Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(9): 793, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110302

RESUMO

This study aims to assess the effectiveness of PCB-based capacitive soil moisture sensors for local field conditions. The electrical scheme of designed sensors has been presented in this study. The PCB-based capacitive soil moisture sensors are calibrated using a linear equation developed between analog values of capacitive sensors and soil moisture content measured from the gravimetric method. The performance of the designed soil moisture sensors was assessed at five different locations at varying depths (i.e., 15 cm, 30 cm, and 45 cm). The calibration results indicated a positive correlation between the soil moisture content and measurement frequency of the sensor for wheat crop, with R2 values of 0.72, 0.83, and 0.83 for 15 cm, 30 cm, and 45 cm depths, respectively. Results reveal that 85% of the sensors accurately detected the patterns in soil moisture fluctuations during the cropping period. The designed capacitive sensors demonstrated a maximum relative error of 5.87% for 45 cm depth. However, the relative error remained below 5% for the 15 cm and 30 cm soil depths. For the sugarcane crop, R2 values vary from 0.66 to 0.82, with the highest relative error of 5.22% at a 15 cm depth. These sensors offer a highly cost-effective solution for farmers, with the entire wireless sensor network system including one sensor node, three soil moisture sensors, and one soil temperature sensor, which is priced at approximately $150, making it a practical and affordable option for widespread adoption.


Assuntos
Agricultura , Monitoramento Ambiental , Solo , Temperatura , Solo/química , Monitoramento Ambiental/métodos , Agricultura/métodos , Fazendeiros , Fazendas , Água , Triticum
2.
Sci Rep ; 14(1): 9152, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644408

RESUMO

Air pollution stands as a significant modern-day challenge impacting life quality, the environment, and the economy. It comprises various pollutants like gases, particulate matter, biological molecules, and more, stemming from sources such as vehicle emissions, industrial operations, agriculture, and natural events. Nitrogen dioxide (NO2), among these harmful gases, is notably prevalent in densely populated urban regions. Given its adverse effects on health and the environment, accurate monitoring of NO2 levels becomes imperative for devising effective risk mitigation strategies. However, the precise measurement of NO2 poses challenges as it traditionally relies on costly and bulky equipment. This has prompted the development of more affordable alternatives, although their reliability is often questionable. The aim of this article is to introduce a groundbreaking method for precisely calibrating cost-effective NO2 sensors. This technique involves statistical preprocessing of low-cost sensor readings, aligning their distribution with reference data. Central to this calibration is an artificial neural network (ANN) surrogate designed to predict sensor correction coefficients. It utilizes environmental variables (temperature, humidity, atmospheric pressure), cross-references auxiliary NO2 sensors, and incorporates short time series of previous readings from the primary sensor. These methods are complemented by global data scaling. Demonstrated using a custom-designed cost-effective monitoring platform and high-precision public reference station data collected over 5 months, every component of our calibration framework proves crucial, contributing to its exceptional accuracy (with a correlation coefficient near 0.95 concerning the reference data and an RMSE below 2.4 µg/m3). This level of performance positions the calibrated sensor as a viable, cost-effective alternative to traditional monitoring approaches.

3.
Sensors (Basel) ; 24(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38257533

RESUMO

This paper details the development and validation of a temperature sensing methodology using an un-trimmed oscillator-based integrated sensor implemented in the 0.18-µm SOI XFAB process, with a focus on thermal monitoring in system-on-chip (SoC) based DC-DC converters. Our study identifies a quadratic relationship between the oscillator output frequency and temperature, which forms the basis of our proposed calibration mechanism. This mechanism aims at mitigating process variation effects, enabling accurate temperature-to-frequency mapping. Our research proposes and characterizes several trimming-free calibration techniques, covering a spectrum from zero to thirty-one frequency-temperature measurement points. Notably, the Corrected One-Point calibration method, requiring only a single ambient temperature measurement, emerges as a practical solution that removes the need for a temperature chamber. This method, after adjustment, successfully reduces the maximum error to within ±2.95 °C. Additionally, the Two-Point calibration method demonstrates improved precision with a maximum positive error of +1.56 °C at -15 °C and a maximum negative error of -3.13 °C at +10 °C (R2 value of 0.9958). The Three-Point calibration method performed similarly, yielding an R2 value of 0.9956. The findings of this study indicate that competitive results in temperature sensor calibration can be achieved without circuit trimming, offering a viable alternative or a complementary approach to traditional trimming techniques.

4.
Sensors (Basel) ; 24(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257701

RESUMO

Most calibration laboratories prefer the Direct Comparison Transfer Method (DCTM) for a reliable and accurate calibration of power sensors in the radio frequency (RF) scope. Most studies suggest using this calibration method, with its automatic power level control (APLC) of RF signal generators. The APLC is preferred to keep the output power level of the signal generator the same, while the power sensor is calibrated and the reference power sensor is connected to the measurement system. The known APLC mechanisms are also explained for the DCTM, and a comparison of the calibration factor values carried out with and without the automatic power level control process in the DCTM is also given in this study. RF power sensor calibrations with coaxial and waveguide connector types are examined with DCTM in this study as well. This study shows that the DCTM, unless with APLC, should be applied for the waveguide power sensor's calibration at millimeter wave frequencies.

5.
Plants (Basel) ; 12(21)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37960064

RESUMO

Salinity impacts important processes in plants, reducing their yield. The effect of salinity on the cytosolic pH (pHcyt) has been little studied. In this research, we employed transgenic tobacco plants expressing the pH sensor Pt-GFP to investigate the alterations in pHcyt in cells across various root zones. Furthermore, we examined a wide spectrum of NaCl concentrations (ranging from 0 to 150 mM) and assessed morphological parameters and plant development. Our findings revealed a pattern of cytosolic acidification in cells across all root zones at lower NaCl concentrations (50, 100 mM). Interestingly, at 150 mM NaCl, pHcyt levels either increased or returned to normal, indicating a nonlinear effect of salinity on pHcyt. Most studied parameters related to development and morphology exhibited an inhibitory influence in response to NaCl. Notably, a nonlinear relationship was observed in the cell length within the elongation and differentiation zones. While cell elongation occurred at 50 and 100 mM NaCl, it was not evident at 150 mM NaCl. This suggests a complex interplay between stimulating and inhibitory effects of salinity, contributing to the nonlinear relationship observed between pHcyt, cell length, and NaCl concentration.

6.
Sensors (Basel) ; 23(21)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37960410

RESUMO

Smart agriculture utilizes Internet of Things (IoT) technologies to enable low-cost electrical conductivity (EC) sensors to support farming intelligence. Due to aging and changes in weather and soil conditions, EC sensors are prone to long-term drift over years of operation. Therefore, regular recalibration is necessary to ensure data accuracy. In most existing solutions, an EC sensor is calibrated by using the standard sensor to build the calibration table. This paper proposes SensorTalk3, an ensemble approach of machine learning models including XGBOOST and Random Forest, which can be executed at an edge device (e.g., Raspberry Pi) without GPU acceleration. Our study indicates that the soil information (both temperature and moisture sensor data) plays an important role in SensorTalk3, which significantly outperforms the existing calibration approaches. The MAPE of SensorTalk3 can be as low as 1.738%, compared to the 7.792% error of the original sensor. Our study indicates that when the errors of uncalibrated moisture and temperature sensors are not larger than 8.3%, SensorTalk3 can accurately calibrate EC. SensorTalk3 can perform model training during data collection at the edge node. When all training data are collected, AI training is also finished at the edge node. Such an AI training approach has not been found in existing edge AI approaches. We also proposed the dual-sensor detection solution to determine when to conduct recalibration. The overhead of this solution is less than twice the optimal detection scenario (which cannot be achieved practically). If the two non-standard sensors are homogeneous and stable, then the optimal detection scenario can be approached. Conventional methods require training calibration AI models in the cloud. However, SensorTalk3 introduces a significant advancement by enabling on-site transfer learning in the edge node. Given the abundance of farming sensors deployed in the fields, performing local transfer learning using low-cost edge nodes proves to be a more cost-effective solution for farmers.

7.
Robotica ; 41(5): 1590-1616, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37732333

RESUMO

Robots and inertial measurement units (IMUs) are typically calibrated independently. IMUs are placed in purpose-built, expensive automated test rigs. Robot poses are typically measured using highly accurate (and thus expensive) tracking systems. In this paper, we present a quick, easy, and inexpensive new approach to calibrate both simultaneously, simply by attaching the IMU anywhere on the robot's end effector and moving the robot continuously through space. Our approach provides a fast and inexpensive alternative to both robot and IMU calibration, without any external measurement systems. We accomplish this using continuous-time batch estimation, providing statistically optimal solutions. Under Gaussian assumptions, we show that this becomes a nonlinear least squares problem and analyze the structure of the associated Jacobian. Our methods are validated both numerically and experimentally and compared to standard individual robot and IMU calibration methods.

8.
Sensors (Basel) ; 23(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766043

RESUMO

This article presents a prototype of a new, non-invasive, cuffless, self-calibrating blood pressure measuring device equipped with a pneumatic pressure sensor. The developed sensor has a double function: it measures the waveform of blood pressure and calibrates the device. The device was used to conduct proof-of-concept measurements on 10 volunteers. The main novelty of the device is the pneumatic pressure sensor, which works on the principle of a pneumatic nozzle flapper amplifier with negative feedback. The developed device does not require a cuff and can be used on arteries where cuff placement would be impossible (e.g., on the carotid artery). The obtained results showed that the systolic and diastolic pressure measurement errors of the proposed device did not exceed ±6.6% and ±8.1%, respectively.


Assuntos
Amplificadores Eletrônicos , Determinação da Pressão Arterial , Humanos , Calibragem , Pressão Sanguínea , Artérias
9.
Environ Res ; 238(Pt 1): 117147, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37716398

RESUMO

The exponential growth of human population and anthropogenic activities have led to the increase of global surface water contamination especially in river, lakes and ocean. Safe and clean surface water sources are crucial to human health and well-being, aquatic ecosystem, environment and economy. Thus, water monitoring is vital to ensure minimal and controllable contamination in the water sources. The conventional surface water monitoring method involves collecting samples on site and then testing them in the laboratory, which is time-consuming and not able to provide real-time water quality data. In addition, it involves many manpower and resources, costly and lack of integration. These make surface water quality monitoring more challenging. The incorporation of Internet of Things (IoT) and smart technology has contributed to the improvement of monitoring system. There are different approaches in the development and implementation of online surface water quality monitoring system to provide real-time data collection with lower operating cost. This paper reviews the sensors and system developed for the online surface water quality monitoring system in the previous studies. The calibration and validation of the sensors, and challenges in the design and development of online surface water quality monitoring system are also discussed.


Assuntos
Ecossistema , Qualidade da Água , Humanos , Poluição da Água , Efeitos Antropogênicos , Calibragem
10.
Nanomaterials (Basel) ; 13(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764577

RESUMO

Chemoresistive nanostructured gas sensors are employed in many diverse applications in the medical, industrial, environmental, etc. fields; therefore, it is crucial to have a device that is able to quickly calibrate and characterize them. To this aim, a portable, user-friendly device designed to easily calibrate a sensor in laboratory and/or on field is introduced here. The device comprises a small hermetically sealed chamber (containing the sensor socket and a temperature/humidity sensor), a pneumatic system, and a custom electronics controlled by a Raspberry Pi 4 developing board, running a custom software (Version 1.0) whose user interface is accessed via a multitouch-screen. This device automatically characterizes the sensor heater in order to precisely set the desired working temperature, it acquires and plots the sensor current-to-voltage and Arrhenius relationships on the touch screen, and it can record the sensor responses to different gases and environments. These tests were performed in dry air on two representative sensors based on widely used SnO2 material. The device demonstrated the independence of the Arrhenius plot from the film applied voltage and the linearity of the I-Vs, which resulted from the voltage step length (1-30 min) and temperature (200-550 °C).

11.
Sensors (Basel) ; 23(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37571566

RESUMO

Autonomous driving vehicles rely on sensors for the robust perception of their surroundings. Such vehicles are equipped with multiple perceptive sensors with a high level of redundancy to ensure safety and reliability in any driving condition. However, multi-sensor, such as camera, LiDAR, and radar systems raise requirements related to sensor calibration and synchronization, which are the fundamental blocks of any autonomous system. On the other hand, sensor fusion and integration have become important aspects of autonomous driving research and directly determine the efficiency and accuracy of advanced functions such as object detection and path planning. Classical model-based estimation and data-driven models are two mainstream approaches to achieving such integration. Most recent research is shifting to the latter, showing high robustness in real-world applications but requiring large quantities of data to be collected, synchronized, and properly categorized. However, there are two major research gaps in existing works: (i) they lack fusion (and synchronization) of multi-sensors, camera, LiDAR and radar; and (ii) generic scalable, and user-friendly end-to-end implementation. To generalize the implementation of the multi-sensor perceptive system, we introduce an end-to-end generic sensor dataset collection framework that includes both hardware deploying solutions and sensor fusion algorithms. The framework prototype integrates a diverse set of sensors, such as camera, LiDAR, and radar. Furthermore, we present a universal toolbox to calibrate and synchronize three types of sensors based on their characteristics. The framework also includes the fusion algorithms, which utilize the merits of three sensors, namely, camera, LiDAR, and radar, and fuse their sensory information in a manner that is helpful for object detection and tracking research. The generality of this framework makes it applicable in any robotic or autonomous applications and suitable for quick and large-scale practical deployment.

12.
Data Brief ; 49: 109398, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37520645

RESUMO

This article presents a dataset comprising measurements made by co-located devices, with the aim of calibrating sensors for an upcoming in-situ use. The dataset includes hourly averaged data from 9 low-cost sensors and 2 traffic monitoring stations (thereafter named QDP and SUD3) in Rouen spanning from October 20, 2021 to March 25, 2022. In addition, the dataset is enriched by covariates measured by the sensors: temperature, relative humidity, atmospheric pressure, plus Ox and CO measures. The experiment was conducted as part of TIGA's call for project, and designed to have a better understanding of sensors' drawbacks, particularly when they are moved or shut down. Knowledge about the effect of air pollution on health has gained significant attention from both the scientific community and citizens, making air quality a growing issue for urban area. As a result, the city of Rouen in Normandy, France, has prioritized air quality monitoring as a key initiative. Concurrently, several means to measure air pollutants have been made more accessible, such as the use of low-cost sensors. Those sensors offer affordability, but are known to be less accurate than monitoring stations. Thus, they need to be cautiously studied so as to be used properly.

13.
Sensors (Basel) ; 23(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37448003

RESUMO

As the monitoring of carbon dioxide is an important proxy to estimate the air quality of indoor and outdoor environments, it is essential to obtain trustful data from CO2 sensors. However, the use of widely available low-cost sensors may imply lower data quality, especially regarding accuracy. This paper proposes a new approach for enhancing the accuracy of low-cost CO2 sensors using an extremely randomized trees algorithm. It also reports the results obtained from experimental data collected from sensors that were exposed to both indoor and outdoor environments. The indoor experimental set was composed of two metal oxide semiconductors (MOS) and two non-dispersive infrared (NDIR) sensors next to a reference sensor for carbon dioxide and independent sensors for air temperature and relative humidity. The outdoor experimental exposure analysis was performed using a third-party dataset which fit into our goals: the work consisted of fourteen stations using low-cost NDIR sensors geographically spread around reference stations. One calibration model was trained for each sensor unit separately, and, in the indoor experiment, it managed to reduce the mean absolute error (MAE) of NDIR sensors by up to 90%, reach very good linearity with MOS sensors in the indoor experiment (r2 value of 0.994), and reduce the MAE by up to 98% in the outdoor dataset. We have found in the outdoor dataset analysis that the exposure time of the sensor itself may be considered by the algorithm to achieve better accuracy. We also observed that even a relatively small amount of data may provide enough information to perform a useful calibration if they contain enough data variety. We conclude that the proper use of machine learning algorithms on sensor readings can be very effective to obtain higher data quality from low-cost gas sensors either indoors or outdoors, regardless of the sensor technology.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Dióxido de Carbono/análise , Calibragem , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Óxidos , Algoritmos , Poluentes Atmosféricos/análise
14.
Sensors (Basel) ; 23(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430528

RESUMO

Barometric process separation (BaPS) is an automated laboratory system for the simultaneous measurement of microbial respiration and gross nitrification rates in soil samples. To ensure optimal functioning, the sensor system, consisting of a pressure sensor, an O2 sensor, a CO2 concentration sensor, and two temperature probes, must be accurately calibrated. For the regular on-site quality control of the sensors, we developed easy, inexpensive, and flexible calibration procedures. The pressure sensor was calibrated by means of a differential manometer. The O2 and CO2 sensors were simultaneously calibrated through their exposure to a sequence of O2 and CO2 concentrations obtained by sequentially exchanging O2/N2 and CO2/N2 calibration gases. Linear regression models were best suited for describing the recorded calibration data. The accuracy of O2 and CO2 calibration was mainly affected by the accuracy of the utilized gas mixtures. Because the applied measuring method is based on the O2 conductivity of ZrO2, the O2 sensor is particularly susceptible to aging and to consequent signal shifts. Sensor signals were characterized by high temporal stability over the years. Deviations in the calibration parameters affected the measured gross nitrification rate by up to 12.5% and affected the respiration rate by up to 5%. Overall, the proposed calibration procedures are valuable tools for ensuring the quality of BaPS measurements and for promptly identifying sensor malfunctions.

15.
Biotechnol Lett ; 45(8): 931-938, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37227599

RESUMO

OBJECTIVES: Dielectric spectroscopy is commonly used for online monitoring of biomass growth. It is however not utilized for biomass concentration measurements due to poor correlation with Cell Dry Weight (CDW). A calibration methodology is developed that can directly measure viable biomass concentration in a commercial filamentous process using dielectric values, without recourse to independent and challenging viability determinations. RESULTS: The methodology is applied to samples from the industrial scale fermentation of a filamentous fungus, Acremonium fusidioides. By mixing fresh and heat-killed samples, linear responses were verified and sample viability could be fitted with the dielectric [Formula: see text] values and total solids concentration. The study included a total of 26 samples across 21 different cultivations, with a legacy at-line viable cell analyzer requiring 2 ml samples, and a modern on-line probe operated at-line with 2 different sample presentation volumes, one compatible with the legacy analyzer, a larger sample volume of 100 ml being compatible with calibration for on-line operation. The linear model provided an [Formula: see text] value of 0.99 between [Formula: see text] and viable biomass across the sample set using either instrument. The difference in ∆C when analyzing 100 mL and 2 mL samples with an in-line probe can be adjusted by a scalar factor of 1.33 within the microbial system used in this study, preserving the linear relation with [Formula: see text] of 0.97. CONCLUSIONS: It is possible to directly estimate viable biomass concentrations utilizing dielectric spectroscopy without recourse to extensive and difficult to execute independent viability studies. The same method can be applied to calibrate different instruments to measure viable biomass concentration. Small sample volumes are appropriate as long as the sample volumes are kept consistent.


Assuntos
Reatores Biológicos , Espectroscopia Dielétrica , Fermentação , Reatores Biológicos/microbiologia , Espectroscopia Dielétrica/métodos , Biomassa , Fungos
16.
Sensors (Basel) ; 23(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177708

RESUMO

This paper proposes a novel method to reliably calibrate a pair of sensorized insoles utilizing an array of capacitive tactile pixels (taxels). A new calibration setup is introduced that is scalable and suitable for multiple kinds of wearable sensors and a procedure for the simultaneous calibration of each of the sensors in the insoles is presented. The calibration relies on a two-step optimization algorithm that, firstly, enables determination of a relevant set of mathematical models based on the instantaneous measurement of the taxels alone, and, then, expands these models to include the relevant portion of the time history of the system. By comparing the resulting models with our previous work on the same hardware, we demonstrate the effectiveness of the novel method both in terms of increased ability to cope with the non-linear characteristics of the sensors and increased pressure ranges achieved during the experiments performed.

17.
Sensors (Basel) ; 23(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37177773

RESUMO

Recent developments in robotics have enabled humanoid robots to be used in tasks where they have to physically interact with humans, including robot-supported caregiving. This interaction-referred to as physical human-robot interaction (pHRI)-requires physical contact between the robot and the human body; one way to improve this is to use efficient sensing methods for the physical contact. In this paper, we use a flexible tactile sensing array and integrate it as a tactile skin for the humanoid robot HRP-4C. As the sensor can take any shape due to its flexible property, a particular focus is given on its spatial calibration, i.e., the determination of the locations of the sensor cells and their normals when attached to the robot. For this purpose, a novel method of spatial calibration using B-spline surfaces has been developed. We demonstrate with two methods that this calibration method gives a good approximation of the sensor position and show that our flexible tactile sensor can be fully integrated on a robot and used as input for robot control tasks. These contributions are a first step toward the use of flexible tactile sensors in pHRI applications.


Assuntos
Robótica , Percepção do Tato , Humanos , Calibragem , Pele , Tato
18.
Sensors (Basel) ; 23(8)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37112506

RESUMO

Most pedestrian detection methods focus on bounding boxes based on fusing RGB with lidar. These methods do not relate to how the human eye perceives objects in the real world. Furthermore, lidar and vision can have difficulty detecting pedestrians in scattered environments, and radar can be used to overcome this problem. Therefore, the motivation of this work is to explore, as a preliminary step, the feasibility of fusing lidar, radar, and RGB for pedestrian detection that potentially can be used for autonomous driving that uses a fully connected convolutional neural network architecture for multimodal sensors. The core of the network is based on SegNet, a pixel-wise semantic segmentation network. In this context, lidar and radar were incorporated by transforming them from 3D pointclouds into 2D gray images with 16-bit depths, and RGB images were incorporated with three channels. The proposed architecture uses a single SegNet for each sensor reading, and the outputs are then applied to a fully connected neural network to fuse the three modalities of sensors. Afterwards, an up-sampling network is applied to recover the fused data. Additionally, a custom dataset of 60 images was proposed for training the architecture, with an additional 10 for evaluation and 10 for testing, giving a total of 80 images. The experiment results show a training mean pixel accuracy of 99.7% and a training mean intersection over union of 99.5%. Also, the testing mean of the IoU was 94.4%, and the testing pixel accuracy was 96.2%. These metric results have successfully demonstrated the effectiveness of using semantic segmentation for pedestrian detection under the modalities of three sensors. Despite some overfitting in the model during experimentation, it performed well in detecting people in test mode. Therefore, it is worth emphasizing that the focus of this work is to show that this method is feasible to be used, as it works regardless of the size of the dataset. Also, a bigger dataset would be necessary to achieve a more appropiate training. This method gives the advantage of detecting pedestrians as the human eye does, thereby resulting in less ambiguity. Additionally, this work has also proposed an extrinsic calibration matrix method for sensor alignment between radar and lidar based on singular value decomposition.


Assuntos
Aprendizado Profundo , Pedestres , Humanos , Redes Neurais de Computação , Visão Ocular
19.
Sensors (Basel) ; 23(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37050800

RESUMO

This paper studies the effect of reference frame selection in sensor-to-sensor extrinsic calibration when formulated as a motion-based hand-eye calibration problem. As the sensor trajectories typically contain some composition of noise, the aim is to determine which selection strategies work best under which noise conditions. Different reference selection options are tested under varying noise conditions in simulations, and the findings are validated with real data from the KITTI dataset. The study is conducted for four state-of-the-art methods, as well as two proposed cost functions for nonlinear optimization. One of the proposed cost functions incorporates outlier rejection to improve calibration performance and was shown to significantly improve performance in the presence of outliers, and either match or outperform the other algorithms in other noise conditions. However, the performance gain from reference frame selection was deemed larger than that from algorithm selection. In addition, we show that with realistic noise, the reference frame selection method commonly used in the literature, is inferior to other tested options, and that relative error metrics are not reliable for telling which method achieves best calibration performance.

20.
Sensors (Basel) ; 23(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37050836

RESUMO

A variety of low-cost sensors have recently appeared to measure air quality, making it feasible to face the challenge of monitoring the air of large urban conglomerates at high spatial resolution. However, these sensors require a careful calibration process to ensure the quality of the data they provide, which frequently involves expensive and time-consuming field data collection campaigns with high-end instruments. In this paper, we propose machine-learning-based approaches to generate calibration models for new Particulate Matter (PM) sensors, leveraging available field data and models from existing sensors to facilitate rapid incorporation of the candidate sensor into the network and ensure the quality of its data. In a series of experiments with two sets of well-known PM sensor manufacturers, we found that one of our approaches can produce calibration models for new candidate PM sensors with as few as four days of field data, but with a performance close to the best calibration model adjusted with field data from periods ten times longer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA