RESUMO
Cleavage of the backbone of poly(cis-1,4-isoprene) (IR) in solid rubber material was accomplished by the addition of partially purified latex clearing protein (Lcp1VH2 ) using a 200-mL enzyme reactor. Two strategies for the addition of Lcp1VH2 were studied revealing that the daily addition of 50 µg mL-1 of Lcp1VH2 for 5 days was clearly a more efficient regime in comparison to a one-time addition of 250 µg of Lcp1VH2 at the beginning. Soluble oligo(cis-1,4-isoprene) molecules occurred as degradation products and were identified by ESI-MS and GPC. Oxygenase activity of Lcp1VH2 with solid IR particles as substrate was shown for the first time by measuring the oxygen consumption in the reaction medium. A strong decrease of the dissolved oxygen concentration was detected at the end of the assay, which indicates an increase in the number of cleavage reactions. The oligo(cis-1,4-isoprene) molecules comprised 1 to 11 isoprene units and exhibited an average molecular weight (Mn ) of 885 g mol-1 . Isolation of the oligo(cis-1,4-isoprene) molecules was achieved by using silica gel column chromatography. The relative quantification of the isolated products was performed by HPLC-MS after derivatization with 2,4-dinitrophenilhydrazyne yielding a concentration of total degradation products of 1.62 g L-1 . Analysis of the polymer surface in samples incubated for 3 days with Lcp1VH2 via ATR-FTIR indicated the presence of carbonyl groups, which occurred upon the cleavage reaction. This study presents a cell-free bioprocess as an alternative rubber treatment that can be applied for the partial degradation of the polymer. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:890-899, 2018.
Assuntos
Hemiterpenos/química , Látex/química , Polímeros/química , Biodegradação Ambiental , Cromatografia em Gel , Oxirredução , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Potential biotechnological recycling processes for rubber products include the bacterial degradation of poly(cis-1,4-isoprene) (IR) in order to achieve its total biodegradation or its biotransformation into useful products. The actinomycete Gordonia polyisoprenivorans strain VH2 catalyzes the degradation of IR and enables its use as a sole carbon source via ß-oxidation. The initial cleavage reaction is catalyzed by the extracellular latex clearing protein (Lcp). This dioxygenase is the key enzyme for the formation of oligo(cis-1,4-isoprene) molecules with different lengths, i.e., numbers of isoprene units. For the first time, IR was used as a solid substrate in 2-l fermenters. Two different particle size fractions (63-500 and 500-1000⯵m) and three stirring rates (300, 400 and 500â¯rpm) were evaluated in the process. An increase of the cell concentration was achieved by using smaller particles and by using lower stirring rates, reaching a final biomass concentration of 0.52â¯g l-1 at 300â¯rpm after 12â¯days of cultivation. In order to enhance the formation of oligo(cis-1,4-isoprene) molecules, a transposon insertion mutant (TH5) of G. polyisoprenivorans strain VH2 that has lost the ability to transport the partial degradation products into the cells was used, thereby allowing the accumulation of the degradation products in the culture supernatants. Propionate, glucose and glycerol were evaluated as additional carbon sources besides IR, and the highest yields were observed on propionate. In 2-l bioreactors with pH control, different feeding regimes were performed during cultivation by the addition of propionate every 24 or 48â¯h for 16â¯days. After liquid-liquid extraction and a derivatization with Girard's T reagent, the oligo(cis-1,4-isoprene) molecules were detected by ESI-MS. The mass distribution of the degradation products was affected by the selection of the extraction solvent, but no influence of longer cultivation periods was detected.