performance of the classical tungsten heavy alloy of W-Ni-Fe through doping of other elements. The influence of the percentage addition of rare earth elements of yttrium, lanthanum, and their oxides and refractory metals such as rhenium, tantalum, and molybdenum on the mechanical properties of the heavy alloy is critically analyzed. Based on the microstructural and property evaluation, the effects of adding the elements at various proportions are discussed. The addition of molybdenum and rhenium to the heavy alloy gives good strength and ductility. The oxides of yttrium, when added in a small quantity, help to reduce the tungsten's grain size and obtain good tensile and compressive strengths at high temperatures.

14.
Entropy (Basel) ; 23(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430018

RESUMO

Refractory metal high-entropy superalloys (RSA), which possess a nanoscale microstructure of B2 and bcc phases, have been developed to offer high temperature capabilities beyond conventional Ni-based alloys. Despite showing a number of excellent attributes, to date there has been little consideration of their microstructural stability, which is an essential feature of any material employed in high temperature service. Here, the stability of the exemplar RSA AlMo0.5NbTa0.5TiZr is studied following 1000 h exposures at 1200, 1000 and 800 °C. Crucially, the initial nanoscale cuboidal B2 + bcc microstructure was found to be unstable following the thermal exposures. Extensive intragranular precipitation of a hexagonal Al-Zr-rich intermetallic occurred at all temperatures and, where present, the bcc and B2 phases had coarsened and changed morphology. This microstructural evolution will concomitantly change both the mechanical and environmental properties and is likely to be detrimental to the in-service performance of the alloy.

15.
ACS Nano ; 14(8): 10413-10420, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32806046

RESUMO

Refractory metals and their carbides possess extraordinary chemical and temperature resilience and exceptional mechanical strength. Yet, they are notoriously difficult to employ in additive manufacturing, due to the high temperatures needed for processing. State of the art approaches to manufacture these materials generally require either a high-energy laser or electron beam as well as ventilation to protect the metal powder from combustion. Here, we present a versatile manufacturing process that utilizes tar as both a light absorber and antioxidant binder to sinter thin films of aluminum, copper, nickel, molybdenum, and tungsten powder using a low power (<2W) CO2 laser in air. Films of sintered Al/Cu/Ni metals have sheet resistances of ∼10-1 ohm/sq, while laser-sintered Mo/W-tar thin films form carbide phases. Several devices are demonstrated, including laser-sintered porous copper with a stable response to large strain (3.0) after 150 cycles, and a laserprocessed Mo/MoC(1-x) filament that reaches T ∼1000 °C in open air at 12 V. These results show that tar-mediated laser sintering represents a possible low energy, cost-effective route for engineering refractory materials and one that can easily be extended to additive manufacturing processes.

16.
Nanomaterials (Basel) ; 10(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204359

RESUMO

In this paper, a theoretical simulation based on a finite-difference time-domain method (FDTD) shows that the solar absorber can reach ultra-broadband and high-efficiency by refractory metals titanium (Ti) and titanium nitride (TiN). In the absorption spectrum of double-size cross-shaped absorber, the absorption bandwidth of more than 90% is 1182 nm (415.648-1597.39 nm). Through the analysis of the field distribution, we know the physical mechanism is the combined action of propagating plasmon resonance and local surface plasmon resonance. After that, the paper has a discussion about the influence of different structure parameters, polarization angle and angle of incident light on the absorptivity of the absorber. At last, the absorption spectrum of the absorber under the standard spectrum of solar radiance Air Mass 1.5 (AM1.5) is studied. The absorber we proposed can be used in solar energy absorber, thermal photovoltaics, hot-electron devices and so on.

17.
Ultrason Sonochem ; 59: 104742, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31473422

RESUMO

To broaden the scope of non-aerospace applications for titanium-based alloys, both hexagonal C40 binary TaSi2 and ternary Al alloyed TaSi2 nanocrystalline coatings were exploited to enhance the cavitation erosion resistance of Ti-6Al-4V alloy in acidic environments. To begin with, the roles of Al addition in influencing the structural stability and mechanical properties of hexagonal C40 Ta(Si1-xAlx)2 compounds were modelled using first-principles calculations. The calculated key parameters, such as Pugh's index (B/G ratio), Poisson's ratio, and Cauchy pressures, indicated that there was a threshold value for Al addition, below which the increase of Al content would render the Ta(Si1-xAlx)2 compounds more ductile, but above which no obvious change would occur. Subsequently, the TaSi2 and Ta(Si0.875Al0.125)2 coatings were prepared and their microstructure and phase composition were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Both the two coatings exhibited a uniform thickness of 15 µm and a densely packed structure mainly composed of spherically shaped nanocrystallites with an average diameter of about 5 nm. Nanoindentation measurements revealed that Al alloying reduced the hardness (H) and elastic modulus (E) values of the TaSi2 coating. Ultrasonic cavitation erosion tests were carried out by immersing coated and uncoated samples in a 0.5 M HCl solution. The cavitation-erosion analysis of the tested samples was investigated by various electrochemical techniques, mass loss weight and SEM observation. The results suggested that both coated samples provided a better protection for Ti-6Al-4V against the cavitation-erosion damage in acidic environments, but the addition of Al further improved the cavitation-erosion resistance of the TaSi2 coating.

18.
Ultrason Sonochem ; 59: 104715, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31421617

RESUMO

Sonochemistry was used for the metal oxides nanoparticle synthesis. All experiments were run using a BANDELIN Sonopuls HD 3200 ultrasonic generator (20 kHz, 200 W net output) with a ultrasonic probe in thermostated environment of 80 °C under ambient air. At the same time, ultrasonication activity achieved their decoration on state-of-the-art fuel cell anode powders. These modified powders shall be used in solid oxide and ceramic proton exchange membrane fuel cells anode sites. Metal oxide nanoformations synthesized were those of tungsten and molybdenum. In case of sonochemical synthesis, organometallic compounds dissolved in organic solvents played the role of precursors. Experiments of metal oxides synthesis revealed that ultrasonication intensity and solvents are able to affect final nanoparticles size distribution and morphology. At the same time, ratio of precursor and substrate compounds amounts as well as ultrasonication intensity and duration were all found to affect the decoration loading extent of nanoformations on substrates. Transmission electron microscopy was mainly used for identifying the final product of each synthesis attempt. Moreover, selected area diffraction of characteristic formations examined, gave important information about the nanocrystallinity and stoichiometry of all materials synthesized.

19.
Ultrason Sonochem ; 50: 138-156, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30219353

RESUMO

To investigate the effects of Al alloying on the erosion-corrosion resistance of ß-Ta5Si3, both a ß-Ta5Si3 coating and an Al-alloyed ß-Ta5(Si0.83Al0.17)3 coating were synthesized on a 316 substrate by the double cathode glow discharge technique. The phase constitution, composition and microstructure of the two coatings were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The two coatings were composed of nearly rounded D8m-ß-Ta5Si3 grains with an average size of ∼4 nm, and after the addition of Al, the preferred growth orientation for the ß-Ta5Si3 coating changed from (4 0 0) to (0 0 2). The hardness, elastic modulus and contact damage resistance of the coatings were measured using a nanoindentation tester. The results showed that Al alloying improved the contact damage resistance of ß-Ta5Si3 with only a slight decrease in hardness. The erosion-corrosion behavior of the two coatings was performed in a 3.5 wt% NaCl solution containing a 12 wt% concentration of silica sand under two phase slurry flow condition and in a 3.5 wt% NaCl solution under ultrasonic cavitation erosion conditions. This revealed that the Al alloyed ß-Ta5Si3 has a higher resistance to both erosion-corrosion and ultrasonic cavitation erosion as compared to the binary ß-Ta5Si3 coating.

20.
Sci Technol Adv Mater ; 19(1): 370-380, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29707073

RESUMO

Selective laser melting (SLM) additive manufacturing of pure tungsten encounters nearly all intractable difficulties of SLM metals fields due to its intrinsic properties. The key factors, including powder characteristics, layer thickness, and laser parameters of SLM high density tungsten are elucidated and discussed in detail. The main parameters were designed from theoretical calculations prior to the SLM process and experimentally optimized. Pure tungsten products with a density of 19.01 g/cm3 (98.50% theoretical density) were produced using SLM with the optimized processing parameters. A high density microstructure is formed without significant balling or macrocracks. The formation mechanisms for pores and the densification behaviors are systematically elucidated. Electron backscattered diffraction analysis confirms that the columnar grains stretch across several layers and parallel to the maximum temperature gradient, which can ensure good bonding between the layers. The mechanical properties of the SLM-produced tungsten are comparable to that produced by the conventional fabrication methods, with hardness values exceeding 460 HV0.05 and an ultimate compressive strength of about 1 GPa. This finding offers new potential applications of refractory metals in additive manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA