Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecology ; 102(12): e03531, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34496058

RESUMO

Conditions during a parent's lifetime can induce phenotypic changes in offspring, providing a potentially important source of variation in natural populations. Yet, to date, biotic factors have seldom been tested as sources of transgenerational effects in plants. In a greenhouse experiment with the generalist annual Polygonum persicaria, we tested for effects of parental competition on offspring by growing isogenic parent plants either individually or in competitive arrays and comparing their seedling progeny in contrasting growth environments. Offspring of competing vs. non-competing parents showed significantly altered development, resulting in greater biomass and total leaf area, but only when growing in neighbor or simulated canopy shade, rather than sunny dry conditions. A follow-up experiment in which parent plants instead competed in dry soil found that offspring in dry soil had slightly reduced growth, both with and without competitors. In neither experiment were effects of parental competition explained by changes in seed provisioning, suggesting a more complex mode of regulatory inheritance. We hypothesize that parental competition in moist soil (i.e., primarily for light) confers specific developmental effects that are beneficial for light-limited offspring, while parental competition in dry soil (i.e., primarily for belowground resources) produces offspring of slightly lower overall quality. Together, these results indicate that competitive conditions during the parental generation can contribute significantly to offspring variation, but these transgenerational effects will depend on the abiotic resources available to both parents and progeny.


Assuntos
Adaptação Fisiológica , Plantas , Plântula , Sementes , Solo
2.
Front Plant Sci ; 9: 1251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210520

RESUMO

Parental environment influences progeny development in numerous plant and animal systems. Such inherited environmental effects may alter offspring phenotypes in a consistent way, for instance when resource-deprived parents produce low quality offspring due to reduced maternal provisioning. However, because development of individual organisms is guided by both inherited and immediate environmental cues, parental conditions may have different effects depending on progeny environment. Such context-dependent transgenerational plasticity suggests a mechanism of environmental inheritance that can precisely interact with immediate response pathways, such as epigenetic modification. We show that parental light environment (shade versus sun) resulted in context-dependent effects on seedling development in a common annual plant, and that these effects were mediated by DNA methylation. We grew replicate parents of five highly inbred Polygonum persicaria genotypes in glasshouse shade versus sun and, in a fully factorial design, measured ecologically important traits of their isogenic seedling offspring in both environments. Compared to the offspring of sun-grown parents, the offspring of shade-grown parents produced leaves with greater mean and specific leaf area, and had higher total leaf area and biomass. These shade-adaptive effects of parental shade were pronounced and highly significant for seedlings growing in shade, but slight and generally non-significant for seedlings growing in sun. Based on both regression and covariate analysis, inherited effects of parental shade were not mediated by changes to seed provisioning. To test for a role of DNA methylation, we exposed replicate offspring of isogenic shaded and fully insolated parents to either the demethylating agent zebularine or to control conditions during germination, then raised them in simulated growth chamber shade. Partial demethylation of progeny DNA had no phenotypic effect on offspring of shaded parents, but caused offspring of sun-grown parents to develop as if their parents had been shaded, with larger leaves and greater total canopy area and biomass. These results contribute to the increasing body of evidence that DNA methylation can mediate transgenerational environmental effects, and show that such effects may contribute to nuanced developmental interactions between parental and immediate environments.

3.
Plant Biol (Stuttg) ; 20(3): 619-626, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29323793

RESUMO

Elevated atmospheric input of nitrogen (N) is currently affecting plant biodiversity and ecosystem functioning. The growth and survival of numerous plant species is known to respond strongly to N fertilisation. Yet, few studies have assessed the effects of N deposition on seed quality and reproductive performance, which is an important life-history stage of plants. Here we address this knowledge gap by assessing the effects of atmospheric N deposition on seed quality of the ancient forest herb Anemone nemorosa using two complementary approaches. By taking advantage of the wide spatiotemporal variation in N deposition rates in pan-European temperate and boreal forests over 2 years, we detected positive effects of N deposition on the N concentration (percentage N per unit seed mass, increased from 2.8% to 4.1%) and N content (total N mass per seed more than doubled) of A. nemorosa seeds. In a complementary experiment, we applied ammonium nitrate to aboveground plant tissues and the soil surface to determine whether dissolved N sources in precipitation could be incorporated into seeds. Although the addition of N to leaves and the soil surface had no effect, a concentrated N solution applied to petals during anthesis resulted in increased seed mass, seed N concentration and N content. Our results demonstrate that N deposition on the petals enhances bioaccumulation of N in the seeds of A. nemorosa. Enhanced atmospheric inputs of N can thus not only affect growth and population dynamics via root or canopy uptake, but can also influence seed quality and reproduction via intake through the inflorescences.


Assuntos
Anemone/fisiologia , Flores/metabolismo , Nitrogênio/metabolismo , Sementes/fisiologia , Anemone/química , Anemone/metabolismo , Atmosfera , Clima , Europa (Continente) , Flores/química , Florestas , Nitrogênio/análise , Reprodução/fisiologia
4.
Front Plant Sci ; 2: 102, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22639624

RESUMO

Plants respond to environmental conditions not only by plastic changes to their own development and physiology, but also by altering the phenotypes expressed by their offspring. This transgenerational plasticity was initially considered to entail only negative effects of stressful parental environments, such as production of smaller seeds by resource- or temperature-stressed parent plants, and was therefore viewed as environmental noise. Recent evolutionary ecology studies have shown that in some cases, these inherited environmental effects can include specific growth adjustments that are functionally adaptive to the parental conditions that induced them, which can range from contrasting states of controlled laboratory environments to the complex habitat variation encountered by natural plant populations. Preliminary findings suggest that adaptive transgenerational effects can be transmitted by means of diverse mechanisms including changes to seed provisioning and biochemistry, and epigenetic modifications such as DNA methylation that can persist across multiple generations. These non-genetically inherited adaptations can influence the ecological breadth and evolutionary dynamics of plant taxa and promote the spread of invasive plants. Interdisciplinary studies that join mechanistic and evolutionary ecology approaches will be an important source of future insights.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA