Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 4(5): 100626, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37177781

RESUMO

Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice. During infection, M. oryzae secretes effectors to facilitate blast development. Among these effectors, the avirulence factor AvrPi9 is recognized by Pi9, a broad-spectrum blast resistance protein that triggers Pi9-mediated resistance in rice. However, little is known about the interaction between AvrPi9 and Pi9 and how AvrPi9 exerts virulence to promote infection. In this study, we found that ectopic expression of AvrPi9 in the Pi9-lacking cultivar TP309 suppressed basal resistance against M. oryzae. Furthermore, we identified an AvrPi9-interacting protein in rice, which we named OsRGLG5, encoding a functional RING-type E3 ubiquitin ligase. During infection, AvrPi9 was ubiquitinated and degraded by OsRGLG5. Meanwhile, AvrPi9 affected the stability of OsRGLG5. Infection assays revealed that OsRGLG5 is a positive regulator of basal resistance against M. oryzae, but it is not essential for Pi9-mediated blast resistance in rice. In conclusion, our results revealed that OsRGLG5 is targeted by the M. oryzae effector AvrPi9 and positively regulates basal resistance against rice blast.


Assuntos
Ascomicetos , Magnaporthe , Oryza , Resistência à Doença/genética , Magnaporthe/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/genética
2.
Front Plant Sci ; 13: 723356, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35449886

RESUMO

Magnaporthe oryzae causes rice blast disease and is responsible for major losses in rice production worldwide. Although numerous studies have focused on the interactions between Oryza sativa and M. oryzae, to date, the conserved mechanisms remain in part unclear. In this study, a comparative analysis of transcriptomes of O. sativa L. ssp. japonica cv. 'Nipponbare' interacting with three M. oryzae strains (248, 235, and 163) were performed to explore the conserved molecular mechanisms. Differentially expressed genes with similar expression patterns in the interactions between cultivar 'Nipponbare' and three M. oryzae strains were defined as Conserved Differentially Expressed Genes (CDEGs). These included 3,647 O. sativa CDEGs and 3,655 M. oryzae CDEGs. Four rice CDEGs (LOC_Os03g19270, LOC_Os07g36600, LOC_Os05g28740, and LOC_Os01g32780) encoding universal stress protein (USP) were induced within 24 h post-inoculation (hpi) by three M. oryzae strains. Meanwhile, overexpression of LOC_Os07g36600 resulted in enhanced rice resistance against M. oryzae. Furthermore, four rice genes coding light-harvesting chlorophyll a/b-binding (LHC) protein (LOC_Os02g52650, LOC_Os09g12540, LOC_Os11g13850, LOC_Os05g22730) were also identified as CDEGs and were induced at 48 hpi, which might contribute to blast resistance through reactive oxygen species (ROS) accumulation. MoCDIP4 is M. oryzae effector inducing rice cell death and were verified that include AA9 CAZy domain (namely GH61 domain). In this study, we found seven MoCDIP4-homologous genes coding proteins with signal peptides and AA9 CAZy domains, which were continuously up-regulated across all infection stages relative to uninoculated control. This study uncovered that genes are required for conserved mechanisms of rice-M. oryzae interaction, which includes rice genes encoding USP proteins and LHC proteins, as well as M. oryzae genes encoding AA9 proteins. This study will help us to understand how O. sativa responds to M. oryzae infections and the molecular mechanisms of M. oryzae pathogenicity.

3.
Int J Mol Sci ; 20(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857220

RESUMO

Reactive oxygen species (ROS) are involved in many important processes, including the growth, development, and responses to the environments, in rice (Oryza sativa) and Magnaporthe oryzae. Although ROS are known to be critical components in rice⁻M. oryzae interactions, their regulations and pathways have not yet been completely revealed. Recent studies have provided fascinating insights into the intricate physiological redox balance in rice⁻M. oryzae interactions. In M. oryzae, ROS accumulation is required for the appressorium formation and penetration. However, once inside the rice cells, M. oryzae must scavenge the host-derived ROS to spread invasive hyphae. On the other side, ROS play key roles in rice against M. oryzae. It has been known that, upon perception of M. oryzae, rice plants modulate their activities of ROS generating and scavenging enzymes, mainly on NADPH oxidase OsRbohB, by different signaling pathways to accumulate ROS against rice blast. By contrast, the M. oryzae virulent strains are capable of suppressing ROS accumulation and attenuating rice blast resistance by the secretion of effectors, such as AvrPii and AvrPiz-t. These results suggest that ROS generation and scavenging of ROS are tightly controlled by different pathways in both M. oryzae and rice during rice blast. In this review, the most recent advances in the understanding of the regulatory mechanisms of ROS accumulation and signaling during rice⁻M. oryzae interaction are summarized.


Assuntos
Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Resistência à Doença , Magnaporthe/patogenicidade , Oryza/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA