Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.464
Filtrar
1.
Int J Ophthalmol ; 17(7): 1217-1231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39026909

RESUMO

AIM: To study the effect of the NLRP3/autophagy pathway on the photoreceptor inflammatory response and the protective mechanism of CY-09 and astaxanthin (AST). METHODS: ICR mice were intraperitoneally injected NaIO3, CY-09, AST successively and divided into 5 groups, including the control, NaIO3, NaIO3+CY-09, NaIO3+AST, and NaIO3+CY-09+AST groups. Spectral domain optical coherence tomography and flash electroretinogram were examined and the retina tissues were harvested for immunohistochemistry, enzyme linked immunosorbent assay (ELISA), and Western blotting. Retinal pigment epithelium cell line (ARPE-19 cells) and mouse photoreceptor cells line (661W cells) were also treated with NaIO3, CY-09, and AST successively. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay. Apoptosis was analyzed by flow cytometry. Changes in autophagosome morphology were observed by transmission electron microscopy. Quantitative polymerase chain reaction (qPCR) was used to detect NLRP3 and caspase-1. NLRP3, caspase-1, cleaved caspase-1, p62, Beclin-1, and LC3 protein levels were measured by Western blotting. IL-1ß and IL-18 were measured by ELISA. RESULTS: Compared with the control group, the activity of NaIO3-treated 661W cells decreased within 24 and 48h, apoptosis increased, NLRP3, caspase-1, IL-1ß and IL-18 levels increased, and autophagy-related protein levels increased (P<0.05). Compared with NaIO3 group, CY-09 and AST inhibited apoptosis (P<0.05), reduced NLRP3, caspase-1, IL-1ß and IL-18 expression (P<0.05), and inhibited autophagy. Compared with the other groups, CY-09 combined with AST significantly decreased NLRP3 expression and inhibited the expression of the autophagy-related proteins p62, Beclin-1, and LC3 in vitro and in vivo (P<0.05). CONCLUSION: CY-09 and AST inhibit NaIO3-induced inflammatory damage through the NLRP3/autophagy pathway in vitro and in vivo. CY-09 and AST may protect retina from inflammatory injury.

2.
Exp Neurobiol ; 33(3): 152-164, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38993082

RESUMO

The harmful effects of blue light on the retina and health issues attributed to flickering light have been researched extensively. However, reports on the effects of flickering blue light at a frequency in the visible range on the retina are limited. This study aimed to non-invasively investigate the structural and functional changes in mice retinas following exposure to flickering blue light. BALB/c mice were subjected to non-flickering and flickering blue light, and changes in the retinal function and structure were assessed using electroretinography (ERG) and spectral-domain optical coherence tomography (SD-OCT), respectively. Retinal damage progression was monitored on days 3, 7, 14, and 42 following light exposure. Significant reductions in scotopic and photopic ERG responses were observed on day 3 (p<0.05). On day 7, the non-flickering and flickering groups demonstrated different functional changes: the flickering group showed further ERG response reduction, while the non-flickering group showed no reduction or slight improvement that was statistically insignificant (p>0.05). A similar trend lasted by day 14. On day 42, however, the difference between the non-flickering and flickering groups was significant, which was corroborated by the normalized amplitudes at 0, 0.5, and 1 log cd s/m2 (p<0.05). Quantitative and qualitative SD-OCT assays revealed more severe and progressive retinal damage in the flickering group throughout the study. Flickering blue light causes more persistent and severe retinal damage than non-flickering blue light and may be a risk factor for retinal degeneration even at frequencies as low as 20 Hz.

3.
Curr Eye Res ; : 1-9, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039707

RESUMO

PURPOSE: This study aimed to investigate the protective or therapeutic effect of thymoquinone (TQ) in a retinal degeneration rat model and its relationships with the retina ultrastructure, heme oxygenase 1 (HO-1), caspase-3, and RPE65 expressions and to determine whether TQ has a therapeutic effect at the biochemical level. METHODS: A total of 25 adult Wistar albino rats were divided into the following treatment groups: saline (control: CONT), CO (corn oil), sodium iodate (SI), TQ + SI, and SI + TQ injection groups. Retina morphology, RPE65, HO-1, and caspase-3 expression levels were evaluated using immunohistochemistry, and optical density was determined using ImageJ. Ultrastructural evaluations were performed with electron microscopy. Thiol-disulfide homeostatic parameters were examined in serum samples. RESULTS: Outer nuclear layer (ONL) thickness was significantly higher in the SI + TQ group compared to the SI group. The RPE65 expression significantly decreased in the SI group compared with the CONT and CO groups. A significant increase in RPE65 expression level and a significant decrease in caspase-3 expression level were found in the SI + TQ group compared with the SI group. The increase in HO-1 expression level was significantly higher in the TQ treatment groups, particularly in the SI + TQ group. In the SI and TQ + SI groups, the ONL thickness significantly decreased with a significant increase in caspase-3 expression compared to the CONT and CO groups. In the treatment groups, decreased organelle damage was observed on electron microscopy. In the SI + TQ group, the disulfide/native thiol and disulfide/total thiol ratios were significantly lower than all other groups, while the native/total thiol ratio was significantly higher than the other experimental groups. CONCLUSIONS: The present study provides evidence that continuous TQ treatment can increase HO-1 and RPE65 expression and decrease apoptosis (caspase-3 levels), thereby preserving the retina at the ultrastructural level. Moreover, TQ administration can maintain thiol/disulfide homeostasis in SI-induced retinal degeneration-modelled rats.

4.
J Biol Chem ; : 107569, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39009342

RESUMO

Loss of glycogen myophosphorylase (PYGM) expression results in an inability to break down muscle glycogen, leading to McArdle disease-an autosomal recessive metabolic disorder characterized by exercise intolerance and muscle cramps. While previously considered relatively benign, this condition has recently been associated with pattern dystrophy in the retina, accompanied by variable sight impairment, secondary to retinal pigment epithelial (RPE) cell involvement. However, the pathomechanism of this condition remains unclear. In this study, we generated a PYGM-null induced pluripotent stem cell (iPSC) line, and differentiated it into mature RPE to examine structural and functional defects, along with metabolite release into apical and basal media. Mutant RPE exhibited normal photoreceptor outer segment phagocytosis but displayed elevated glycogen levels, reduced transepithelial resistance, and increased cytokine secretion across the epithelial layer compared to isogenic wildtype controls. Additionally, decreased expression of the visual cycle component, RDH11, encoding 11-cis-retinol dehydrogenase, was observed in PYGM-null RPE. While glycolytic flux and oxidative phosphorylation levels in PYGM-null RPE were near normal, the basal oxygen consumption rate (OCR) was increased. OCR in response to physiological levels of lactate was significantly greater in wildtype compared to PYGM-null RPE. Inefficient lactate utilization by mutant RPE resulted in higher glucose dependence and increased glucose uptake from the apical medium in the presence of lactate, suggesting a reduced capacity to spare glucose for photoreceptor use. Metabolic tracing confirmed slower 13C-lactate utilization by PYGM-null RPE. These findings have key implications for retinal health since they likely underlie the vision impairment in individuals with McArdle disease.

5.
Front Endocrinol (Lausanne) ; 15: 1412138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027475

RESUMO

Diabetic retinopathy is the major cause of blindness in diabetic patients, with limited treatment options that do not always restore optimal vision. Retinal nerve degeneration and vascular degeneration are two primary pathological processes of diabetic retinopathy. The retinal nervous system and vascular cells have a close coupling relationship. The connection between neurodegeneration and vascular degeneration is not yet fully understood. Recent studies have found that microRNA plays a role in regulating diabetic retinal neurovascular degeneration and can help delay the progression of the disease. This article will review how microRNA acts as a bridge connecting diabetic retinal neurodegeneration and vascular degeneration, focusing on the mechanisms of apoptosis, oxidative stress, inflammation, and endothelial factors. The aim is to identify valuable targets for new research and clinical treatment of diabetic retinopathy.


Assuntos
Retinopatia Diabética , MicroRNAs , Estresse Oxidativo , Humanos , MicroRNAs/genética , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Retinopatia Diabética/metabolismo , Animais , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Apoptose , Vasos Retinianos/patologia , Retina/patologia , Retina/metabolismo
7.
Ophthalmic Genet ; : 1-10, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956866

RESUMO

PURPOSE: To explore patterns of disease expression in Alagille syndrome (ALGS). METHODS: Patients underwent ophthalmic examination, optical coherence tomography (OCT) imaging, fundus intravenous fluorescein angiography (IVFA), perimetry and full-field electroretinograms (ffERGs). An adult ALGS patient had multimodal imaging and specialized perimetry. RESULTS: The proband (P1) had a heterozygous pathogenic variant in JAG1; (p.Gln410Ter) and was incidentally diagnosed at age 7 with a superficial retinal hemorrhage, vascular tortuosity, and midperipheral pigmentary changes. The hemorrhage recurred 15 months later. Her monozygotic twin sister (P2) had a retinal hemorrhage at the same location at age 11. Visual acuities for both patients were 20/30 in each eye. IVFA was normal. OCT showed thinning of the outer nuclear in the peripapillary retina. A ffERG showed normal cone-mediated responses in P1 (rod-mediated ERGs not documented), normal ffERGs in P2. Coagulation and liver function were normal. An unrelated 42-year-old woman with a de-novo pathogenic variant (p. Gly386Arg) in JAG1 showed a similar pigmentary retinopathy and hepatic vascular anomalies; rod and cone function was normal across large expanses of structurally normal retina that sharply transitioned to a blind atrophic peripheral retina. CONCLUSION: Nearly identical recurrent intraretinal hemorrhages in monozygotic twins with ALGS suggest a shared subclinical microvascular abnormality. We hypothesize that the presence of large areas of functionally and structurally intact retina surrounded by severe chorioretinal degeneration, is against a predominant involvement of JAG1 in the function of the neurosensory retina, and that instead, primary abnormalities of chorioretinal vascular development and/or homeostasis may drive the peculiar phenotypes.

8.
J Biol Chem ; 300(7): 107452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852887

RESUMO

Rare variants (RVs) in the gene encoding the regulatory enzyme complement factor I (CFI; FI) that reduce protein function or levels increase age-related macular degeneration risk. A total of 3357 subjects underwent screening in the SCOPE natural history study for geographic atrophy secondary to age-related macular degeneration, including CFI sequencing and serum FI measurement. Eleven CFI RV genotypes that were challenging to categorize as type I (low serum level) or type II (normal serum level, reduced enzymatic function) were characterized in the context of pure FI protein in C3b and C4b fluid phase cleavage assays and a novel bead-based functional assay (BBFA) of C3b cleavage. Four variants predicted or previously characterized as benign were analyzed by BBFA for comparison. In all, three variants (W51S, C67R, and I370T) resulted in low expression. Furthermore, four variants (P64L, R339Q, G527V, and P528T) were identified as being highly deleterious with IC50s for C3b breakdown >1 log increased versus the WT protein, while two variants (K476E and R474Q) were ∼1 log reduced in function. Meanwhile, six variants (P50A, T203I, K441R, E548Q, P553S, and S570T) had IC50s similar to WT. Odds ratios and BBFA IC50s were positively correlated (r = 0.76, p < 0.01), while odds ratios versus combined annotation dependent depletion (CADD) scores were not (r = 0.43, p = 0.16). Overall, 15 CFI RVs were functionally characterized which may aid future patient stratification for complement-targeted therapies. Pure protein in vitro analysis remains the gold standard for determining the functional consequence of CFI RVs.


Assuntos
Complemento C3b , Fator I do Complemento , Genótipo , Atrofia Geográfica , Humanos , Fator I do Complemento/genética , Fator I do Complemento/metabolismo , Atrofia Geográfica/genética , Atrofia Geográfica/sangue , Atrofia Geográfica/metabolismo , Feminino , Masculino , Complemento C3b/metabolismo , Complemento C3b/genética , Idoso , Estudos de Coortes , Degeneração Macular/genética , Degeneração Macular/metabolismo , Pessoa de Meia-Idade
9.
Cells ; 13(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38920696

RESUMO

Choroideremia is an X-linked chorioretinal dystrophy caused by mutations in CHM, encoding Rab escort protein 1 (REP-1), leading to under-prenylation of Rab GTPases (Rabs). Despite ubiquitous expression of CHM, the phenotype is limited to degeneration of the retina, retinal pigment epithelium (RPE), and choroid, with evidence for primary pathology in RPE cells. However, the spectrum of under-prenylated Rabs in RPE cells and how they contribute to RPE dysfunction remain unknown. A CRISPR/Cas-9-edited CHM-/- iPSC-RPE model was generated with isogenic control cells. Unprenylated Rabs were biotinylated in vitro and identified by tandem mass tag (TMT) spectrometry. Rab12 was one of the least prenylated and has an established role in suppressing mTORC1 signaling and promoting autophagy. CHM-/- iPSC-RPE cells demonstrated increased mTORC1 signaling and reduced autophagic flux, consistent with Rab12 dysfunction. Autophagic flux was rescued in CHM-/- cells by transduction with gene replacement (ShH10-CMV-CHM) and was reduced in control cells by siRNA knockdown of Rab12. This study supports Rab12 under-prenylation as an important cause of RPE cell dysfunction in choroideremia and highlights increased mTORC1 and reduced autophagy as potential disease pathways for further investigation.


Assuntos
Autofagia , Coroideremia , Células-Tronco Pluripotentes Induzidas , Epitélio Pigmentado da Retina , Proteínas rab de Ligação ao GTP , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Coroideremia/patologia , Coroideremia/genética , Coroideremia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Biológicos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Transdução de Sinais
10.
Diagnostics (Basel) ; 14(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38928710

RESUMO

The aim of the study was to evaluate the local status of the sclera in lattice retinal degeneration. Patients with lattice degeneration, snail-track degeneration, or horseshoe retinal breaks were included. One lesion of a single eye in each patient was captured with cross-sectional optical coherence tomography (OCT) along and across the greatest lesion dimension. The maximum height of scleral indentation was measured and compared between different lesion types and between lattice lesions with and without retinal breakage or local detachment. The correlation between the maximum height of the scleral indentation of lattice lesions and the age of the patients was calculated. Seventy-five eyes of 75 patients (44.4 ± 14.7 years; 35 males and 30 females) were included. OCT showed variable local scleral indentation in 52 out of 55 (94.5%) lattice lesions, in five out of nine (55.5%) snail-tack lesions, and in three out of eleven (27.3%) horseshoe breaks. The maximum scleral indentation within lattice lesions, snail-tack lesions, and horseshoe breaks was 227.2 ± 111.3, 22.0 ± 49.2, and 88.5 ± 48.4 µm, respectively (p < 0.001 for snail-tack lesions and horseshoe breaks compared to lattice lesions). Lattice lesions with retinal breaks and/or local retinal detachment had statistically significantly lower scleral indentation than those without (p = 0.01). The height of the scleral indentation of lattice lesions was positively correlated with patient age (r = 0.51, p = 0.03). In conclusion, scleral indentation is one of the hallmarks of lattice retinal degeneration and may be associated with a reduced risk of rhegmatogenous retinal detachment.

11.
Sci Rep ; 14(1): 14332, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906973

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a progressive neurodegenerative disorder resulting from abnormal expansion of an uninterrupted polyglutamine (polyQ) repeat in its disease protein, ataxin-7 (ATXN7). ATXN7 is part of Spt-Ada-Gcn5 acetyltransferase (SAGA), an evolutionarily conserved transcriptional coactivation complex with critical roles in chromatin remodeling, cell signaling, neurodifferentiation, mitochondrial health and autophagy. SCA7 is dominantly inherited and characterized by genetic anticipation and high repeat-length instability. Patients with SCA7 experience progressive ataxia, atrophy, spasticity, and blindness. There is currently no cure for SCA7, and therapies are aimed at alleviating symptoms to increase quality of life. Here, we report novel Drosophila lines of SCA7 with polyQ repeats in wild-type and human disease patient range. We find that ATXN7 expression has age- and polyQ repeat length-dependent reduction in fruit fly survival and retinal instability, concomitant with increased ATXN7 protein aggregation. These new lines will provide important insight on disease progression that can be used in the future to identify therapeutic targets for SCA7 patients.


Assuntos
Ataxina-7 , Modelos Animais de Doenças , Peptídeos , Ataxias Espinocerebelares , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/metabolismo , Ataxina-7/genética , Ataxina-7/metabolismo , Humanos , Peptídeos/metabolismo , Peptídeos/genética , Drosophila/genética , Animais Geneticamente Modificados , Progressão da Doença , Drosophila melanogaster/genética , Retina/metabolismo , Retina/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
12.
Ophthalmol Sci ; 4(5): 100483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881603

RESUMO

Purpose: To define the clinical characteristics of centrosomal protein 290 (CEP290)-associated inherited retinal degeneration (IRD) and determine which assessments may provide reliable endpoints in future interventional trials. Design: Participants in this natural history study were enrolled into 2 best-corrected visual acuity (BCVA) cohorts: light perception to > 1.0 logarithm of the minimum angle of resolution (logMAR) and 1.0 logMAR to 0.4 logMAR. Each comprised 4 age cohorts (3-5, 6-11, 12-17, and ≥ 18 years). Participants: Patients with CEP290-associated IRD caused by the intron 26 c.2991+1655A>G mutation and BCVA ranging from light perception to 0.4 logMAR. Methods: Best-corrected visual acuity, full-field stimulus threshold (FST) sensitivity, Ora-Visual Navigation Challenge (Ora-VNC) composite score, and OCT-outer nuclear layer (OCT-ONL) average thickness were assessed at screening, baseline, 3 months, 6 months, and 12 months. Main Outcome Measures: Best-corrected visual acuity, FST sensitivity, Ora-VNC composite score, and OCT-ONL average thickness. Results: Twenty-six participants were included in this analysis. Nineteen were female. All participants were White and 4 reported Hispanic ethnicity. At screening, 13 of 16 adult and 9 of 10 pediatric participants had BCVA > 1.0 logMAR. Baseline BCVA was variable (median [range] = 2.0 [0.5, 3.9] logMAR) and was uncorrelated with age, as were VNC composite score, FST sensitivity, and OCT-ONL average thickness. Mean (95% confidence interval [CI]) test-retest variability was -0.04 (-0.09, 0.01) logMAR for BCVA (n = 25); 0.6 (-0.1, 1.3) for VNC composite score (n = 18); and 0.10 (-0.07, 0.27) log cd.s/m2 for red FST (n = 14). A greater than expected test-retest variability (5 [0, 10] µm, n = 14) was observed for OCT-ONL average thickness as nystagmus impacted ability to repeat measures at the same retinal location. Functional assessments were stable over 12 months. Mean (95% CI) change from baseline was 0.06 (-0.17, 0.29) logMAR for BCVA (n = 23); -0.1 (-1.2, 1.0) for VNC composite score (n = 21); and -0.15 (-0.43, 0.14) log cd.s/m2 for red FST (n = 16). Conclusions: Vision was stable over 12 months. Best-corrected visual acuity, FST, and VNC composite score are potentially viable endpoints for future studies in CEP290-associated IRD. Repeatability of OCT measures poses challenges for quantifying anatomical changes in this population. Financial Disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

13.
Front Mol Neurosci ; 17: 1398447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38854587

RESUMO

The functionality of photoreceptors, rods, and cones is highly dependent on their outer segments (POS), a cellular compartment containing highly organized membranous structures that generate biochemical signals from incident light. While POS formation and degeneration are qualitatively assessed on microscopy images, reliable methodology for quantitative analyses is still limited. Here, we developed methods to quantify POS (QuaPOS) maturation and quality on retinal sections using automated image analyses. POS formation was examined during the development and in adulthood of wild-type mice via light microscopy (LM) and transmission electron microscopy (TEM). To quantify the number, size, shape, and fluorescence intensity of POS, retinal cryosections were immunostained for the cone POS marker S-opsin. Fluorescence images were used to train the robust classifier QuaPOS-LM based on supervised machine learning for automated image segmentation. Characteristic features of segmentation results were extracted to quantify the maturation of cone POS. Subsequently, this quantification method was applied to characterize POS degeneration in "cone photoreceptor function loss 1" mice. TEM images were used to establish the ultrastructural quantification method QuaPOS-TEM for the alignment of POS membranes. Images were analyzed using a custom-written MATLAB code to extract the orientation of membranes from the image gradient and their alignment (coherency). This analysis was used to quantify the POS morphology of wild-type and two inherited retinal degeneration ("retinal degeneration 19" and "rhodopsin knock-out") mouse lines. Both automated analysis technologies provided robust characterization and quantification of POS based on LM or TEM images. Automated image segmentation by the classifier QuaPOS-LM and analysis of the orientation of membrane stacks by QuaPOS-TEM using fluorescent or TEM images allowed quantitative evaluation of POS formation and quality. The assessments showed an increase in POS number, volume, and membrane coherency during wild-type postnatal development, while a decrease in all three observables was detected in different retinal degeneration mouse models. All the code used for the presented analysis is open source, including example datasets to reproduce the findings. Hence, the QuaPOS quantification methods are useful for in-depth characterization of POS on retinal sections in developmental studies, for disease modeling, or after therapeutic interventions affecting photoreceptors.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38847892

RESUMO

PURPOSE: Gyrate atrophy of the choroid and retina (GACR) is an autosomal recessive inherited metabolic disorder (IMD) characterised by progressive retinal degeneration, leading to severe visual impairment. The rapid developments in ophthalmic genetic therapies warrant knowledge on clinical phenotype of eligible diseases such as GACR to define future therapeutic parameters in clinical trials. METHODS: Retrospective chart analysis was performed in nineteen patients. Data were analysed using IBM SPSS Statistics version 28.0.1.1. RESULTS: Nineteen patients were included with a mean age of 32.6 years (range 8-58). Mean age at onset of ophthalmic symptoms was 7.9 years (range 3-16). Median logMAR of visual acuity at inclusion was 0.26 (range -0.18-3.00). Mean age at cataract surgery was 28.8 years (n = 11 patients). Mean spherical equivalent of the refractive error was -8.96 (range -20.87 to -2.25). Cystoid maculopathy was present in 68% of patients, with a loss of integrity of the foveal ellipsoid zone (EZ) in 24/38 eyes. Of the 14 patients treated with dietary protein restriction, the four patients who started the diet before age 10 showed most benefit. CONCLUSION: This study demonstrates the severe ophthalmic disease course associated with GACR, as well as possible benefit of early dietary treatment. In addition to visual loss, patients experience severe myopia, early-onset cataract, and CME. There is a loss of foveal EZ integrity at a young age, emphasising the need for early diagnosis enabling current and future therapeutic interventions.

15.
Small ; : e2400815, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738752

RESUMO

Complete encapsulation of nucleic acids by lipid-based nanoparticles (LNPs) is often thought to be one of the main prerequisites for successful nucleic acid delivery, as the lipid environment protects mRNA from degradation by external nucleases and assists in initiating delivery processes. However, delivery of mRNA via a preformed vesicle approach (PFV-LNPs) defies this precondition. Unlike traditional LNPs, PFV-LNPs are formed via a solvent-free mixing process, leading to a superficial mRNA localization. While demonstrating low encapsulation efficiency in the RiboGreen assay, PFV-LNPs improved delivery of mRNA to the retina by up to 50% compared to the LNP analogs across several benchmark formulations, suggesting the utility of this approach regardless of the lipid composition. Successful mRNA and gene editors' delivery is observed in the retinal pigment epithelium and photoreceptors and validated in mice, non-human primates, and human retinal organoids. Deploying PFV-LNPs in gene editing experiments result in a similar extent of gene editing compared to analogous LNP (up to 3% on genomic level) in the Ai9 reporter mouse model; but, remarkably, retinal tolerability is significantly improved for PFV-LNP treatment. The study findings indicate that the LNP formulation process can greatly influence mRNA transfection and gene editing outcomes, improving LNP treatment safety without sacrificing efficacy.

16.
Am J Ophthalmol Case Rep ; 34: 102068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745847

RESUMO

Purpose: To present a case of molecularly confirmed oculocutaneous albinism (OCA) and retinitis pigmentosa (RP). Observations: A 46-year-old male with a lifelong established diagnosis of OCA and baseline best corrected visual acuity (BCVA) of 20/200, presented for worsening visual acuity over the last few years. BCVA was light perception and hand motion at face for the right and left eye, respectively. Fundus exam showed hypopigmented fundi with visible choroidal vessels and blunted foveal reflexes in both eyes. Optical coherence tomography showed foveal hypoplasia and outer retinal degenerative changes not typical of OCA. Fundus autofluorescence (FAF) imaging showed focal areas of decreased signal at the fovea, similar to areas of atrophy in an age matched patient with PDE6A-RP. Genetic testing identified a homozygous disease-causing variant in TYR c.1467dup, p. (Ala490Cysfs*20) causing OCA, and a homozygous pathogenic variant c.304C > A, p. (Arg102Ser) in PDE6A causing autosomal recessive RP. Conclusions and importance: This is the first report of a patient with OCA and RP. The lack of pigmentary changes can make the diagnosis of RP challenging in patients with albinism. FAF can show features suggestive of RP and genetic testing can establish the diagnosis. The findings described herein may help physicians diagnose an extremely rare phenotype.

17.
Biomolecules ; 14(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38785932

RESUMO

Augmenting the natural melanocortin pathway in mouse eyes with uveitis or diabetes protects the retinas from degeneration. The retinal cells are protected from oxidative and apoptotic signals of death. Therefore, we investigated the effects of a therapeutic application of the melanocortin alpha-melanocyte-stimulating hormone (α-MSH) on an ischemia and reperfusion (I/R) model of retinal degenerative disease. Eyes were subjected to an I/R procedure and were treated with α-MSH. Retinal sections were histopathologically scored. Also, the retinal sections were immunostained for viable ganglion cells, activated Muller cells, microglial cells, and apoptosis. The I/R caused retinal deformation and ganglion cell loss that was significantly reduced in I/R eyes treated with α-MSH. While α-MSH treatment marginally reduced the number of GFAP-positive Muller cells, it significantly suppressed the density of Iba1-positive microglial cells in the I/R retinas. Within one hour after I/R, there was apoptosis in the ganglion cell layer, and by 48 h, there was apoptosis in all layers of the neuroretina. The α-MSH treatment significantly reduced and delayed the onset of apoptosis in the retinas of I/R eyes. The results demonstrate that therapeutically augmenting the melanocortin pathways preserves retinal structure and cell survival in eyes with progressive neuroretinal degenerative disease.


Assuntos
Apoptose , Homeostase , Traumatismo por Reperfusão , Retina , Células Ganglionares da Retina , alfa-MSH , Animais , alfa-MSH/farmacologia , alfa-MSH/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Camundongos , Apoptose/efeitos dos fármacos , Retina/metabolismo , Retina/efeitos dos fármacos , Retina/patologia , Homeostase/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/efeitos dos fármacos , Masculino , Células Ependimogliais/metabolismo , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/patologia , Modelos Animais de Doenças , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico
18.
Biochem Biophys Res Commun ; 719: 150048, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38763044

RESUMO

Double knockout of miR-183 and miR-96 results in retinal degeneration in mice; however, single knockout of miR-96 leads to developmental delay but not substantial retinal degeneration. To further explore the role of miR-96, we overexpressed this miRNA in mouse retinas. Interestingly, we found that overexpression of miR-96 at a safe dose results in retinal degeneration in the mouse retina. The retinal photoreceptors dramatically degenerated in the miR-96-overexpressing group, as shown by OCT, ERG and cryosectioning at one month after subretinal injection. Degenerative features such as TUNEL signals and reactive gliosis were observed in the miR-96-overexpressing retina. RNA-seq data revealed that immune responses and microglial activation occurred in the degenerating retina. Further qRT‒PCR and immunostaining experiments verified the microglial activation. Moreover, the number of microglia in the miR-96-overexpressing retinas was significantly increased. Our findings demonstrate that appropriate miR-96 expression is required for mouse retinal homeostasis.


Assuntos
Camundongos Endogâmicos C57BL , MicroRNAs , Microglia , Degeneração Retiniana , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Degeneração Retiniana/metabolismo , Camundongos , Microglia/metabolismo , Microglia/patologia , Retina/metabolismo , Retina/patologia
19.
J Hazard Mater ; 473: 134586, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38776811

RESUMO

The impact of plastic pollution on living organisms have gained significant research attention. However, the effects of nanoplastics (NPs) on retina remain unclear. This study aimed to investigate the effect of long-term polystyrene nanoparticles (PS-NPs) exposure on mouse retina. Eight weeks old C57BL/6 J mice were exposed to PS-NPs at the diameter of 100 nm and concentration of 10 mg/L in drinking water for 3 months. PS-NPs were able to penetrate the blood-retina barrier, accumulated at retinal tissue, caused increased oxidative stress level and reduced scotopic electroretinal responses without remarkable structural damage. PS-NPs exposure caused cytotoxicity and reactive oxygen species accumulation in cultured photoreceptor cell. PS-NPs exposure increased oxidative stress level in retinal pigment epithelial (RPE) cells, leading to changes of gene and protein expression indicative of compromised phagocytic activity and cell junction formation. Long-term PS-NPs exposure also aggravated light-induced photoreceptor cell degeneration and retinal inflammation. The transcriptomic profile of PS-NPs-exposed, light-challenged retinal tissue shared similar features with those of age-related macular degeneration (AMD) patients in the activation of complement-mediated phagocytic and proinflammatory responses. Collectively, these findings demonstrated the oxidative stress- and inflammation-mediated detrimental effect of PS-NPs on retinal function, suggested that long-term PS-NPs exposure could be an environmental risk factor contributing to retinal degeneration.


Assuntos
Luz , Camundongos Endogâmicos C57BL , Nanopartículas , Estresse Oxidativo , Poliestirenos , Retina , Degeneração Retiniana , Epitélio Pigmentado da Retina , Animais , Poliestirenos/toxicidade , Poliestirenos/química , Degeneração Retiniana/induzido quimicamente , Degeneração Retiniana/patologia , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/efeitos da radiação , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Eletrorretinografia , Masculino
20.
Genes (Basel) ; 15(5)2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38790254

RESUMO

Pathogenic variants in the Crumbs homolog 1 (CRB1) gene lead to severe, childhood-onset retinal degeneration leading to blindness in early adulthood. There are no approved therapies, and traditional adeno-associated viral vector-based gene therapy approaches are challenged by the existence of multiple CRB1 isoforms. Here, we describe three CRB1 variants, including a novel, previously unreported variant that led to retinal degeneration. We offer a CRISPR-Cas-mediated DNA base editing strategy as a potential future therapeutic approach. This study is a retrospective case series. Clinical and genetic assessments were performed, including deep phenotyping by retinal imaging. In silico analyses were used to predict the pathogenicity of the novel variant and to determine whether the variants are amenable to DNA base editing strategies. Case 1 was a 24-year-old male with cone-rod dystrophy and retinal thickening typical of CRB1 retinopathy. He had a relatively preserved central outer retinal structure and a best corrected visual acuity (BCVA) of 60 ETDRS letters in both eyes. Genetic testing revealed compound heterozygous variants in exon 9: c.2843G>A, p.(Cys948Tyr) and a novel variant, c.2833G>A, p.(Gly945Arg), which was predicted to likely be pathogenic by an in silico analysis. Cases 2 and 3 were two brothers, aged 20 and 24, who presented with severe cone-rod dystrophy and a significant disruption of the outer nuclear layers. The BCVA was reduced to hand movements in both eyes in Case 2 and to 42 ETDRS letters in both eyes in Case 3. Case 2 was also affected with marked cystoid macular lesions, which are common in CRB1 retinopathy, but responded well to treatment with oral acetazolamide. Genetic testing revealed two c.2234C>T, p.(Thr745Met) variants in both brothers. As G-to-A and C-to-T variants, all three variants are amenable to adenine base editors (ABEs) targeting the forward strand in the Case 1 variants and the reverse strand in Cases 2 and 3. Available PAM sites were detected for KKH-nSaCas9-ABE8e for the c.2843G>A variant, nSaCas9-ABE8e and KKH-nSaCas9-ABE8e for the c.2833G>A variant, and nSpCas9-ABE8e for the c.2234C>T variant. In this case series, we report three pathogenic CRB1 variants, including a novel c.2833G>A variant associated with early-onset cone-rod dystrophy. We highlight the severity and rapid progression of the disease and offer ABEs as a potential future therapeutic approach for this devastating blinding condition.


Assuntos
Sistemas CRISPR-Cas , Proteínas do Olho , Edição de Genes , Proteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Masculino , Edição de Genes/métodos , Proteínas de Membrana/genética , Adulto Jovem , Proteínas do Olho/genética , Proteínas do Tecido Nervoso/genética , Adulto , Distrofias de Cones e Bastonetes/genética , Distrofias de Cones e Bastonetes/patologia , Feminino , Simulação por Computador , Terapia Genética/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA