RESUMO
Purpose: This study aims to develop a data-collecting package ExpressMLC and investigate the applicability of MapCHECK2 for multileaf collimator (MLC) modeling and commissioning for complex radiation treatment plans. Materials and methods: The MLC model incorporates realistic parameters to account for sophisticated MLC features. A set of 8 single-beam plans, denoted by ExpressMLC, is created for the determination of parameters. For the commissioning of the MLC model, 4 intensity modulated radiation therapy (IMRT) plans specified by the AAPM TG 119 report were transferred to a computed tomography study of MapCHECK2, recalculated, and compared to measurements on a Varian accelerator. Both per-beam and composite-beam dose verification were conducted. Results: Through sufficient characterization of the MLC model, under 3%/2â mm and 2%/2â mm criteria, MapCHECK2 can be used to accurately verify per beam dose with gamma passing rate better than 90.9% and 89.3%, respectively, while the Gafchromic EBT3 films can achieve gamma passing rate better than 89.3% and 85.7%, respectively. Under the same criteria, MapCHECK2 can achieve composite beam dose verification with a gamma passing rate better than 95.9% and 90.3%, while the Gafchromic EBT3 films can achieve a gamma passing rate better than 96.1% and 91.8%; the p-value from the Mann Whitney test between gamma passing rates of the per beam dose verification using full MapCHECK2 package calibrated MLC model and film calibrated MLC model is .44 and .47, respectively; the p-value between those of the true composite beam dose verification is .62 and .36, respectively. Conclusion: It is confirmed that the 2-dimensional (2D) diode array MapCHECK2 can be used for data collection for MLC modeling with the combination of the ExpressMLC package of plans, whose doses are sufficient for the determination of MLC parameters. It could be a fitting alternative to films to boost the efficiency of MLC modeling and commissioning without sacrificing accuracy.
Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Imagens de Fantasmas , Raios gama , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodosRESUMO
BACKGROUND: The aim of the study was to investigate the dosimetric feasibility of using optically stimulated luminescence dosimeters (OSLD) and an electronic portal imaging device (EPID) for central axis (CA X) and off-axis (OAX) dosimetric leaf gap (DLG) measurement. MATERIALS AND METHODS: The Clinac 2100C/D linear accelerator equipped with Millennium-120 multileaf collimator (MLC) and EPID was utilized for this study. The DLG values at CA X and ± 1 cm OAX (1 cm superior and inferior to the CA X position, respectively along the plane perpendicular to MLC motion) were measured using OSLD (DLGOSLD) and validated using ionization chamber dosimetry (DLGICD). The two-dimensional DLG map (2D DLGEPID) was derived from the portal images of the DLG plan using a custom-developed software application that incorporated sliding aperture-specific correction factors. RESULTS: DLGOSLD and DLGICD, though measured with diverse setup in different media, showed similar variation both at CA X and ± 1 cm OAX positions. The corresponding DLGEPID values derived using aperture specific corrections were found to be in agreement with DLGOSLD and DLGICD. The 2D DLGEPID map provides insight into the varying patterns of the DLG with respect to each leaf pair at any position across the exposed field. CONCLUSIONS: Commensurate results of DLGOSLD with DLGICD values have proven the efficacy of OSLD as an appropriate dosimeter for DLG measurement. The 2D DLGEP ID map opens a potential pathway to accurately model the rounded-leaf end transmission with discrete leaf-specific DLG values for commissioning of a modern treatment planning system.
RESUMO
As complex treatment techniques such as intensity modulated radiotherapy (IMRT) entail the modeling of rounded leaf-end transmission in the treatment planning system, it is important to accurately determine the dosimetric leaf gap (DLG) value for a precise calculation of dose. The advancements in the application of the electronic portal imaging device (EPID) in quality assurance (QA) and dosimetry have facilitated the determination of DLG in this study. The DLG measurements were performed using both the ionization chamber (DLGion) and EPID (DLGEPID) for sweeping gap fields of different widths. The DLGion values were found to be 1.133 mm and 1.120 mm for perpendicular and parallel orientations of the 0.125 cm(3) ionization chamber, while the corresponding DLGEPID values were 0.843 mm and 0.819 mm, respectively. It was found that the DLG was independent of volume and orientation of the ionization chamber, depth, source to surface distance (SSD), and the rate of dose delivery. Since the patient-specific QA tests showed comparable results between the IMRT plans based on the DLGEPID and DLGion, it is concluded that the EPID can be a suitable alternative in the determination of DLG.
RESUMO
BACKGROUND: Penumbra characteristics play a significant role in dose delivery accuracy for radiation therapy. For treatment planning, penumbra width and radiation field offset strongly influence target dose conformity and organ at risk sparing. METHODS: In this study, we present an analytical and numerical approach for evaluation of the rounded leaf end effect on penumbra characteristics. Based on the rule of half-value layer, algorithms for leaf position calculation and radiation field offset correction were developed, which were advantageous particularly in dealing with large radius leaf end. Computer simulation was performed based on the Monte Carlo codes of EGSnrc/BEAMnrc, with groups of leaf end radii and source sizes. Data processing technique of curve fitting was employed for deriving penumbra width and radiation field offset. RESULTS: Results showed that penumbra width increased with source size. Penumbra width curves for large radius leaf end were U-shaped. This observation was probably related to the fact that radiation beams penetrated through the proximal and distal leaf sides. In contrast, source size had negligible impact on radiation field offset. Radiation field offsets were found to be constant both for analytical method and numerical simulation. However, the overall resulting values of radiation field offset obtained by analytical method were slightly smaller compared with Monte Carlo simulation. CONCLUSIONS: The method we proposed could provide insight into the investigation of rounded leaf end effects on penumbra characteristics. Penumbra width and radiation field offset calibration should be carefully performed to commission multileaf collimator for intensity modulated radiotherapy.