Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Evolution ; 75(1): 141-148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33196103

RESUMO

Larger species tend to feed on abundant resources, which nonetheless have lower quality or degradability, the so-called Jarman-Bell principle. The "eat more" hypothesis posits that larger animals compensate for lower quality diets through higher consumption rates. If so, evolutionary shifts in metabolic scaling should affect the scope for this compensation, but whether this has happened is unknown. Here, we investigated this issue using termites, major tropical detritivores that feed along a humification gradient ranging from dead plant tissue to mineral soil. Metabolic scaling is shallower in termites with pounding mandibles adapted to soil-like substrates than in termites with grinding mandibles adapted to fibrous plant tissue. Accordingly, we predicted that only larger species of the former group should have more humified, lower quality diets, given their higher scope to compensate for such a diet. Using literature data on 65 termite species, we show that diet humification does increase with body size in termites with pounding mandibles, but is weakly related to size in termites with grinding mandibles. Our findings suggest that evolution of metabolic scaling may shape the strength of the Jarman-Bell principle.


Assuntos
Evolução Biológica , Tamanho Corporal , Dieta , Isópteros/genética , Animais , Isópteros/metabolismo , Mandíbula
2.
Ecol Evol ; 10(14): 6993-7005, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32760507

RESUMO

Phenotypic diversity, or disparity, can be explained by simple genetic drift or, if functional constraints are strong, by selection for ecologically relevant phenotypes. We here studied phenotypic disparity in head shape in aquatic snakes. We investigated whether conflicting selective pressures related to different functions have driven shape diversity and explore whether similar phenotypes may give rise to the same functional output (i.e., many-to-one mapping of form to function). We focused on the head shape of aquatically foraging snakes as they fulfill several fitness-relevant functions and show a large amount of morphological variability. We used 3D surface scanning and 3D geometric morphometrics to compare the head shape of 62 species in a phylogenetic context. We first tested whether diet specialization and size are drivers of head shape diversification. Next, we tested for many-to-one mapping by comparing the hydrodynamic efficiency of head shape characteristic of the main axes of variation in the dataset. We 3D printed these shapes and measured the forces at play during a frontal strike. Our results show that diet and size explain only a small amount of shape variation. Shapes did not fully functionally converge as more specialized aquatic species evolved a more efficient head shape than others. The shape disparity observed could thus reflect a process of niche specialization.

3.
Ecol Evol ; 9(19): 11025-11039, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31641452

RESUMO

Homoplasy is a strong indicator of a phenotypic trait's adaptive significance when it can be linked to a similar function. We assessed homoplasy in functionally relevant scapular and femoral traits of Marmotini and Xerini, two sciuromorph rodent clades that independently acquired a fossorial lifestyle from an arboreal ancestor. We studied 125 species in the scapular dataset and 123 species in the femoral dataset. Pairwise evolutionary model comparison was used to evaluate whether homoplasy of trait optima is more likely than other plausible scenarios. The most likely trend of trait evolution among all traits was assessed via likelihood scoring of all considered models. The homoplasy hypothesis could never be confirmed as the single most likely model. Regarding likelihood scoring, scapular traits most frequently did not differ among Marmotini, Xerini, and arboreal species. For the majority of femoral traits, results indicate that Marmotini, but not Xerini, evolved away from the ancestral arboreal condition. We conclude on the basis of the scapular results that the forelimbs of fossorial and arboreal sciuromorphs share mostly similar functional demands, whereas the results on the femur indicate that the hind limb morphology is less constrained, perhaps depending on the specific fossorial habitat.

4.
Proc Biol Sci ; 282(1813): 20151498, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26269502

RESUMO

Ecologically important traits do not evolve without limits. Instead, evolution is constrained by the set of available and viable phenotypes. In particular, natural selection may only favour a narrow range of adaptive optima constrained within selective regimes. Here, I integrate data with theory to test whether selection explains phenotypic constraint. A global database of 599 plant species from 94 families shows that stomatal ratio, a trait affecting photosynthesis and defence against pathogens, is highly constrained. Most plants have their stomata on the lower leaf surface (hypostomy), but species with half their stomata on each surface (amphistomy) form a distinct mode in the trait distribution. A model based on a trade-off between maximizing photosynthesis and a fitness cost of upper stomata predicts a limited number of adaptive solutions, leading to a multimodal trait distribution. Phylogenetic comparisons show that amphistomy is the most common among fast-growing species, supporting the view that CO2 diffusion is under strong selection. These results indicate that selective optima stay within a relatively stable set of selective regimes over macroevolutionary time.


Assuntos
Evolução Biológica , Fenômenos Fisiológicos Vegetais , Estômatos de Plantas/fisiologia , Seleção Genética , Modelos Genéticos , Filogenia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais/genética
5.
Am Nat ; 164(6): 683-695, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29641928

RESUMO

Biologists employ phylogenetic comparative methods to study adaptive evolution. However, none of the popular methods model selection directly. We explain and develop a method based on the Ornstein-Uhlenbeck (OU) process, first proposed by Hansen. Ornstein-Uhlenbeck models incorporate both selection and drift and are thus qualitatively different from, and more general than, pure drift models based on Brownian motion. Most importantly, OU models possess selective optima that formalize the notion of adaptive zone. In this article, we develop the method for one quantitative character, discuss interpretations of its parameters, and provide code implementing the method. Our approach allows us to translate hypotheses regarding adaptation in different selective regimes into explicit models, to test the models against data using maximum-likelihood-based model selection techniques, and to infer details of the evolutionary process. We illustrate the method using two worked examples. Relative to existing approaches, the direct modeling approach we demonstrate allows one to explore more detailed hypotheses and to utilize more of the information content of comparative data sets than existing methods. Moreover, the use of a model selection framework to simultaneously compare a variety of hypotheses advances our ability to assess alternative evolutionary explanations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA