Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Heliyon ; 10(14): e34151, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39114059

RESUMO

Rice False Smut (RFS) caused by Ustilaginoidea virens is a major emerging disease of rice due to expanded area of hybrid rice cultivars, increasing use of nitrogenous fertilizers and change in climate. Due to the increasing incidences of this disease across the globe, there is a pressing need to develop techniques for false smut management. The application of fungicides with high efficiency, low toxicity, and low residue is currently the best option to control RFS. Therefore, current research was conducted to determine the effectiveness of fungicides to manage RFS. The experiments were conducted in a completely randomized block design with three replications of seven treatments at RFS-prone subtropical hills of Nepal in the main rice growing season, during 2020 and 2021. The fungicides include trifloxystrobin 25 % + tebuconazole 50 %, chlorothalonil 75 %, carbendazim 12 % + mancozeb 63 %, propiconazole 25 %, azoxystrobin 50 %, carbendazim 50 % and untreated control. Fungicides were applied as two foliar sprays, one at booting and the other at flowering. Fungicide spray significantly increased number of tillers per plant (P ≤ 0.01) and reduced the number of false smut-infected tillers per plant (P ≤ 0.05), false smut severity (P ≤ 0.05), and incidence (P ≤ 0.05). False smut incidence percentages were significantly reduced by all the fungicides except mancozeb + carbendazim compared to the non-treated control. The reduction in RFS incidence was 70 % in propiconazole, 71 % in trifloxystrobin + tebuconazole sprayed plots compared to the non-treated control plots. Thus, the application of suitable fungicide at the appropriate stage would give the satisfactory suppression of RFS in a farmers' field in Nepal.

2.
Heliyon ; 10(12): e33328, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39021980

RESUMO

This review paper addresses the critical need for advanced rice disease detection methods by integrating artificial intelligence, specifically convolutional neural networks (CNNs). Rice, being a staple food for a large part of the global population, is susceptible to various diseases that threaten food security and agricultural sustainability. This research is significant as it leverages technological advancements to tackle these challenges effectively. Drawing upon diverse datasets collected across regions including India, Bangladesh, Türkiye, China, and Pakistan, this paper offers a comprehensive analysis of global research efforts in rice disease detection using CNNs. While some rice diseases are universally prevalent, many vary significantly by growing region due to differences in climate, soil conditions, and agricultural practices. The primary objective is to explore the application of AI, particularly CNNs, for precise and early identification of rice diseases. The literature review includes a detailed examination of data sources, datasets, and preprocessing strategies, shedding light on the geographic distribution of data collection and the profiles of contributing researchers. Additionally, the review synthesizes information on various algorithms and models employed in rice disease detection, highlighting their effectiveness in addressing diverse data complexities. The paper thoroughly evaluates hyperparameter optimization techniques and their impact on model performance, emphasizing the importance of fine-tuning for optimal results. Performance metrics such as accuracy, precision, recall, and F1 score are rigorously analyzed to assess model effectiveness. Furthermore, the discussion section critically examines challenges associated with current methodologies, identifies opportunities for improvement, and outlines future research directions at the intersection of machine learning and rice disease detection. This comprehensive review, analyzing a total of 121 papers, underscores the significance of ongoing interdisciplinary research to meet evolving agricultural technology needs and enhance global food security.

3.
Plants (Basel) ; 13(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732420

RESUMO

Rice (Oryza sativa), as a staple crop feeding a significant portion of the global population, particularly in Asian countries, faces constant threats from various diseases jeopardizing global food security. A precise understanding of disease resistance mechanisms is crucial for developing resilient rice varieties. Traditional genetic mapping methods, such as QTL mapping, provide valuable insights into the genetic basis of diseases. However, the complex nature of rice diseases demands a holistic approach to gain an accurate knowledge of it. Omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, enable a comprehensive analysis of biological molecules, uncovering intricate molecular interactions within the rice plant. The integration of various mapping techniques using multi-omics data has revolutionized our understanding of rice disease resistance. By overlaying genetic maps with high-throughput omics datasets, researchers can pinpoint specific genes, proteins, or metabolites associated with disease resistance. This integration enhances the precision of disease-related biomarkers with a better understanding of their functional roles in disease resistance. The improvement of rice breeding for disease resistance through this integration represents a significant stride in agricultural science because a better understanding of the molecular intricacies and interactions underlying disease resistance architecture leads to a more precise and efficient development of resilient and productive rice varieties. In this review, we explore how the integration of mapping and omics data can result in a transformative impact on rice breeding for enhancing disease resistance.

4.
Data Brief ; 54: 110334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38586139

RESUMO

The Burkholderia glumae bacterium causes bacterial grain rot in rice, posing significant threats to the crop's yield, particularly thriving during the rice flowering and grain filling stages. This disease is especially evident in rice grains before harvest, presenting challenges in the detection and classification of rice panicles. Firstly, diseased grains may mix with healthy ones, complicating their separation. Secondly, the size of grains on a panicle varies from small to large, which can be problematic when detected using object detection methods. Thirdly, disease classification can be conducted by evaluating the extent of infection on rice panicles to assess its impact on yield. Finally, the challenges in detection, classification, and preprocessing for disease identification and management necessitate the adoption of diverse approaches in machine learning and deep learning to develop optimal methods and support smart agriculture.

5.
Data Brief ; 52: 110046, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38299106

RESUMO

Rice holds a significant position in the global food supply chain, particularly in Asian, African, and Latin American countries. However, rice pests and diseases cause significant damage to the supply and growth of the rice cultivation industry. Therefore, this article provides a high-quality dataset that has been reviewed by agricultural experts. The dataset is well-suited to support the development of automation systems and smart farming practices. It plays a vital role in facilitating the automatic construction, detection, and classification of rice diseases. However, challenges arise due to the diversity of the dataset collected from various sources, varying in terms of disease types and sizes. This necessitates support for upgrading and enhancing the dataset through various operations in data processing, preprocessing, and statistical analysis. The dataset is provided completely free of charge and has been rigorously evaluated by agricultural experts, making it a reliable resource for system development, research, and communication needs.

6.
aBIOTECH ; 4(4): 359-371, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38106429

RESUMO

The past few years have witnessed significant progress in emerging disease detection techniques for accurately and rapidly tracking rice diseases and predicting potential solutions. In this review we focus on image processing techniques using machine learning (ML) and deep learning (DL) models related to multi-scale rice diseases. Furthermore, we summarize applications of different detection techniques, including genomic, physiological, and biochemical approaches. In addition, we also present the state-of-the-art in contemporary optical sensing applications of pathogen-plant interaction phenotypes. This review serves as a valuable resource for researchers seeking effective solutions to address the challenges of high-throughput data and model recognition for early detection of issues affecting rice crops through ML and DL models.

7.
Front Plant Sci ; 14: 1269371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023901

RESUMO

There are many rice diseases, which have very serious negative effects on rice growth and final yield. It is very important to identify the categories of rice diseases and control them. In the past, the identification of rice disease types was completely dependent on manual work, which required a high level of human experience. But the method often could not achieve the desired effect, and was difficult to popularize on a large scale. Convolutional neural networks are good at extracting localized features from input data, converting low-level shape and texture features into high-level semantic features. Models trained by convolutional neural network technology based on existing data can extract common features of data and make the framework have generalization ability. Applying ensemble learning or transfer learning techniques to convolutional neural network can further improve the performance of the model. In recent years, convolutional neural network technology has been applied to the automatic recognition of rice diseases, which reduces the manpower burden and ensures the accuracy of recognition. In this paper, the applications of convolutional neural network technology in rice disease recognition are summarized, and the fruitful achievements in rice disease recognition accuracy, speed, and mobile device deployment are described. This paper also elaborates on the lightweighting of convolutional neural networks for real-time applications as well as mobile deployments, and the various improvements in the dataset and model structure to enhance the model recognition performance.

8.
Microbiol Resour Announc ; 12(11): e0013423, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37812008

RESUMO

Different fungal species of the Pleosporaceae family infect rice, causing similar symptoms. Reference genomic sequences are useful tools to study the evolution of these species and to develop accurate molecular diagnostic tools. Here, we report the complete genome sequences of Bipolaris bicolor, Curvularia hawaiiensis, Curvularia spicifera, and Exserohilum rostratum.

9.
Plants (Basel) ; 12(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37765436

RESUMO

With the evolution of modern agriculture and precision farming, the efficient and accurate detection of crop diseases has emerged as a pivotal research focus. In this study, an interpretative high-precision rice disease detection method, integrating multisource data and transfer learning, is introduced. This approach harnesses diverse data types, including imagery, climatic conditions, and soil attributes, facilitating enriched information extraction and enhanced detection accuracy. The incorporation of transfer learning bestows the model with robust generalization capabilities, enabling rapid adaptation to varying agricultural environments. Moreover, the interpretability of the model ensures transparency in its decision-making processes, garnering trust for real-world applications. Experimental outcomes demonstrate superior performance of the proposed method on multiple datasets when juxtaposed against advanced deep learning models and traditional machine learning techniques. Collectively, this research offers a novel perspective and toolkit for agricultural disease detection, laying a solid foundation for the future advancement of agriculture.

10.
Biomimetics (Basel) ; 8(5)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37754168

RESUMO

Rice paddy diseases significantly reduce the quantity and quality of crops, so it is essential to recognize them quickly and accurately for prevention and control. Deep learning (DL)-based computer-assisted expert systems are encouraging approaches to solving this issue and dealing with the dearth of subject-matter specialists in this area. Nonetheless, a major generalization obstacle is posed by the existence of small discrepancies between various classes of paddy diseases. Numerous studies have used features taken from a single deep layer of an individual complex DL construction with many deep layers and parameters. All of them have relied on spatial knowledge only to learn their recognition models trained with a large number of features. This study suggests a pipeline called "RiPa-Net" based on three lightweight CNNs that can identify and categorize nine paddy diseases as well as healthy paddy. The suggested pipeline gathers features from two different layers of each of the CNNs. Moreover, the suggested method additionally applies the dual-tree complex wavelet transform (DTCWT) to the deep features of the first layer to obtain spectral-temporal information. Additionally, it incorporates the deep features of the first layer of the three CNNs using principal component analysis (PCA) and discrete cosine transform (DCT) transformation methods, which reduce the dimension of the first layer features. The second layer's spatial deep features are then combined with these fused time-frequency deep features. After that, a feature selection process is introduced to reduce the size of the feature vector and choose only those features that have a significant impact on the recognition process, thereby further reducing recognition complexity. According to the results, combining deep features from two layers of different lightweight CNNs can improve recognition accuracy. Performance also improves as a result of the acquired spatial-spectral-temporal information used to learn models. Using 300 features, the cubic support vector machine (SVM) achieves an outstanding accuracy of 97.5%. The competitive ability of the suggested pipeline is confirmed by a comparison of the experimental results with findings from previously conducted research on the recognition of paddy diseases.

11.
Life (Basel) ; 13(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37374060

RESUMO

The domestication of animals and the cultivation of crops have been essential to human development throughout history, with the agricultural sector playing a pivotal role. Insufficient nutrition often leads to plant diseases, such as those affecting rice crops, resulting in yield losses of 20-40% of total production. These losses carry significant global economic consequences. Timely disease diagnosis is critical for implementing effective treatments and mitigating financial losses. However, despite technological advancements, rice disease diagnosis primarily depends on manual methods. In this study, we present a novel self-attention network (SANET) based on the ResNet50 architecture, incorporating a kernel attention mechanism for accurate AI-assisted rice disease classification. We employ attention modules to extract contextual dependencies within images, focusing on essential features for disease identification. Using a publicly available rice disease dataset comprising four classes (three disease types and healthy leaves), we conducted cross-validated classification experiments to evaluate our proposed model. The results reveal that the attention-based mechanism effectively guides the convolutional neural network (CNN) in learning valuable features, resulting in accurate image classification and reduced performance variation compared to state-of-the-art methods. Our SANET model achieved a test set accuracy of 98.71%, surpassing that of current leading models. These findings highlight the potential for widespread AI adoption in agricultural disease diagnosis and management, ultimately enhancing efficiency and effectiveness within the sector.

12.
Plants (Basel) ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37299205

RESUMO

Rice is a crucial food crop, but it is frequently affected by diseases during its growth process. Some of the most common diseases include rice blast, flax leaf spot, and bacterial blight. These diseases are widespread, highly infectious, and cause significant damage, posing a major challenge to agricultural development. The main problems in rice disease classification are as follows: (1) The images of rice diseases that were collected contain noise and blurred edges, which can hinder the network's ability to accurately extract features of the diseases. (2) The classification of disease images is a challenging task due to the high intra-class diversity and inter-class similarity of rice leaf diseases. This paper proposes the Candy algorithm, an image enhancement technique that utilizes improved Canny operator filtering (the gravitational edge detection algorithm) to emphasize the edge features of rice images and minimize the noise present in the images. Additionally, a new neural network (ICAI-V4) is designed based on the Inception-V4 backbone structure, with a coordinate attention mechanism added to enhance feature capture and overall model performance. The INCV backbone structure incorporates Inception-iv and Reduction-iv structures, with the addition of involution to enhance the network's feature extraction capabilities from a channel perspective. This enables the network to better classify similar images of rice diseases. To address the issue of neuron death caused by the ReLU activation function and improve model robustness, Leaky ReLU is utilized. Our experiments, conducted using the 10-fold cross-validation method and 10,241 images, show that ICAI-V4 has an average classification accuracy of 95.57%. These results indicate the method's strong performance and feasibility for rice disease classification in real-life scenarios.

13.
PeerJ Comput Sci ; 9: e1384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346611

RESUMO

Background: Rice disease can significantly reduce yields, so monitoring and identifying the diseases during the growing season is crucial. Some current studies are based on images with simple backgrounds, while realistic scene settings are full of background noise, making this task challenging. Traditional artificial prevention and control methods not only have heavy workload, low efficiency, but are also haphazard, unable to achieve real-time monitoring, which seriously limits the development of modern agriculture. Therefore, using target detection algorithm to identify rice diseases is an important research direction in the agricultural field. Methods: In this article a total of 7,220 pictures of rice diseases taken in Jinzhai County, Lu'an City, Anhui Province were chosen as the research object, including rice leaf blast, bacterial blight and flax leaf spot. We propose a rice disease identification method based on the improved YOLOV5s, which reduces the computation of the backbone network, reduces the weight file of the model to 3.2MB, which is about 1/4 of the original model, and accelerates the prediction speed by three times. Results: Compared with other mainstream methods, our method achieves better performance with low computational cost. It solves the problem of slow recognition speed due to the large weight file and calculation amount of model when the model is deployed in mobile terminal.

14.
Front Plant Sci ; 14: 1103487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890906

RESUMO

Beneficial microorganisms are an important strategy for sustainable plant production processes such as stimulate root exudation, stress tolerance, and yield improvement. This study investigated various microorganisms isolated from the rhizosphere of Oryza sativa L. in order to inhibit Magnaporthe oryzae cause of rice blast, by direct and indirect mode of action. The results indicated that Bacillus vallismortis strain TU-Orga21 significantly reduced M. oryzae mycelium growth and deformed the hyphal structures. The effects of biosurfactant TU-Orga21 was studied against M. oryzae spore development. The dose of ≥5% v/v biosurfactant significantly inhibited the germ tubes and appressoria formation. The biosurfactants were evaluated as surfactin and iturin A by Matrix-assisted laser desorption ionization dual time-of-flight tandem mass spectrometry. Under greenhouse conditions, priming the biosurfactant three times before M. oryzae infection significantly accumulated endogenous salicylic acid, phenolic compounds, and hydrogen peroxide (H2O2) during the infection process of M. oryzae. The SR-FT-IR spectral changes from the mesophyll revealed higher integral area groups of lipids, pectins, and proteins amide I and amide II in the elicitation sample. Furthermore, scanning electron microscope revealed appressorium and hyphal enlargement in un-elicitation leaves whereas appressorium formation and hyphal invasion were not found in biosurfactant-elicitation at 24 h post inoculation. The biosurfactant treatment significantly mitigated rice blast disease severity. Therefore, B. vallismortis can be a promising novel biocontrol agent which contains the preformed active metabolites for a rapid control of rice blast by a direct action against pathogen and by boosting plant immunity.

15.
Front Plant Sci ; 14: 1255015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328620

RESUMO

Classification of rice disease is one significant research topics in rice phenotyping. Recognition of rice diseases such as Bacterialblight, Blast, Brownspot, Leaf smut, and Tungro are a critical research field in rice phenotyping. However, accurately identifying these diseases is a challenging issue due to their high phenotypic similarity. To address this challenge, we propose a rice disease phenotype identification framework which utilizing the transfer learning and SENet with attention mechanism on the cloud platform. The pre-trained parameters are transferred to the SENet network for parameters optimization. To capture distinctive features of rice diseases, the attention mechanism is applied for feature extracting. Experiment test and comparative analysis are conducted on the real rice disease datasets. The experimental results show that the accuracy of our method reaches 0.9573. Furthermore, we implemented a rice disease phenotype recognition platform based microservices architecture and deployed it on the cloud, which can provide rice disease phenotype recognition task as a service for easy usage.

16.
Front Plant Sci ; 13: 1022348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507371

RESUMO

In recent years, Brown spot disease of rice (BSR) has been observed on leaves and seeds of rice in all rice-growing areas of Burkina Faso. Bipolaris oryzae and Exserohilum rostratum are the main fungal species isolated from BSR infected tissues and they are frequently observed in the same field. However, we are lacking information on the genetic diversity and population structure of these fungi in Burkina Faso. The mode of reproduction is also unknown. The genetic diversity of isolates of B. oryzae (n=61) and E. rostratum (n=151), collected from major rice-growing areas of Burkina Faso, was estimated using genotyping-by-sequencing (GBS). The mean values for nucleotide diversity (π) were 1.9 x10-4 for B. oryzae and 4.8 x10-4 for E. rostratum. There is no genetic differentiation between the geographical populations of each species. The analysis of molecular variance revealed that 89% and 94% of the genetic variances were within the populations of B. oryzae and E. rostratum, respectively. For each species, four genetic clusters were identified by two clustering methods (DAPC and sNMF). The distribution of these genetic groups was independent of the geographical origin of the isolates. Evidence of recombination was detected in the populations of B. oryzae and E. rostratum. For B. oryzae balanced mating type ratios were supporting sexual reproduction. For E. rostratum overrepresentation of MAT1-2 isolates (79%) suggested a predominant asexual reproduction. This study provides important information on the biology and genetics of the two major fungi causing brown spot disease of rice in Burkina Faso.

17.
Bioengineering (Basel) ; 9(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36550964

RESUMO

More than the half of the global population consume rice as their primary energy source. Therefore, this work focused on the development of a prediction model to minimize agricultural loss in the paddy field. Initially, rice plant diseases, along with their images, were captured. Then, a big data framework was used to encounter a large dataset. In this work, at first, feature extraction process is applied on the data and after that feature selection is also applied to obtain the reduced data with important features which is used as the input to the classification model. For the rice disease datasets, features based on color, shape, position, and texture are extracted from the infected rice plant images and a rough set theory-based feature selection method is used for the feature selection job. For the classification task, ensemble classification methods have been implemented in a map reduce framework for the development of the efficient disease prediction model. The results on the collected disease data show the efficiency of the proposed model.

18.
Protoplasma ; 259(1): 61-73, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33811539

RESUMO

Rice sheath blight (ShB) disease, caused by the fungal pathogen Rhizoctonia solani AG1-IA, is one of the devastating diseases and causes severe yield losses all over the world. No completely resistant germplasm is known till now, and as a result, the progress in resistance breeding is unsatisfactory. Basic studies to identify candidate genes, QTLs, and to better understand the host-pathogen interaction are also scanty. In this study, we report the identification of a new ShB-tolerant rice germplasm, CR 1014. Further, we investigated the basis of tolerance by exploring the disease responsive differentially expressed transcriptome and comparing them with that of a susceptible variety, Swarna-Sub1. A total of 815 and 551 genes were found to be differentially regulated in CR 1014 and Swarna-Sub1, respectively, at two different time points. The result shows that the ability to upregulate genes for glycosyl hydrolase, secondary metabolite biosynthesis, cytoskeleton and membrane integrity, the glycolytic pathway, and maintaining photosynthesis make CR 1014 a superior performer in resisting the ShB pathogen. We discuss several putative candidate genes for ShB resistance. The present study, for the first time, revealed the basis of ShB tolerance in the germplasm CR1014 and should prove to be particularly valuable in understanding molecular response to ShB infection. The knowledge could be utilized to devise strategies to manage the disease better.


Assuntos
Oryza , Perfilação da Expressão Gênica , Genótipo , Oryza/genética , Doenças das Plantas/genética , Transcriptoma/genética
19.
Front Plant Sci ; 12: 693521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659278

RESUMO

Various rice diseases threaten the growth of rice. It is of great importance to achieve the rapid and accurate detection of rice diseases for precise disease prevention and control. Hyperspectral imaging (HSI) was performed to detect rice leaf diseases in four different varieties of rice. Considering that it costs much time and energy to develop a classifier for each variety of rice, deep transfer learning was firstly introduced to rice disease detection across different rice varieties. Three deep transfer learning methods were adapted for 12 transfer tasks, namely, fine-tuning, deep CORrelation ALignment (CORAL), and deep domain confusion (DDC). A self-designed convolutional neural network (CNN) was set as the basic network of the deep transfer learning methods. Fine-tuning achieved the best transferable performance with an accuracy of over 88% for the test set of the target domain in the majority of transfer tasks. Deep CORAL obtained an accuracy of over 80% in four of all the transfer tasks, which was superior to that of DDC. A multi-task transfer strategy has been explored with good results, indicating the potential of both pair-wise, and multi-task transfers. A saliency map was used for the visualization of the key wavelength range captured by CNN with and without transfer learning. The results indicated that the wavelength range with and without transfer learning was overlapped to some extent. Overall, the results suggested that deep transfer learning methods could perform rice disease detection across different rice varieties. Hyperspectral imaging, in combination with the deep transfer learning method, is a promising possibility for the efficient and cost-saving field detection of rice diseases among different rice varieties.

20.
Front Plant Sci ; 12: 701038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490004

RESUMO

Rice disease has serious negative effects on crop yield, and the correct diagnosis of rice diseases is the key to avoid these effects. However, the existing disease diagnosis methods for rice are neither accurate nor efficient, and special equipment is often required. In this study, an automatic diagnosis method was developed and implemented in a smartphone app. The method was developed using deep learning based on a large dataset that contained 33,026 images of six types of rice diseases: leaf blast, false smut, neck blast, sheath blight, bacterial stripe disease, and brown spot. The core of the method was the Ensemble Model in which submodels were integrated. Finally, the Ensemble Model was validated using a separate set of images. Results showed that the three best submodels were DenseNet-121, SE-ResNet-50, and ResNeSt-50, in terms of several attributes, such as, learning rate, precision, recall, and disease recognition accuracy. Therefore, these three submodels were selected and integrated in the Ensemble Model. The Ensemble Model minimized confusion among the different types of disease, reducing misdiagnosis of the disease. Using the Ensemble Model to diagnose six types of rice diseases, an overall accuracy of 91% was achieved, which is considered to be reasonably good, considering the appearance similarities in some types of rice disease. The smartphone app allowed the client to use the Ensemble Model on the web server through a network, which was convenient and efficient for the field diagnosis of rice leaf blast, false smut, neck blast, sheath blight, bacterial stripe disease, and brown spot.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA