Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Eur J Med Chem ; 279: 116894, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39357315

RESUMO

Nowadays, ERα is considered to be a primary target for the treatment of breast cancer, and selective estrogen receptor degraders (SERDs) are emerging as promising antitumor agents. By analysing ERα-SERDs complexes, the pharmacophore features of SERDs and the crucial protein-ligand interactions were identified. Then, by utilizing the scaffold-hopping and bioisosteres strategy, 23 novel derivatives were designed, synthesized and biologically evaluated. Among these derivatives, A20 exhibited potent ERα binding affinity (IC50 = 24.0 nM), degradation ability (EC50 = 5.3 nM), excellent ER selectivity, and outstanding anti-proliferative effects on MCF-7 cells (IC50 = 0.28 nM). Further biological studies revealed that A20 could degrade ERα through proteasome-mediated pathway, suppress signal transduction of MCF-7 cells, and arrest the cell cycle in G1 phase. Moreover, A20 showed excellent antitumor effect (TGI = 92.98 %, 30 mg kg-1 day-1) in the MCF-7 xenograft model in vivo with good safety and favorable pharmacokinetics (F = 39.6 %), making it a promising candidate for the treatment of breast cancer.

2.
Eur J Med Chem ; 279: 116806, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39276583

RESUMO

In this study, a series of novel thieno [3, 2-b]pyridinone derivatives were designed and synthesized using a scaffold hopping strategy. Six compounds showed potent anti-mycobacterial activity (minimum inhibitory concentration (MIC) ≤ 1 µg/mL) against Mycobacterium tuberculosis (Mtb) UAlRa. Compound 6c displayed good activity against Mtb UAlRv (MIC = 0.5-1 µg/mL). Compounds 6c and 6i also showed activity against Mtb UAlRa in macrophages and exhibited low cytotoxicity against LO-2 cells. The selected compounds displayed a narrow antibacterial spectrum, with no activity against representative Gram-positive, Gram-negative bacteria, as well as fungi. Furthermore, compound 6c demonstrated favorable oral pharmacokinetic properties with a T1/2 value of 47.99 h and exhibited good in vivo activity in an acute mouse model of tuberculosis (TB). The target of compound 6c was identified as a NADH-dependent enoyl-acyl carrier protein reductase (InhA) by genome sequencing of spontaneously compound 6c-resistant Mtb mutants, indicating that compound 6c may not require activation and can directly target InhA. In vitro antimicrobial assays against a recombinant M. smegmatis overexpressing the Mtb-InhA, along with InhA inhibition assays, confirmed that InhA is the target of thieno [3, 2-b]pyridinone derivatives. Overall, this study identified thieno [3, 2-b]pyridinone scaffold as a novel chemotype that is promising for the development of anti-TB agents.

3.
Pestic Biochem Physiol ; 204: 106109, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39277414

RESUMO

Isoxazoline insecticides have shown broad-spectrum insecticidal activity against a variety of insect pests. However, the high toxicity of isoxazoline compounds towards honeybees restricts their application in crop protection. To mitigate this issue, a series of isoxazoline derivatives containing 2-phenyloxazoline were designed and synthesized. Bioassays revealed that several compounds exhibited promising insecticidal activities against Plutella xylostella, with G28 showing particularly excellent insecticidal activity, reflected by an LC50 value of 0.675 mg/L, which is comparable to that of fluxametamide (LC50 = 0.593 mg/L). Furthermore, G28 also exhibited effective insecticidal activity against Solenopsis invicta. Importantly, bee toxicity experiments indicated that G28 had significantly lower acute oral toxicity (LD50 = 2.866 µg/adult) compared to fluxametamide (LD50 = 1.083 µg/adult) and fluralaner (LD50 = 0.022 µg/adult), positioning it as a promising candidate with reduced toxicity to bees. Theoretical simulation further elucidated the reasons for the selective differences in the ability of isoxazoline to achieve higher insecticidal activity while maintaining lower bee toxicity. This research suggests that isoxazoline compounds containing 2-phenyloxazoline group hold potential as new insecticide candidates and offers insights into the development of novel isoxazoline insecticides with both high efficacy and environmental safety.


Assuntos
Desenho de Fármacos , Inseticidas , Isoxazóis , Mariposas , Oxazóis , Inseticidas/síntese química , Inseticidas/química , Inseticidas/farmacologia , Inseticidas/toxicidade , Animais , Oxazóis/química , Oxazóis/toxicidade , Isoxazóis/farmacologia , Isoxazóis/química , Mariposas/efeitos dos fármacos , Abelhas/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Molecules ; 29(17)2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39274997

RESUMO

By using a scaffold hopping/ring equivalent and intermediate derivatization strategies, a series of compounds of 2,5-diphenyl-1,3-oxazoline with substituent changes at the 5-phenyl position were prepared, and their acaricidal activity was studied. However, the synthesized 2,5-diphenyl-1,3-oxazolines showed lower activity against mite eggs and larvae compared to the 2,4-diphenyl-1,3-oxazolines with the same substituents. We speculate that there is a significant difference in the spatial extension direction of the substituents between the two skeletons of compounds, resulting in differences in their ability to bind to the potential target chitin synthase 1. This work is helpful in inferring the internal structure of chitin synthase binding pockets.


Assuntos
Acaricidas , Oxazóis , Acaricidas/química , Acaricidas/farmacologia , Acaricidas/síntese química , Animais , Oxazóis/química , Oxazóis/síntese química , Oxazóis/farmacologia , Desenho de Fármacos , Relação Estrutura-Atividade , Ácaros/efeitos dos fármacos , Estrutura Molecular , Larva/efeitos dos fármacos , Quitina Sintase/antagonistas & inibidores , Quitina Sintase/metabolismo
5.
Eur J Med Chem ; 279: 116881, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39316843

RESUMO

Gout as a common inflammatory arthritis seriously affects the quality of life of a large number of people. Targeting NLRP3 inflammasome has been certified as a promising therapeutic strategy for gout. This study, a series of new imidazolidinone derivatives were validated as NLRP3 inhibitors by scaffold hopping from the reported NLRP3 inhibitor CSC-6. In contrast to the poor physicochemical properties of the template molecule, the representative compound 23 showed good plasma stability, water solubility, and no significant inhibitory toxicity to CYP450 enzymes. Surface plasmon resonance and immunoblotting experiments showed that compound 23 binds NLRP3 and inhibits NLRP3 activation. Finally, compound 23 showed good anti-inflammatory and analgesic effects in acute peritonitis and arthritis. Overall, the present study provides NLRP3 inhibitors with favorable pharmacological properties, which may not only serve as a tool molecule for studying NLRP3-related functions, but also may further facilitate the gout treatment.

6.
Angew Chem Int Ed Engl ; : e202411555, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39219402

RESUMO

We report a strategy for the C-N cross-coupling of tertiary amines via the in situ generation and displacement of N-acyl ammonium species. Specifically, treatment of diverse tertiary amines with TFAA or choroformates in the presence of NaI leads to the efficient generation of alkyl iodides, which can be engaged directly in Ni-catalyzed cross-couplings. The protocol is applicable to acyclic and cyclic systems, including highly hindered variants. Applications to the late-stage modification of complex heterocycles are presented.

7.
Bioorg Med Chem ; 112: 117882, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39167978

RESUMO

The bromodomain-containing protein 4 (BRD4), which is a key epigenetic regulator in cancer, has emerged as an attractive target for the treatment of melanoma. In this study, we investigate 7-phenoxy-benzimidazole derivative 12, which is a novel BRD4 inhibitor for the treatment of melanoma, by performing scaffold hopping on the previously reported benzimidazole derivative 1. Despite their good oral and intravenous exposure, the compounds obtained by modifying derivate 1 exhibit mutagenicity, which was confirmed by the positive Ames test results. Based on our hypothesis that the cause of the Ames test positivity is the metabolic intermediates generated from those chemical series, we implemented a scaffold hopping strategy to avoid the N-benzyl moiety by relocating the substituent groups to preserve the essential interaction. Based on this strategy, we successfully obtained compound 12; the Ames test results of this compound were negative. Notably, compound 12 not only exhibited a favorable pharmacokinetic (PK) profile but also significant tumor growth inhibition in a mouse melanoma xenograft model, indicating its potential as a therapeutic agent for the treatment of melanoma.


Assuntos
Antineoplásicos , Benzimidazóis , Proteínas de Ciclo Celular , Melanoma , Fatores de Transcrição , Animais , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzimidazóis/síntese química , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Melanoma/tratamento farmacológico , Melanoma/patologia , Humanos , Administração Oral , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Relação Estrutura-Atividade , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Relação Dose-Resposta a Droga , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas que Contêm Bromodomínio
8.
ChemMedChem ; : e202400367, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140451

RESUMO

The use of Fpocket and virtual screening techniques enabled us to identify potential allosteric druggable pockets within the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Of the compounds screened, compound 1 was identified as a promising inhibitor, lowering a SARS-CoV-2 RdRp activity to 57 % in an enzymatic assay at 10 µM concentration. The structure of compound 1 was subsequently optimized in order to preserve or enhance inhibitory activity. This involved the substitution of problematic ester and aromatic nitro groups with more inert functionalities. The N,N'-diphenylurea scaffold with two NH groups was identified as essential for the compound's activity but also exhibited high toxicity in Calu-3 cells. To address this issue, a scaffold hopping approach was employed to replace the urea core with potentially less toxic urea isosteres. This approach yielded several structural analogues with notable activity, specifically 2,2'-bisimidazol (in compound 55 with residual activity RA=42 %) and (1H-imidazol-2-yl)urea (in compounds 59 and 60, with RA=50 and 28 %, respectively). Despite these advances, toxicity remained a major concern. These compounds represent a promising starting point for further structure-activity relationship studies of allosteric inhibitors of SARS-CoV-2 RdRp, with the goal of reducing their cytotoxicity and improving aqueous solubility.

9.
Beilstein J Org Chem ; 20: 1880-1893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109294

RESUMO

The concept of bioisostere replacement is of paramount importance in medicinal chemistry, as it can be employed as a rational to expand bioactive chemical space to tackle lead optimization issues like lack of potency, efficacy, and selectivity or pharmacokinetic/dynamic issues. One of the most important building blocks (in the sense of participating in a vast area of chemical space of biological importance) in medicinal chemistry is the 2-phenethyl moiety, a key component of diverse drug-like entities. Although the core 2-phenethylamine structure has been recognized by the drug discovery community, little attention has been given to the various ring-based rescaffolding procedures that can be conducted with this unit. In this regard, a review on the use of 2-heteroarylethylamines displaying pharmacological activity is reported. A detailed description of flexible, amine-opened motifs is provided, that describes therapeutic targets and other potent bioactive examples, which will be a valuable repository of phenyl, heteroaryl, and other replacement units of high value to the drug discovery community.

10.
Pest Manag Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158367

RESUMO

BACKGROUND: The sustainable control of weed populations is a significant challenge facing farmers around the world. Although various methods for the control of weeds exist, the use of small molecule herbicides remains the most effective and versatile approach. Striving to find novel herbicides that combat resistant weeds via the targeting of plant specific modes of action (MoAs), we further investigated the bicyclic class of acyl-acyl carrier protein (ACP) thioesterase (FAT) inhibitors in an effort to find safe and efficacious lead candidates. RESULTS: Utilizing scaffold hopping and bioisosteric replacements strategies, we explored new bicyclic inhibitors of FAT. Amongst the investigated compounds we identified new structural motifs that showed promising target affinity coupled with good in vivo efficacy against commercially important weed species. We further studied the structure-activity relationship (SAR) of the novel dihydropyranopyridine structural class which showed promise as a new type of FAT inhibiting herbicides. CONCLUSION: The current work presents how scaffold hopping approaches can be implemented to successfully find novel and efficacious herbicidal structures that can be further optimized for potential use in sustainable agricultural practices. The identified dihydropyranopyridine bicyclic class of herbicides were demonstrated to have in vitro inhibitory activity against the plant specific MoA FAT as well as showing promising control of a variety of weed species, particularly grass weeds in greenhouse trials on levels competitive with commercial standards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

11.
Chem Biodivers ; : e202401767, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185921

RESUMO

Insect transient receptor potential vanilloid (TRPV) channels are critical targets for insecticides. In this study, various scaffold-hopping strategies were employed in the rational design of pyridylhydrazono derivatives as potential insect TRPV channels modulators. Insecticidal bioassay demonstrated that the initial target compounds exhibited lower insecticidal activity compared to pymetrozine, with the optimal compound B3 exhibiting a mortality rate of 53.3% against Aphis craccivora at 400 mg·L-1. Conformation analysis indicated that the high energy barrier required for the transition from the lowest-energy conformation to the active conformation may be a key factor contributing to the reduced insecticidal activities of the target compounds. Further structural optimizations aimed at reducing this energy barrier through binding mode-based conformation regulation led to the identification of optimal target 4-(3'-pyridylhydrazono)pyrazol-5-one derivatives C1 and C2. These compounds exhibited reduced transition energy barriers and improved insecticidal activity, with moderate mortality rate of 66.3% and 75.7% against A. craccivora at 400 mg·L-1, respectively. These findings provide valuable insights for future research on the discovery of insect TRPV modulators and have significant implications for the development of more effective agricultural insecticides.

12.
J Agric Food Chem ; 72(34): 18898-18908, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39147603

RESUMO

Phytoene desaturase (PDS) is a key rate-limiting enzyme in the carotenoid biosynthesis pathway. Although commercial PDS inhibitors have been developed for decades, it remains necessary to develop novel PDS inhibitors with higher bioactivity. In this work, we used the scaffold hopping and linker modification approaches to design and synthesize a series of compounds (7a-7o, 8a-8l, and 14a-14d). The postemergence application assay demonstrated that 8e and 7e separately showed the best herbicidal activity at 750 g a.i./ha and lower doses (187.5 g, 375g a.i./ha) without no significant toxicity to maize and wheat. The surface plasmon resonance revealed strong binding affinity between 7e and Synechococcus PDS (SynPDS). The HPLC analysis confirmed that 8e at 750 g a.i./ha caused significant phytoene accumulation in Arabidopsis seedlings. This work demonstrates the efficacy of structure-guided optimization through scaffold hopping and linker modification to design potent PDS inhibitors with enhanced bioactivity and crop safety.


Assuntos
Inibidores Enzimáticos , Herbicidas , Oxirredutases , Zea mays , Oxirredutases/metabolismo , Oxirredutases/química , Oxirredutases/antagonistas & inibidores , Herbicidas/farmacologia , Herbicidas/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Zea mays/química , Relação Estrutura-Atividade , Arabidopsis/enzimologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/química , Arabidopsis/metabolismo , Triticum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/antagonistas & inibidores , Estrutura Molecular , Triazóis/química , Triazóis/farmacologia
13.
Drug Discov Today ; 29(9): 104115, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067613

RESUMO

Scaffold hopping is a design approach involving alterations to the core structure of an already bioactive scaffold to generate novel molecules to discover bioactive hit compounds with innovative core structures. Scaffold hopping enhances selectivity and potency while maintaining physicochemical, pharmacodynamic (PD), and pharmacokinetic (PK) properties, including toxicity parameters. Numerous molecules have been designed based on a scaffold-hopping strategy that showed potent inhibition activity against multiple targets for the diverse types of malignancy. In this review, we critically discuss recent applications of scaffold hopping along with essential components of medicinal chemistry, such as structure-activity relationship (SAR) profiles. Moreover, we shed light on the limitations and challenges associated with scaffold hopping-based anticancer drug discovery.


Assuntos
Antineoplásicos , Desenho de Fármacos , Neoplasias , Humanos , Desenho de Fármacos/métodos , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Neoplasias/tratamento farmacológico , Animais , Descoberta de Drogas/métodos , Química Farmacêutica/métodos
14.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000539

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was -93.25 ± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.


Assuntos
Isocitrato Desidrogenase , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Piridonas/química , Piridonas/farmacologia
15.
J Agric Food Chem ; 72(31): 17599-17607, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046270

RESUMO

The discovery of readily available and easily modifiable new models is a crucial and practical solution for agrochemical innovation. Antifungal function-oriented fusion of triazole with the prevalidated lead (R)-LE001 affords a novel framework with a broad and enhanced antifungal spectrum. Characterized by the easy accessibility and adjustability of [1,2,4]triazolo[4,3-a]pyridine, modular fine-tuning provided a set of unprecedented leads (e.g., Z23, Z25, Z26, etc.) with superior antifungal potentials than the positive control boscalid. Candidate Z23 exhibited a more promising antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, and Phytophthora capsici with EC50 values of 0.7, 0.6, and 0.5 µM, respectively. This candidate could effectively control boscalid-resistant B. cinerea strains and also exhibit good vivo efficacy in controlling gray mold. Noteworthily, both the SDH-inhibition and the efficiency against Oomycete P. capsici are quite distinct from that of the positive control boscalid. A molecular docking simulation also differentiates Z23 from boscalid. These findings highlight the potential of [1,2,4]triazolo[4,3-a]pyridine amide as a novel antifungal model.


Assuntos
Compostos de Anilina , Ascomicetos , Botrytis , Fungicidas Industriais , Niacinamida , Phytophthora , Doenças das Plantas , Triazóis , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Triazóis/química , Triazóis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Niacinamida/química , Niacinamida/farmacologia , Relação Estrutura-Atividade , Phytophthora/efeitos dos fármacos , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Estrutura Molecular , Oxazóis/química , Oxazóis/farmacologia
16.
Bioorg Med Chem Lett ; 111: 129902, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059564

RESUMO

Integrase strand transfer inhibitors (INSTIs) are the most prescribed anchor drug in antiretroviral therapy. Today, there is an increasing need for long-acting treatment of HIV-1 infection. Improving drug pharmacokinetics and anti-HIV-1 activity are key to developing more robust inhibitors suitable for long-acting formulations, but 2nd-generation INSTIs have chiral centers, making it difficult to conduct further exploration. In this study, we designed aza-tricyclic and aza-bicyclic carbamoyl pyridone scaffolds which are devoid of the problematic hemiaminal stereocenter present in dolutegravir (DTG). This scaffold hopping made it easy to introduce several substituents, and evolving structure-activity studies using these scaffolds resulted in several leads with promising properties.


Assuntos
Desenho de Fármacos , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Piridonas , Humanos , Compostos Aza/química , Compostos Aza/farmacologia , Compostos Aza/síntese química , Relação Dose-Resposta a Droga , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/síntese química , HIV-1/efeitos dos fármacos , Estrutura Molecular , Piridonas/química , Piridonas/farmacologia , Piridonas/síntese química , Relação Estrutura-Atividade , Integrases/química , Integrases/metabolismo , Integrases/farmacocinética
17.
J Cheminform ; 16(1): 77, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965600

RESUMO

SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.Scientific contributionThis novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn't require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.

18.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930878

RESUMO

Aurones, particular polyphenolic compounds belonging to the class of minor flavonoids and overlooked for a long time, have gained significative attention in medicinal chemistry in recent years. Indeed, considering their unique and outstanding biological properties, they stand out as an intriguing reservoir of new potential lead compounds in the drug discovery context. Nevertheless, several physicochemical, pharmacokinetic, and pharmacodynamic (P3) issues hinder their progression in more advanced phases of the drug discovery pipeline, making lead optimization campaigns necessary. In this context, scaffold hopping has proven to be a valuable approach in the optimization of natural products. This review provides a comprehensive and updated picture of the scaffold-hopping approaches directed at the optimization of natural and synthetic aurones. In the literature analysis, a particular focus is given to nitrogen and sulfur analogues. For each class presented, general synthetic procedures are summarized, highlighting the key advantages and potential issues. Furthermore, the biological activities of the most representative scaffold-hopped compounds are presented, emphasizing the improvements achieved and the potential for further optimization compared to the aurone class.


Assuntos
Nitrogênio , Enxofre , Nitrogênio/química , Humanos , Enxofre/química , Benzofuranos/química , Benzofuranos/síntese química , Benzofuranos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Relação Estrutura-Atividade , Descoberta de Drogas/métodos , Animais , Estrutura Molecular
19.
Bioorg Med Chem ; 109: 117791, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870715

RESUMO

The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.


Assuntos
Flavonoides , Compostos Heterocíclicos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/síntese química , Humanos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Química Farmacêutica , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Animais
20.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38794114

RESUMO

The inhibition of O-acetyl sulphydrylase synthase isoforms has been reported to represent a promising approach for the development of antibiotic adjuvants. This occurs via the organism developing an unpaired oxidative stress response, causing a reduction in antibiotic resistance in vegetative and swarm cell populations. This consequently increases the effectiveness of conventional antibiotics at lower doses. This study aimed to predict potential inhibitors of Salmonella typhimurium ortho acetyl sulphydrylase synthase (StOASS), which has lower binding energy than the cocrystalized ligand pyridoxal 5 phosphate (PLP), using a computer-aided drug design approach including pharmacophore modeling, virtual screening, and in silico ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) evaluation. The screening and molecular docking of 4254 compounds obtained from the PubChem database were carried out using AutoDock vina, while a post-screening analysis was carried out using Discovery Studio. The best three hits were compounds with the PubChem IDs 118614633, 135715279, and 155773276, possessing binding affinities of -9.1, -8.9, and -8.8 kcal/mol, respectively. The in silico ADMET prediction showed that the pharmacokinetic properties of the best hits were relatively good. The optimization of the best three hits via scaffold hopping gave rise to 187 compounds, and they were docked against StOASS; this revealed that lead compound 1 had the lowest binding energy (-9.3 kcal/mol) and performed better than its parent compound 155773276. Lead compound 1, with the best binding affinity, has a hydroxyl group in its structure and a change in the core heterocycle of its parent compound to benzimidazole, and pyrimidine introduces a synergistic effect and consequently increases the binding energy. The stability of the best hit and optimized compound at the StOASS active site was determined using RMSD, RMSF, radius of gyration, and SASA plots generated from a molecular dynamics simulation. The MD simulation results were also used to monitor how the introduction of new functional groups of optimized compounds contributes to the stability of ligands at the target active site. The improved binding affinity of these compounds compared to PLP and their toxicity profile, which is predicted to be mild, highlights them as good inhibitors of StOASS, and hence, possible antimicrobial adjuvants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA