Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Food Microbiol ; 426: 110916, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39288568

RESUMO

The quorum-sensing receptor SdiA is vital for regulating the desiccation tolerance of C. sakazakii, yet the specific mechanism remains elusive. Herein, transcriptomics and phenotypic analysis were employed to explore the response of C. sakazakii wild type (WT) and sdiA knockout strain (ΔsdiA) under drying conditions. Following 20 days of drying in powdered infant formula (PIF), WT exhibited 4 log CFU/g higher survival rates compared to ΔsdiA. Transcriptome revealed similar expression patterns between csrA and sdiA, their interaction was confirmed both by protein-protein interaction analysis and yeast two-hybrid assays. Notably, genes associated with flagellar assembly and chemotaxis (flg, fli, che, mot regulon) showed significantly higher expression levels in WT than in ΔsdiA, indicating a reduced capacity for flagellar synthesis in ΔsdiA, which was consistent with cellular morphology observations. Similarly, genes involved in trehalose biosynthesis (ostAB, treYZS) and uptake (thuEFGK) exhibited similar expression patterns to sdiA, with higher levels of trehalose accumulation observed in WT under desiccation conditions compared to ΔsdiA. Furthermore, WT demonstrated enhanced protein and DNA synthesis capabilities under desiccation stress. Higher expression levels of genes related to oxidative phosphorylation were also noted in WT, ensuring efficient cellular ATP synthesis. This study offers valuable insights into how SdiA influences the desiccation tolerance of C. sakazakii, paving the way for targeted strategies to inhibit and control this bacterium.

2.
Front Cell Infect Microbiol ; 14: 1445850, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108982

RESUMO

Plasmid-mediated conjugation is a common mechanism for most bacteria to transfer antibiotic resistance genes (ARGs). The conjugative transfer of ARGs is emerging as a major threat to human beings. Although several transfer-related factors are known to regulate this process, small RNAs (sRNAs)-based regulatory roles remain to be clarified. Here, the Hfq-binding sRNA GadY in donor strain Escherichia coli (E. coli) SM10λπ was identified as a new regulator for bacterial conjugation. Two conjugation models established in our previous studies were used, which SM10λπ carrying a chromosomally integrated IncP-1α plasmid RP4 and a mobilizable plasmid pUCP24T served as donor cells, and P. aeruginosa PAO1 or E. coli EC600 as the recipients. GadY was found to promote SM10λπ-PAO1 conjugation by base-pairing with its target mRNA SdiA, an orphan LuxR-type receptor that responds to exogenous N-acylated homoserine lactones (AHLs). However, SM10λπ-EC600 conjugation was not affected due to EC600 lacking AHLs synthase. It indicates that the effects of GadY on conjugation depended on AHLs-SdiA signalling. Further study found GadY bound SdiA to negatively regulate the global RP4 repressors KorA and KorB. When under ciprofloxacin or levofloxacin treatment, GadY expression in donor strain was enhanced, and it positively regulated quinolone-induced SM10λπ-PAO1 conjugation. Thus, our study provides a novel role for sRNA GadY in regulating plasmid-mediated conjugation, which helps us better understand bacterial conjugation to counter antibiotic resistance.


Assuntos
Conjugação Genética , Proteínas de Escherichia coli , Escherichia coli , Plasmídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética , Regulação Bacteriana da Expressão Gênica , Transativadores/genética , Transativadores/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Antibacterianos/farmacologia , Fator Proteico 1 do Hospedeiro/genética , Fator Proteico 1 do Hospedeiro/metabolismo
3.
Animals (Basel) ; 14(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39123725

RESUMO

Avian pathogenic Escherichia coli (APEC) constitutes a significant cause of colibacillosis, a localized or systemic inflammatory disorder in avian species, resulting in considerable economic losses within the global poultry industry. SdiA (suppressor of division inhibitor) is a transcription factor recognized as a LuxR homolog in Escherichia coli, regulating various behaviors, including biofilm formation, multidrug resistance, and the secretion of virulence factors. However, the function of SdiA in APEC strains and its correlation with virulence and multidrug resistance remains unknown. This study probed into the function of SdiA by analyzing the effect of sdiA deletion on the transcription profile of an APEC strain. The microarray data revealed that SdiA upregulates 160 genes and downregulates 59 genes, exerting a particularly remarkable influence on the transcription of multiple virulence genes. A series of antibiotic sensitivity tests, biofilm formation assays, motility assays, and transcriptome analyses were performed, while a Normality test and t-test were conducted on the datasets. This research confirmed that SdiA inhibits biofilm formation by 1.9-fold (p-value < 0.01) and motility by 1.5-fold (p-value < 0.01). RT-qPCR revealed that SdiA positively regulates multidrug resistance by upregulating the expression of yafP, cbrA, and eamB. Collectively, the results of this study indicate the role of SdiA in the pathogenesis of APEC by controlling biofilm formation, motility, and multidrug resistance.

4.
Mol Divers ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38212453

RESUMO

SdiA is a LuxR-type receptor that controls the virulence of Klebsiella pneumoniae, a Gram-negative bacterium that causes various infections in humans. SdiA senses exogenous acyl-homoserine lactones (AHLs) and autoinducer-2 (AI-2), two types of quorum sensing signals produced by other bacterial species. However, the molecular details of how SdiA recognizes and binds to different ligands and how this affects its function and regulation in K. pneumoniae still need to be better understood. This study uses computational methods to explore the protein-ligand binding dynamics of SdiA with 11 AHLs and 2 AI-2 ligands. The 3D structure of SdiA was predicted through homology modeling, followed by molecular docking with AHLs and AI-2 ligands. Binding affinities were quantified using MM-GBSA, and complex stability was assessed via Molecular Dynamics (MD) simulations. Results demonstrated that SdiA in Klebsiella pneumoniae exhibits a degenerate binding nature, capable of interacting with multiple AHLs and AI-2. Specific ligands, namely C10-HSL, C8-HSL, 3-oxo-C8-HSL, and 3-oxo-C10-HSL, were found to have high binding affinities and formed critical hydrogen bonds with key amino acid residues of SdiA. This finding aligns with the observed preference of SdiA for AHLs having 8 to 10 carbon-length acyl chains and lacking hydroxyl groups. In contrast, THMF and HMF demonstrated poor binding properties. Furthermore, AI-2 exhibited a low affinity, corroborating the inference that SdiA is not the primary receptor for AI-2 in K. pneumoniae. These findings provide insights into the protein-ligand binding dynamics of SdiA and its role in quorum sensing and virulence of K. pneumoniae.

5.
Heliyon ; 9(11): e21658, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027585

RESUMO

As an important virulence phenotype of Escherichia coli, the regulation mechanism of biofilm by non-coding RNA and quorum sensing system has not been clarified. Here, by transcriptome sequencing and RT-PCR analysis, we found CsrB, a non-coding RNA of the carbon storage regulation system, was positively regulated by the LuxR protein SdiA. Furthermore, ß-galactosidase reporter assays showed that SdiA enhanced promoter transcriptional activity of csrB. The consistent dynamic expression levels of SdiA and CsrB during Escherichia coli growth were also detected. Moreover, curli assays and biofilm assays showed sdiA deficiency in Escherichia coli SM10λπ or BW25113 led to a decreased formation of biofilm, and was significantly restored by over-expression of CsrB. Interestingly, the regulations of SdiA on CsrB in biofilm formation were enhanced by quorum sensing signal molecules AHLs. In conclusion, SdiA plays a crucial role in Escherichia coli biofilm formation by regulating the expression of non-coding RNA CsrB. Our study provides new insights into SdiA-non-coding RNA regulatory network involved in Escherichia coli biofilm formation.

6.
FEMS Microbiol Rev ; 47(4)2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37312272

RESUMO

Escherichia coli is a Gram-negative commensal bacterium of the normal microbiota of humans and animals. However, several E. coli strains are opportunistic pathogens responsible for severe bacterial infections, including gastrointestinal and urinary tract infections. Due to the emergence of multidrug-resistant serotypes that can cause a wide spectrum of diseases, E. coli is considered one of the most troublesome human pathogens worldwide. Therefore, a more thorough understanding of its virulence control mechanisms is essential for the development of new anti-pathogenic strategies. Numerous bacteria rely on a cell density-dependent communication system known as quorum sensing (QS) to regulate several bacterial functions, including the expression of virulence factors. The QS systems described for E. coli include the orphan SdiA regulator, an autoinducer-2 (AI-2), an autoinducer-3 (AI-3) system, and indole, which allow E. coli to establish different communication processes to sense and respond to the surrounding environment. This review aims to summarise the current knowledge of the global QS network in E. coli and its influence on virulence and pathogenesis. This understanding will help to improve anti-virulence strategies with the E. coli QS network in focus.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Animais , Humanos , Escherichia coli/metabolismo , Percepção de Quorum , Virulência , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
7.
Front Microbiol ; 13: 901912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602061

RESUMO

Cronobacter sakazakii is a common foodborne pathogen, and the mortality rate of its infection is as high as 40-80%. SdiA acts as a quorum sensing regulator in many foodborne pathogens, but its role in C. sakazakii remains unclear. Here, we further determined the effect of the sdiA gene in C. sakazakii pathogenicity. The SdiA gene in C. sakazakii was knocked out by gene editing technology, and the biological characteristics of the ΔsdiA mutant of C. sakazakii were studied, followed by transcriptome analysis to elucidate its effects. The results suggested that SdiA gene enhanced the drug resistance of C. sakazakii but diminished its motility, adhesion and biofilm formation ability and had no effect on its growth. Transcriptome analysis showed that the ΔsdiA upregulated the expression levels of D-galactose operon genes (including dgoR, dgoK, dgoA, dgoD and dgoT) and flagella-related genes (FliA and FliC) in C. sakazakii and downregulated the expression levels of related genes in the type VI secretion system (VasK gene was downregulated by 1.53-fold) and ABC transport system (downregulated by 1.5-fold), indicating that SdiA gene was related to the physiological metabolism of C. sakazakii. The results were useful for clarifying the pathogenic mechanism of C. sakazakii and provide a theoretical basis for controlling bacterial infection.

8.
Molecules ; 27(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35408576

RESUMO

Biofilm control by essential oil (EO) application has recently increased to preclude biofilm production on foods and environmental surfaces. In this work, the anti-biofilm effects of garlic and thyme essential oils using the minimum inhibitory concentration (MIC) method against Salmonella typhimurium recovered from different abattoir samples were investigated along with the virulence genes (InvA, SdiA and Stn genes), and the antimicrobial susceptibility profile of S. typhimurium as well. The obtained results revealed that S. typhimurium contaminated abattoir samples to varying degrees. The InvA gene was investigated in all isolates, whereas the SdiA and Stn genes were observed in four and three isolates, respectively. Utilizing the disc diffusion method, S. typhimurium isolates demonstrated substantial resistance to most of the examined antibiotics with a high multiple antibiotic resistance index. S. typhimurium isolates demonstrated biofilm formation abilities to various degrees at varied temperatures levels (4 °C and 37 °C). In conclusion, the obtained samples from the research area are regarded as a potential S. typhimurium contamination source. Furthermore, garlic essential oil (GEO) has more potential to inhibit S. typhimurium biofilm at different sub-minimum inhibitory concentrations as compared to thyme essential oil (TEO). Therefore, these EOs are considered as potential natural antibacterial options that could be applied in food industry.


Assuntos
Alho , Óleos Voláteis , Thymus (Planta) , Antibacterianos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Salmonella typhimurium/genética
9.
Food Res Int ; 151: 110886, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980413

RESUMO

This study characterizes the impact of sdiA on biofilm formation under normal or osmotic stress conditions in Cronobacter sakazakii by constructing a sdiA deletion mutant (ΔsdiA). Here, the downregulation of flagellar assembly-related genes and upregulation of capsular, cellulose and lipopolysaccharide biosynthesis-associated genes in ΔsdiA were observed when compared to the wild type strain (WT) through transcriptomic analysis. Meanwhile, reduced ability of motility, enhanced cell surface hydrophobicity and stronger biofilms with extracellular matrix were observed in WT with deletion of sdiA. Both WT and ΔsdiA formed more biofilm in low osmotic stress medium, while in hyperosmolarity conditions, formation of biofilm was dramatically reduced. Our findings supported that sdiA might suppress biofilm formation of C. sakazakii by regulating biosynthesis of flagellar and extracellular polymeric substances. This study investigates the role of sdiA on biofilm formation in C. sakazakii, and provides the basis for the inhibition of C. sakazakii in food industry and infant-feeding.


Assuntos
Cronobacter sakazakii , Biofilmes , Membrana Celular , Cronobacter sakazakii/genética , Humanos , Pressão Osmótica
10.
Cells Tissues Organs ; 211(3): 294-303, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34038907

RESUMO

Directed neural differentiation of embryonic stem cells (ESCs) has been studied extensively to improve the treatment of neurodegenerative disorders. This can be done through stromal-cell derived inducing activity (SDIA), by culturing ESCs directly on top of a layer of feeder stromal cells. However, the stem cells usually become mixed with the feeder cells during the differentiation process, making it difficult to obtain a pure population of the differentiated cells for further use. To address this issue, a non-planar microfluidic device is used here to encapsulate murine ESCs (mESCs) in the 3D liquid core of microcapsules with an alginate hydrogel shell of different sizes for early neural differentiation through SDIA, by culturing mESC-laden microcapsules over a feeder layer of PA6 cells. Furthermore, the alginate hydrogel shell of the microcapsules is modified via oxidation or RGD peptide conjugation to examine the mechanical and chemical effects on neural differentiation of the encapsulated mESC aggregates. A higher expression of Nestin is observed in the aggregates encapsulated in small (∼300 µm) microcapsules and cultured over the PA6 cell feeder layer. Furthermore, the modification of the alginate with RGD facilitates early neurite extension within the microcapsules. This study demonstrates that the presence of the RGD peptide, the SDIA effect of the PA6 cells, and the absence of leukemia inhibition factor from the medium can lead to the early differentiation of mESCs with extensive neurites within the 3D microenvironment of the small microcapsules. This is the first study to investigate the effects of cell adhesion and degradation of the encapsulation materials for directed neural differentiation of mESCs. The simple modifications (i.e., oxidation and RGD incorporation) of the miniaturized 3D environment for improved early neural differentiation of mESCs may potentially enhance further downstream differentiation of the mESCs into more specialized neurons for therapeutic use and drug screening.


Assuntos
Alginatos , Hidrogéis , Alginatos/metabolismo , Alginatos/farmacologia , Animais , Cápsulas/metabolismo , Cápsulas/farmacologia , Diferenciação Celular , Células Cultivadas , Células-Tronco Embrionárias , Hidrogéis/farmacologia , Camundongos , Oligopeptídeos/metabolismo , Oligopeptídeos/farmacologia
11.
Neurosci Lett ; 769: 136392, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34902517

RESUMO

Stem cells from human exfoliated deciduous teeth (SHED) have stromal-derived inducing activity (SDIA): which means these stromal cells induce neural differentiation where they are used as a substratum for embryonic stem cell (ESCs) culture. Recent studies show that mitochondria or mitochondrial products, as paracrine factors, can be released and transferred from one cell to another. With this information, we were curious to know whether in the SDIA co-culture system, SHED release or donate their mitochondria to ESCs. For this purpose, before co-culture, SHED s' mitochondria and ESCs s' cell membranes were separately labeled with specific fluorescent probes. After co-culture, SHED s' mitochondria were tracked by fluorescent microscope and flow cytometry analysis. Co-culture also performed in the presence of inhibitors that block probable transfer pathways suchlike tunneling nanotubes, gap junctions or vesicles. Results showed that mitochondrial transfer takes place from SHED to ESCs. This transfer partly occurs by tunneling nanotubes and not through gap junctions or vesicles; also was not dependent on intracellular calcium level. This kind of horizontal gene transfer may open a new prospect for further research on probable role of mitochondria on fate choice and neural induction processes.


Assuntos
Comunicação Celular , Estruturas da Membrana Celular/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/fisiologia , Cálcio/metabolismo , Linhagem Celular , Técnicas de Cocultura/métodos , Matriz Extracelular/metabolismo , Junções Comunicantes/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Mitocôndrias/metabolismo , Nanotubos , Dente Decíduo/citologia
12.
Microorganisms ; 9(12)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34946165

RESUMO

Salmonella enterica is a common cause of many enteric infections worldwide and is successfully engineered to deliver heterologous antigens to be used as vaccines. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) RNA-guided Cas9 endonuclease is a promising genome editing tool. In the current study, a CRISPR-Cas9 system was used to target S.enterica sdiA that encodes signal molecule receptor SdiA and responds to the quorum sensing (QS) signaling compounds N-acylhomoserine lactones (AHLs). For this purpose, sdiA was targeted in both S.enterica wild type (WT) and the ΔssaV mutant strain, where SsaV has been reported to be an essential component of SPI2-T3SS. The impact of sdiA mutation on S. enterica virulence was evaluated at both early invasion and later intracellular replication in both the presence and absence of AHL. Additionally, the influence of sdiA mutation on the pathogenesis S. enterica WT and mutants was investigated in vivo, using mice infection model. Finally, the minimum inhibitory concentrations (MICs) of various antibiotics against S. enterica strains were determined. Present findings show that mutation in sdiA significantly affects S.enterica biofilm formation, cell adhesion and invasion. However, sdiA mutation did not affect bacterial intracellular survival. Moreover, in vivo bacterial pathogenesis was markedly lowered in S.enterica ΔsdiA in comparison with the wild-type strain. Significantly, double-mutant sdiA and ssaV attenuated the S. enterica virulence and in vivo pathogenesis. Moreover, mutations in selected genes increased Salmonella susceptibility to tested antibiotics, as revealed by determining the MICs and MBICs of these antibiotics. Altogether, current results clearly highlight the importance of the CRISPR-Cas9 system as a bacterial genome editing tool and the valuable role of SdiA in S.enterica virulence. The present findings extend the understanding of virulence regulation and host pathogenesis of Salmonellaenterica.

13.
Front Microbiol ; 12: 597735, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234747

RESUMO

Klebsiella pneumoniae is a Gram-negative pathogen that has become a worldwide concern due to the emergence of multidrug-resistant isolates responsible for various invasive infectious diseases. Biofilm formation constitutes a major virulence factor for K. pneumoniae and relies on the expression of fimbrial adhesins and aggregation of bacterial cells on biotic or abiotic surfaces in a coordinated manner. During biofilm aggregation, bacterial cells communicate with each other through inter- or intra-species interactions mediated by signallng molecules, called autoinducers, in a mechanism known as quorum sensing (QS). In most Gram-negative bacteria, intra-species communication typically involves the LuxI/LuxR system: LuxI synthase produces N-acyl homoserine lactones (AHLs) as autoinducers and the LuxR transcription factor is their cognate receptor. However, K. pneumoniae does not produce AHL but encodes SdiA, an orphan LuxR-type receptor that responds to exogenous AHL molecules produced by other bacterial species. While SdiA regulates several cellular processes and the expression of virulence factors in many pathogens, the role of this regulator in K. pneumoniae remains unknown. In this study, we describe the characterization of sdiA mutant strain of K. pneumoniae. The sdiA mutant strain has increased biofilm formation, which correlates with the increased expression of type 1 fimbriae, thus revealing a repressive role of SdiA in fimbriae expression and bacterial cell adherence and aggregation. On the other hand, SdiA acts as a transcriptional activator of cell division machinery assembly in the septum, since cells lacking SdiA regulator exhibited a filamentary shape rather than the typical rod shape. We also show that K. pneumoniae cells lacking SdiA regulator present constant production of QS autoinducers at maximum levels, suggesting a putative role for SdiA in the regulation of AI-2 production. Taken together, our results demonstrate that SdiA regulates cell division and the expression of virulence factors such as fimbriae expression, biofilm formation, and production of QS autoinducers in K. pneumoniae.

14.
Cell J ; 23(1): 140-142, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650832

RESUMO

In this article which was published in Cell J, Vol 17, No 1, Spring 2015, on pages 37-48, we found that Figure 1H, Figure 2 (OTX2, row 3), and Figure 3 (row 4) had been published incorrectly. The following figures are corrected. The authors would like to apologies for any inconvenience caused.

15.
J Bacteriol ; 203(4)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33257526

RESUMO

FliA is a broadly conserved σ factor that directs transcription of genes involved in flagellar motility. We previously identified FliA-transcribed genes in Escherichia coli and Salmonella enterica serovar Typhimurium, and we showed that E. coli FliA transcribes many unstable, noncoding RNAs from intragenic promoters. Here, we show that FliA in S Typhimurium also directs the transcription of large numbers of unstable, noncoding RNAs from intragenic promoters, and we identify two previously unreported FliA-transcribed protein-coding genes. One of these genes, sdiA, encodes a transcription factor that responds to quorum-sensing signals produced by other bacteria. We show that FliA-dependent transcription of sdiA is required for SdiA activity, highlighting a regulatory link between flagellar motility and intercellular communication.IMPORTANCE Initiation of bacterial transcription requires association of a σ factor with the core RNA polymerase to facilitate sequence-specific recognition of promoter elements. FliA is a widely conserved σ factor that directs transcription of genes involved in flagellar motility. We previously showed that Escherichia coli FliA transcribes many unstable, noncoding RNAs from promoters within genes. Here, we demonstrate the same phenomenon in Salmonella Typhimurium. We also show that S Typhimurium FliA directs transcription of the sdiA gene, which encodes a transcription factor that responds to quorum-sensing signals produced by other bacteria. FliA-dependent transcription of sdiA is required for transcriptional control of SdiA target genes, highlighting a regulatory link between flagellar motility and intercellular communication.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Salmonella typhimurium/fisiologia , Fator sigma/metabolismo , Transativadores/fisiologia , Proteínas de Bactérias/genética , RNA Polimerases Dirigidas por DNA , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Percepção de Quorum , Fator sigma/genética , Transativadores/genética , Transativadores/metabolismo
16.
Vet Res Forum ; 11(3): 273-279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133465

RESUMO

Quorum sensing (QS) is a cell density-dependent mechanism used by many pathogenic bacteria for regulating virulence gene expression. Inhibition or interruption of QS by medicinal plant remedies has been suggested as a new strategy for fighting against antibiotic-resistant bacteria. This study aimed to assess the impact of sub-inhibitory concentrations of licochalcone A (LAA) and epigallocatechin-3-gallate (EGCG) as natural plant products on the QS-associated genes (sdiA and luxS) expression. The PCR test was used to confirm the presence of sdiA and luxS genes in 23 S. Typhimurium isolates from poultry. The quantitative real-time PCR assay was used to analyze the expression of sdiA and luxS in S. Typhimurium isolates in response to the treatment with sub-inhibitory concentrations of LAA and EGCG at 45-min time point. All S. Typhimurium isolates showed the presence of sdiA and luxS genes (100%). As result, the expression of QS-related genes was significantly reduced in S. Typhimurium isolates following treatment with LAA and EGCG. In conclusion, LAA and EGCG showed anti-QS activity with down-regulation of both sdiA and luxS genes in S. Typhimurium, suggesting potential therapeutic use of them against salmonellosis. However, it must be pointed out that the safety and efficiency of these compounds need more thorough research.

17.
ACS Infect Dis ; 6(12): 3092-3103, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124430

RESUMO

Enterohemorrhagic Escherichia coli (EHEC) is the causative agent of severe diarrheal disease in humans. Cattle are the natural reservoir of EHEC, and approximately 75% of EHEC infections in humans stem from bovine products. Many common bacterial pathogens, including EHEC, rely on chemical communication systems, such as quorum sensing (QS), to regulate virulence and facilitate host colonization. EHEC uses SdiA from E. coli (SdiAEC), an orphan LuxR-type receptor, to sense N-acyl l-homoserine lactone (AHL) QS signals produced by other members of the bovine enteric microbiome. SdiAEC regulates two phenotypes critical for colonizing cattle: acid resistance and the formation of attaching and effacing lesions. Despite the importance of SdiAEC, there is very little known about its selectivity for different AHL signals, and no chemical inhibitors that act specifically on SdiAEC have been reported. Such compounds would represent valuable tools to study the roles of QS in EHEC virulence. To identify chemical modulators of SdiAEC and delineate the structure-activity relationships (SARs) for AHL activity in this receptor, we report herein the screening of a focused library composed largely of AHLs and AHL analogues in an SdiAEC reporter assay. We describe the identity and SARs of potent modulators of SdiAEC activity, examine the promiscuity of SdiAEC, characterize the mechanism of a covalent inhibitor, and provide phenotypic assay data to support that these compounds can control SdiAEC-dependent acid resistance in E. coli. These SdiAEC modulators could be used to advance the study of LuxR-type receptor/ligand interactions, the biological roles of orphan LuxR-type receptors, and potential QS-based therapeutic approaches.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Percepção de Quorum , Acil-Butirolactonas , Animais , Bovinos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Transativadores
18.
Front Microbiol ; 11: 1078, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582066

RESUMO

The acid tolerance mechanism is important for Escherichia coli to resist acidic conditions encountered in mammalian host digestive tract environment. Here, we explored how the LuxR protein SdiA influenced E. coli acid tolerance ability in the context of the glutamate- and glutamine-dependent acid resistance system (AR2). First, using a growth and acid shock assay under different acid stresses, we demonstrated that the deletion of sdiA in SM10λpir or BW25113 led to impaired growth under the acidic environment of pH 3-6, which was restored by complementary expression of SdiA. Next, transcriptome sequencing and qPCR disclosed that the expression of glutamate decarboxylase W (GadW) and GadY, the key members of the AR2 system, were regulated by SdiA. Further, ß-galactosidase reporter assays showed that the promoter activity of gadW and gadY was positively regulated by SdiA. Moreover, qPCR and ß-galactosidase reporter assays confirmed that the regulation of SdiA on GadW, but not GadY, could be enhanced by quorum sensing (QS) signal molecules AHLs. Collectively, these data suggest that SdiA plays a crucial role in acid tolerance regulation of E. coli. Our findings provide new insights into the important contribution of quorum sensing system AHLs-SdiA to the networks that regulate acid tolerance.

19.
Beilstein J Org Chem ; 14: 2651-2664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410627

RESUMO

Quorum sensing (QS) allows many common bacterial pathogens to coordinate group behaviors such as virulence factor production, host colonization, and biofilm formation at high population densities. This cell-cell signaling process is regulated by N -acyl L-homoserine lactone (AHL) signals, or autoinducers, and LuxR-type receptors in Gram-negative bacteria. SdiA is an orphan LuxR-type receptor found in Escherichia, Salmonella, Klebsiella, and Enterobacter genera that responds to AHL signals produced by other species and regulates genes involved in several aspects of host colonization. The inhibition of QS using non-native small molecules that target LuxR-type receptors offers a non-biocidal approach for studying, and potentially controlling, virulence in these bacteria. To date, few studies have characterized the features of AHLs and other small molecules capable of SdiA agonism, and no SdiA antagonists have been reported. Herein, we report the screening of a set of AHL analogs to both uncover agonists and antagonists of SdiA and to start to delineate structure-activity relationships (SARs) for SdiA:AHL interactions. Using a cell-based reporter of SdiA in Salmonella enterica serovar Typhimurium, several non-natural SdiA agonists and the first set of SdiA antagonists were identified and characterized. These compounds represent new chemical probes for exploring the mechanisms by which SdiA functions during infection and its role in interspecies interactions. Moreover, as SdiA is highly stable when produced in vitro, these compounds could advance fundamental studies of LuxR-type receptor:ligand interactions that engender both agonism and antagonism.

20.
Genes (Basel) ; 9(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762495

RESUMO

Atypical enteropathogenic Escherichia coli are capable to form biofilm on biotic and abiotic surfaces, regardless of the adherence pattern displayed. Several E. coli mechanisms are regulated by Quorum sensing (QS), including virulence factors and biofilm formation. Quorum sensing is a signaling system that confers bacteria with the ability to respond to chemical molecules known as autoinducers. Suppressor of division inhibitor (SdiA) is a QS receptor present in atypical enteropathogenic E.coli (aEPEC) that detects acyl homoserine lactone (AHL) type autoinducers. However, these bacteria do not encode an AHL synthase, but they are capable of sensing AHL molecules produced by other species, establishing an inter-species bacterial communication. In this study, we performed experiments to evaluate pellicle, ring-like structure and biofilm formation on wild type, sdiA mutants and complemented strains. We also evaluated the transcription of genes involved in different stages of biofilm formation, such as bcsA, csgA, csgD, fliC and fimA. The sdiA mutants were capable of forming thicker biofilm structures and showed increased motility when compared to wild type and complemented strains. Moreover, they also showed denser pellicles and ring-like structures. Quantitative real-time PCR (qRT-PCR) analysis demonstrated increased csgA, csgD and fliC transcription on mutant strains. Biofilm formation, as well as csgD, csgA and fimA transcription decreased on wild type strains by the addition of AHL. These results indicate that SdiA participates on the regulation of these phenotypes in aEPEC and that AHL addition enhances the repressor effect of this receptor on the transcription of biofilm and motility related genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA