Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Intervalo de ano de publicação
2.
Biochemistry (Mosc) ; 89(Suppl 1): S278-S289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38621756

RESUMO

To date synthetic biology approaches involving creation of functional genetic modules are used in a wide range of organisms. In plants, such approaches are used both for research in the field of functional genomics and to increase the yield of agricultural crops. Of particular interest are methods that allow controlling genetic apparatus of the plants at post-translational level, which allow reducing non-targeted effects from interference with the plant genome. This review discusses recent advances in the plant synthetic biology for regulation of the plant metabolism at posttranslational level and highlights their future directions.


Assuntos
Produtos Agrícolas , Biologia Sintética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Genômica
3.
G3 (Bethesda) ; 14(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38560781

RESUMO

Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4  FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.


Assuntos
Alelos , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação , Regulação Fúngica da Expressão Gênica , Fenótipo
4.
Viruses ; 16(4)2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675856

RESUMO

CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family.


Assuntos
Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/classificação , Proteínas Virais/genética , Proteínas Virais/metabolismo , Retroelementos , Variação Genética , Prófagos/genética , DNA Viral/genética , DNA Primase/genética , DNA Primase/metabolismo , Genômica/métodos , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo
5.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187743

RESUMO

Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK-pathway dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay, and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and RGA1, which encodes a GTPase activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1 and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, presumably identifying an inhibitory domain in the C-terminus of the protein. We also show that a wide variety of filamentous growth phenotypes result from mutations in different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.

6.
Rev. chil. endocrinol. diabetes ; 4(3): 194-197, jul. 2011. ilus, tab, graf
Artigo em Espanhol | LILACS | ID: lil-640638

RESUMO

Thyroid hormone resistance (RTH) is inherited as an autosomal dominant trait, with variable clinical presentations. The hallmark of the syndrome is a variable degree of resistance to thyroid hormones, with high levels of circulating thyroid hormones, inappropriately normal or elevated TSH values and a clinical pattern of mixed hypothyroidism and hyperthyroidism. RTH is related in more than 85 percent of cases to thyroid hormone beta receptor mutations. We report a 11 years female with a history of treatment with propylthiouracil (PTU) for hyperthyroidism, presenting with a progressive goiter. Thyroidectomy was performed, removing 233 grams of thyroid tissue showing follicular hyperplasia. After surgery, a fast growth of the remnant thyroid gland was observed along with tachycardia. Laboratory showed a TSH of 38 mU/mL a triiodothyronine level of 300 ng/dL a thyroxin level of 14.8 ug/dL and a free thyroxin of 3.19 ng/dL, suggesting the diagnosis of RTH. The molecular study was negative for mutation of the beta isoform of thyroid hormone receptor. The possible theories that can explain these findings are discussed.


Assuntos
Humanos , Feminino , Criança , Hipertireoidismo/tratamento farmacológico , Síndrome da Resistência aos Hormônios Tireóideos/diagnóstico , Tiroxina/administração & dosagem , Relação Dose-Resposta a Droga , Hipertireoidismo/cirurgia , Período Pós-Operatório , Síndrome da Resistência aos Hormônios Tireóideos/etiologia , Tireoidectomia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA