RESUMO
Dual-phase reinforcing approach provides a novel and efficient strategy for the fabrication of advanced aluminum matrix composites (AMCs). The devisable and desirable performance could be achieved by tuning dual-phase reinforcing system. However, it is still challenging to design a dual-phase reinforcing system with synergistic strengthening effect, especially for the laser powder bed fusion (LPBF) characterized by nonequilibrium metallurgical process. In this work, we designed and fabricated dual-phase (TiN+AlN) particles (20 wt.%) reinforced pure Al by LPBF. The TiN and AlN can form a metastable ternary Ti1-xAlxN solid solution in the whole range of composition, which is a promising reinforcing phase for AMCs. We observed novel microstructure in laser-fabricated composites under the action of dual-phase (TiN+AlN) ceramic particles and laser melting process. A gradient layer is formed on the surface of TiN particles. This interfacial structure can act as an anchor for ceramic particles in the Al matrix, which is beneficial to achieve a strong interface bonding and good load transfer. Besides this gradient layer, uniformly dispersed Ti1-xAlxN nanoparticles were observed to precipitate, which can effectively hinder dislocation movement and refine grains. Furthermore, the pure Al and TiN/Al, AlN/Al composites were fabricated to compare and reveal the contributions of dual-phase (TiN+AlN) reinforcements. The tensile strength of the (TiN+AlN)/Al composite reach â¼254 MPa, improved by â¼75% and â¼81% compared with those of the TiN/Al and the AlN/Al composites, respectively. This novel microstructure about gradient layer and precipitated nanoparticles contributes to the high strengthening efficiency of the (TiN+AlN)/Al composite.
RESUMO
Fused Deposition Modeling (FDM) is a well-established manufacturing method for producing both prototype and functional components. This study investigates the mechanical properties of FDM components by material and process-related influencing variables. Tensile tests were conducted on seven different materials in their raw filament form, two of which were fiber-reinforced, to analyze their material-related influence. To cover a wide range from standard to advanced materials relevant for load-carrying components as well as their respective variations, polylactic acid (PLA), 30% wood-fiber-reinforced PLA, acrylonitrile butadiene styrene (ABS), polycarbonate (PC), a blend of ABS and PC, Nylon, and 30% glass-fiber-reinforced Nylon were selected. The process-related influencing variables were studied using the following process parameters: layer thickness, nozzle diameter, build orientation, nozzle temperature, infill density and pattern, and raster angle. The first test series revealed that the addition of wood fibers significantly worsened the mechanical behavior of PLA due to the lack of fiber bonding to the matrix and significant pore formation. The polymer blend of ABS and PC only showed improvements in stiffness. Significant strength and stiffness improvements were found by embedding glass fibers in Nylon, despite partially poor fiber-matrix bonding. The materials with the best properties were selected for the process parameter analysis. When examining the impact of layer thickness on part strength, a clear correlation was evident. Smaller layer thicknesses resulted in higher strength, while stiffness did not appear to be affected. Conversely, larger nozzle diameters and lower nozzle temperatures only positively impacted stiffness, with little effect on strength. The part orientation did alter the fracture behavior of the test specimens. Although an on-edge orientation resulted in higher stiffness, it failed at lower stresses. Higher infill densities and infill patterns aligned with the load direction led to the best mechanical results. The raster angle had a significant impact on the behavior of the printed bodies. An alternating raster angle resulted in lower strengths and stiffness compared to a unidirectional raster angle. However, it also caused significant stretching due to the rotation of the beads.
RESUMO
This study aims to analyze the effect of the curing temperature of nano-reinforcements during the manufacturing process on the mechanical properties of composites involving graphene (GNP), carbon nanofibers (CNFs), and a hybrid mixture of these two nanoparticles. In this context, the type of nanoparticles, their content, their type of resin, and their hybridization were considered. The results showed that both nanoparticles increased the viscosity of the resin suspension, with an increase of between 16.3% and 38.2% for GNP nanoparticles and 45.4% and 74% for CNFs depending on the type of resin. Shrinkage was also affected by the addition of nanoparticles, as the highest results were obtained with GNP nanoparticles, with a 91% increase compared with the neat resin, and the lowest results were obtained with CNFs, with a decrease of 77% compared with the neat resin. A curing temperature of 5 °C promoted the best bending and hardness performance for all composites regardless of the type of resin and reinforcement used, with improvements of up to 24.8% for GNP nanoparticles and 13.52% for CNFs compared with the neat resin at 20 °C. Hybridization led to further improvements in bending properties and hardness compared with single-reinforcement composites due to a synergistic effect. However, the effectiveness of hybridization depends on the type of resin.
RESUMO
California, a pioneer in EV adoption, has enacted ambitious electric vehicle (EV) policies that will generate a large burden on the state's electric distribution system. We investigate the statewide impact of uncontrolled EV charging on the electric distribution networks at a large scale and high granularity, by employing an EV charging profile projection that combines travel demand model, EV adoption model, and real-world EV charging data. We find a substantial need for infrastructure upgrades in 50% of feeders by 2035, and 67% of feeders by 2045. The distribution system across California must upgrade its capacity by 25 GW by 2045, corresponding to a cost between $6 and $20 billion. While the additional infrastructure cost drives the electricity price up, it is offset by the downward pressure from the growth of total electricity consumption and leads to a reduction in electricity rate between $0.01 and $0.06/kWh by 2045. We also find that overloading conditions are highly diverse spatially, with feeders in residential areas requiring twice as much upgrade compared to commercial areas. Our study provides a framework for evaluating EVs' impact on the distribution grid and indicates the potential to reduce infrastructure upgrade costs by shifting home-charging demand. The imminent challenges confronting California serve as a microcosm of the forthcoming obstacles anticipated worldwide due to the prevailing global trend of EV adoption.
RESUMO
Magnesium matrix composites have been extensively investigated due to their light weight and machinability. The interfaces are the most important part of these composites, and their properties determine the properties of composites to a large extent. However, there are still many problems with interface bonding. The reinforcements are faced with the dilemma of poor dispersion, bad interfacial reaction, and poor wettability, which limits further improvements in the mechanical properties. Surface coating treatment of reinforcements is considered to be one of the effective methods to protect reinforcements and modify the interface. This review presents an overview of different coating materials on various reinforcements. The major roles of coatings in the composites and the properties of the composites are discussed. Future directions and potential research areas in the field of magnesium matrix composites reinforced with coated reinforcements are also highlighted.
RESUMO
Poly(dicyclopentadiene) (poly-DCPD) is a thermoset with potential for high-performance applications. In this research, epoxy resin was blended with different concentrations of fly ash class F particles at 0.0, 1.0, 10.0, and 50.0 wt.%, aiming to improve its use as a high-volume structural material by decreasing costs and reducing its negative environmental impact through using fly ash particles. A planetary Thinky mixer was used to initially mix the resin with the curing agent, followed by incorporating a Grubbs catalyst. The microstructures were analyzed using scanning electron microscopy (SEM), where particles were found to be homogeneously distributed over the polymer matrix. The thermomechanical behavior was evaluated via curing, compression, dynamic mechanical analysis (DMA), and thermo-gravimetric analysis (TGA). Nanoindentation tests were also conducted. Fly ash was found to decelerate the curing of the resin through the release of calcium ions that enhanced the exothermic reaction.
RESUMO
The current concerns of both society and the materials industries about the environmental impact of thermoset composites, as well as new legislation, have led the scientific sector to search for more sustainable alternatives to reduce the environmental impact of thermoset composites. Until now, to a large extent, sustainable reinforcements have been used to manufacture more sustainable composites and thus contribute to the reduction of pollutants. However, in recent years, new alternatives have been developed, such as thermosetting resins with bio-based content and/or systems such as recyclable amines and vitrimers that enable recycling/reuse. Throughout this review, some new bio-based thermoset systems as well as new recyclable systems and sustainable reinforcements are described, and a brief overview of the biocomposites market and its impact is shown. By way of conclusion, it should be noted that although significant improvements have been achieved, other alternatives ought to be researched.
RESUMO
The heaviest smoking and burden of tobacco-related illness occurs among low-income individuals. Using a behavioural economics framework, this non-randomised pilot study examined the preliminary efficacy of behavioural activation (BA) with a contingency management (CM) component designed to encourage continued use of BA skills and reductions in cigarettes smoked. Eighty-four participants were recruited from a community centre. Data were collected at the start of every other group and at four different follow-up time points. Domains assessed included number of cigarettes smoked, activity level, and environmental rewards (i.e. alternative environmental reinforcers). Over time, cigarette smoking decreased (p < .001), environmental reward increased (p = .03), and reward probability and activity level were associated over time with cigarette smoking (p ≤ .03) above and beyond the effect of nicotine dependence. The continued use of BA skills was associated with greater environmental rewards (p = .04). While further research is needed to replicate this work, results suggest initial evidence for the utility of this intervention in a traditionally underserved community.
Assuntos
Abandono do Hábito de Fumar , Humanos , Terapia Comportamental , Projetos Piloto , Recompensa , Fumar , Abandono do Hábito de Fumar/métodosRESUMO
The present manuscript describes the use of natural fibers as natural and sustainable reinforcement agents for advanced bio-based composite materials for strategic sectors, for example, the construction sector. The characterization carried out shows the potential of both natural hemp and linseed fibers, as well as their composites, which can be used as insulation materials because their thermal conductivity properties can be compared with those observed in typical construction materials such as pine wood. Nevertheless, linseed composites show better mechanical performance and hemp has higher fire resistance. It has been demonstrated that these natural fibers share similar properties; on the other hand, each of them should be used for a specific purpose. The work also evaluates the use of bio matrixes in composites, demonstrating their feasibility and how they impact the final material's properties. The proposed bio-resin enhances fire resistance and decreases the water absorption capacity of the natural fibers, enabling the use of composites as a final product in the construction sector. Therefore, it has been demonstrated that it is possible to manufacture a biocomposite with non-woven natural fibers. In fact, for properties such as thermal conductivity, it is capable of competing with current materials. Proving that biomaterials are a suitable solution for developing sustainable products, fulfilling the requirements of the end-user applications, as it has been demonstrated in this research with the non-woven fibers for the non-structural components.
RESUMO
Using of nano-inclusion to reinforce polymeric materials has emerged as a potential technique to achieve an upper extreme of specific strength. Despite the significant improvement of mechanical properties via nano-reinforcements, the commercial application of such nano-composites is still restricted, due to high cost and unwanted aggregation of nanoparticles in the polymer matrix. To address these issues, here we proposed a scalable and economical synthesis of TiO2 at low temperatures, resulting in self-dispersed nanoparticles, without any surfactant. As lower energy is consumed in the synthesis and processing of such nanoparticles, so their facile gram-scale synthesis is possible. The defect-rich surface of such nanoparticles accommodates excessive dangling bonds, serving as a center for the functional groups on the surface. Functional surface enables high dispersion stability of room temperature synthesized TiO2 particles. With this motivation, we optimized the processing conditions and concentration of as-synthesized nano-particles for better mechanical properties of unsaturated polyester (UP) resin. The composite structure (UP-TiO2) showed nearly two folds higher tensile, flexural, and impact strength, with 4% content of nanoparticles. Characterization tools show that these better mechanical properties are attributed to a strong interface and superior dispersion of nanoparticles, which facilitate better stress distribution in the composite structure. In addition, the crack generation and propagation are restricted at a much smaller scale in nanocomposites, therefore significant improvement in mechanical properties was observed.
RESUMO
Investigations into polymer composites are mainly focused on properties dependent on glass fiber reinforcement and particulate fillers. In the present study, the effect of the binder was examined. The specimens were produced with two types of epoxy resin, with similar numbers of glass mat layers and similar proportions of quartz powder added. However, one group was fabricated with an emulsion binder in the glass mats and another group with a powder binder. Attention was concentrated on the tribological properties of the as-prepared composites, though their strength was examined as well. The hardness of the Sikafloor matrix was found to be much more sensitive to the applied binder than that of the MC-DUR matrix. No direct correlation between the microhardness and the specific wear rate was observed and increasing the particulate filler proportion did not cause a direct increase of the specific wear rate. In particular, the highest specific wear rate, around 350 J/g, was reached for both matrices with a 1% quartz addition when the emulsion binder was applied, while in the case of the powder binder it was with 6% quartz with the MC-DUR matrix, and there was no quartz addition with the Sikafloor matrix. The highest microhardness, HV0.5 = 25, in turn, was reached for the mats with the emulsion binder in the Sikafloor matrix with an addition of 10% quartz powder, while the highest friction coefficient was exhibited in the composite with the MC-DUR matrix, when 1% of the quartz powder and the emulsion binder were applied.
RESUMO
The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin-Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.
Assuntos
Nanocompostos , Nanopartículas , Polímeros/química , Celulose/química , Nanopartículas/química , Nanocompostos/química , Impressão TridimensionalRESUMO
Soft pneumatic artificial muscles are a well actuation scheme in soft robotics due to its key features for robotic machines being safe, lightweight, and conformable. In this work, we present a versatile vacuum-powered artificial muscle (VPAM) with manually tunable output motion. We developed an artificial muscle that consists of a stack of air chambers that can use replaceable external reinforcements. Different modes of operation are achieved by assembling different reinforcements that constrain the output motion of the actuator during actuation. We designed replaceable external reinforcements to produce single motions such as twisting, bending, shearing and rotary. We then conducted a deformation and lifting force characterization for these motions. We demonstrated sophisticated motions and reusability of the artificial muscle in two soft machines with different modes of locomotion. Our results show that our VPAM is reusable and versatile producing a variety and sophisticated output motions if needed. This key feature specially benefits unpredicted workspaces that require a soft actuator that can be adjusted for other tasks. Our scheme has the potential to offer new strategies for locomotion in machines for underwater or terrestrial operation, and wearable devices with different modes of operation.
RESUMO
The increase in the use of additive manufacturing (AM) has led to the need for filaments with specific and functional properties in face of requirements of structural parts production. The use of eco-friendly reinforcements (i.e., natural fibers) as an alternative to those more traditional synthetic counterparts is still scarce and requires further investigation. The main objective of this work was to develop short curauá fiber-reinforced polylactic acid (PLA) composites made via fused deposition modeling. Three different fiber lengths (3, 6, and 8 mm), and three concentrations in terms of weight percentage (2, 3.5, and 5 wt.%) were used to fabricate reinforced PLA filaments. Tensile and flexural tests in accordance with their respective American Society for Testing and Materials (ASTM) standards were performed. A thermal analysis was also carried out in order to investigate the thermal stability of the new materials. It was found that the main driving factor for the variation in mechanical properties was the fiber weight fraction. The increase in fiber length did not provide any significant benefit on the mechanical properties of the curauá fiber-reinforced PLA composite printed parts. The composites produced with PLA filaments reinforced by 3 mm 2% curauá fiber presented the overall best mechanical and thermal properties of all studied groups. The curauá fiber-reinforced PLA composites made via fused deposition modeling may be a promising innovation to improve the performance of these materials, which might enable them to serve for new applications.
RESUMO
Biocomposites were prepared from poly(lactic acid) and two natural reinforcements, a native starch and sugarcane bagasse fibers. The strength of interfacial adhesion was estimated by model calculations, and local deformation processes were followed by acoustic emission testing. The results showed that the two additives influence properties differently. The strength of interfacial adhesion and thus the extent of reinforcement are similar because of similarities in chemical structure, the large number of OH groups in both reinforcements. Relatively strong interfacial adhesion develops between the components, which renders coupling inefficient. Dissimilar particle characteristics influence local deformation processes considerably. The smaller particle size of starch results in larger debonding stress and thus larger composite strength. The fracture of the bagasse fibers leads to larger energy consumption and to increased impact resistance. Although the environmental benefit of the prepared biocomposites is similar, the overall performance of the bagasse fiber reinforced PLA composites is better than that offered by the PLA/starch composites.
Assuntos
Celulose , Saccharum , Celulose/química , Poliésteres , Amido/químicaRESUMO
Current research is devoted to the investigation of spelt husk (SH) and nanoclay-modified compatibilised polypropylene (PP) binary and ternary composites for injection-moulding applications. PP composites were obtained using twin-screw extrusion. The content of mechanically milled SH microfiller with aspect ratio within 2 and 6 was fixed at 40 wt.%, whereas the amount of nanoclay functional filler in the polypropylene matrix was changed in the range from 0.5 to 5 wt.%. Nanoclay filler was introduced in the polypropylene matrix either in the form of nanoclay powder (C) or as a masterbatch (M). Regular distribution of the clay nanofiller within the polymer matrix has been observed, disregarding its form and concentration. The effects of the individual or combined addition of SH microreinforcement and nanoclay fillers on the rheological, mechanical, calorimetric, and thermal properties of the developed PP composites were investigated. It is revealed that the addition of the nanoclay fillers insignificantly influences the viscosity of both PP nanocomposites and hybrid composites with SH. Additionally, for PP nanocomposites, remarkable increases in tensile and flexural modules and strength are observed by maintaining considerable ultimate deformations, mainly in the case of M-containing systems. Concomitantly, because of the addition of the nanoclay filler, the improvement in thermal stability of PP nanocomposites and PP hybrid composites with SH is observed. As a result of SH addition, considerable increases in tensile and flexural modules are also observed. Results of the research demonstrate the potential of the use of natural materials (agricultural residues and clay minerals) for the development of PP composites with increased stiffness and thermal properties.
RESUMO
Titanium metal matrix composites/TMMCs are reinforced ceramic reinforcements that have been developed and used in the automotive, biological, implants, and aerospace fields. At high temperatures, TMMCs can provide up to 50% weight reduction compared to monolithic super alloys while maintaining comparable quality or state of strength. The objective of this research was the analysis and evaluation of the effect/influence of different sintering temperatures, reinforcement size dependence of mechanical properties, and fortification mechanisms on the particle size distribution of B4C, SiC, and ZrO2 reinforced TMMCs that were produced and fabricated by powder metallurgy/PM. SEM, XRD, a Rockwell hardness tester, and the Archimedes principle were used in this analysis. The composites' hardness, approximation, tensile, yielding, and ultimate strength were all increased. As the composite was reinforced with low-density ceramics material and particles, its density decreased. The volume and void content in all the synthesized specimens is below 1%; this is the result of good sample densification, mechanical properties and uniform distribution of the reinforced particle samples; 5% B4C, 12.5% SiC, 7.5% ZrO2, 75% Ti develop higher mechanical properties, such as higher hardness, approximation tensile, yielding, and ultimate strength and low porosity.
RESUMO
To accelerate the high value-added usage of agricultural residue, cellulose and cellulose nanofibers (CNFs) were extracted from wheat straw and then formed into all-cellulose nanocomposite films. The acid-alkali method (AM) and the extraction method (EM) were respectively adopted to prepare wheat straw cellulose (WSC), and the TEMPO oxidation method was used to extract CNFs. The nanocomposite films were fabricated by dissolving WSC and adding different CNF contents of 0.0, 0.5, 1.5, and 3.0%. There was a better miscibility for the all-cellulose nanocomposite film prepared by EM (Composite-E) compared to that for the all-cellulose nanocomposite film prepared by AM (Composite-A). Composite-E also showed a better optical transparency than Composite-A. The thermal stability of the two RWSCs presented contrary results when the CNFs were added, indicating a higher thermal stability for Composite-E than for Composite-A. This should have determined the properties of the films in which Cellulose I and Cellulose II coexisted for the all-cellulose nanocomposite films, and the forming mechanism of Cellulose II and crystallinity were determined by the cellulose-extracting method. X-ray diffraction (XRD) and Fourier-transform infrared (FT-IR) spectroscopy also showed that there was more Cellulose I in Composite-E than in Composite-A. The results are expected to enrich the data for deep processing of agricultural residues.
RESUMO
The purpose of this study was to evaluate the shear performance of concrete beams with integrated shear reinforcements made of steel plates and rebar bent in an N shape (N-type rebar), and to evaluate the applicability of the current relevant design standards. For this purpose, four concrete beam specimens were manufactured. Four-point loading tests were performed with all the specimens. The experiments confirmed that both types of shear reinforcements had a shear-reinforcing effect (an about 60% increase in shear strength), but the N-type rebar did not exceed the nominal shear strength, probably because the rebar did not yield sufficiently. A sufficient number of steel-plate-type shear reinforcements yielded in the shear crack. When evaluating the shear performance of a new shear reinforcement, it is necessary to calculate the design strength by actually reflecting whether the shear reinforcements' yields are due to the angle of the diagonal crack. Calculating the shear contribution based on the strain of the shear reinforcements and comparing this shear strength with those five design standards, the shear strength of the shear reinforcements were evaluated conservatively. It is considered that there will be no problem in structural safety even if the shear design is carried out according to the current design standards.
RESUMO
The use of composite overlays to increase the fatigue life of notched steel samples is discussed in this paper. For such purposes, in the first set of studies, static and fatigue tests as well as the detailed analytical and numerical analyses for samples with double-lap joints were performed. Based on such studies, the shapes of the composite overlays were set. For a better understanding of the failure forms of the investigated adhesive joints, the experimental studies were monitored with the use of digital image correlation. In the second set of experimental studies, the static and fatigue tensile tests were performed for steel samples with a rectangular opening with rounded corners reinforced by composite overlays. The different shapes (square 45 × 45 mm and long stripes 180 × 15 mm) and composite materials (GFRP and CFRP) were used as overlays. The obtained improvement of fatigue life was in the range of 180-270% in the case of the rectangular overlays and 710% in the case of application of the overlays in the form of the long stripes. This was also confirmed by numerical analyses in which a reduction in the stress concentration factor from 2.508 (bare sample) through 2.014-2.183 (square 45 × 45 mm overlays) to 1.366 (overlays in the form of long stripes 180 × 15 mm) was observed.