Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 233
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 382(2283): 20240017, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39370786

RESUMO

With its compactness and foldability, origami has recently been applied to robotic systems to enable versatile robots and mechanisms while maintaining a low weight and compact form. This work investigates how to generate different motions and shapes for origami by tuning its creases' stiffness on the fly. The stiffness tuning is realized by a composite material made by sandwiching a thermoplastic layer between two shape memory polymer layers. This enables the composite to act as a living hinge, whose stiffness can be actively controlled through Joule heating. To demonstrate our concept, we fabricate an origami module with four variable stiffness joints (VSJs), allowing it to have freely controlled crease stiffnesses across its surface. We characterize the origami module's versatile motion when heating different VSJs with different temperatures. We further use two origami modules to build a two-legged robot that can locomote on the ground with different locomotion gaits. The same robot is also used as an adaptive gripper for grasping tasks. Our work can potentially enable more versatile robotic systems made from origami as well as other mechanical systems with programmable properties (e.g. mechanical metamaterials).This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.

2.
Biomed Eng Lett ; 14(6): 1279-1301, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39465110

RESUMO

The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.

3.
Macromol Rapid Commun ; : e2400661, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39401289

RESUMO

4D printing magneto-responsive shape memory polymers (SMPs) using biodegradable nanocomposites can overcome their low toughness and thermal resistance, and produce smart materials that can be controlled remotely without contact. This study presented the development of 3D/4D printable nanocomposites based on poly (lactic acid) (PLA)-poly (butylene adipate-co-terephthalate) (PBAT) blends and magnetite (Fe3O4) nanoparticles. The nanocomposites are prepared by melt mixing PLA-PBAT blends with different Fe3O4 contents (10, 15, and 20 wt%) and extruded into granules for material extrusion 3D printing. The morphology, dynamic mechanical thermal analysis (DMTA), mechanical properties, and shape memory behavior of the nanocomposites are investigated. The results indicated that the Fe3O4 nanoparticles are preferentially distributed in the PBAT phases, enhancing the storage modulus, thermal stability, strength, elongation, toughness, shape fixity, and recovery of the nanocomposites. The optimal Fe3O4 loading is found to be 10 wt%, as higher loadings led to nanoparticle agglomeration and reduced performance. The nanocomposites also exhibited fast shape memory response under thermal and magnetic activation due to the presence of Fe3O4 nanoparticles. The 3D/4D printable nanocomposites demonstrated multifunctional multi-trigger shape-memory capabilities and potential applications in contactless and safe actuation.

4.
3D Print Addit Manuf ; 11(3): 919-953, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39359610

RESUMO

The rapid development and advancements in field of shape memory alloys (SMAA) has tremendously increased the progress in four-dimensional (4D) printing. The conventional 4D printing will require skilled manpower but utilization of reversibility aspect achieved using self adjusting external stimuli will eliminate the necessity of sophisticated devices and human intervention in 4D printing. The components created using reversible 4D printing can be reused after each recovery cycle that suits the current industry requirements. This review is divided into three sections: The first section starts with a detailed illustration of different mechanisms associated with SMAA and shape memory polymers SMPP along with an illustration of realistic 3D-printed SMAA and SMPP. The second section of this paper deals with the different methods of manufacture with the advantages and disadvantages of different types of SMAA. The third section deals with the mechanisms associated with SMPP, namely (1) Thermo-responsive mechanism, (2) Chemo-responsive mechanism, and (3) Photo-responsive mechanism along with a detailed insight into the aspect of repeatability and reversibility. The fourth section presents an exhaustive review of the application of SMAA and SMPP in civil engineering. The last section of this work throws light on the challenges faced in 4D reversible printing of SMAA and SMPP along with the potential solutions and presents directions for future research.

5.
Sci Rep ; 14(1): 23917, 2024 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-39397075

RESUMO

This research investigates the impact of gamma irradiation on epoxy-MWCNT nanocomposites for satellite deployment mechanisms. Nanocomposites, enhanced with surfactants, were meticulously prepared and subjected to controlled gamma irradiation (250-1000 kGy) utilizing the Cobalt-60 facility Industrial Mega Gamma-1 at NCRRT in Egypt. Surface tension measurements explored surfactant effects on epoxy-MWCNT composites in acetone. Acetone reduced tension from 26.7 to be 24.2 (mN/m). Surfactants (Tween 80, SDS) effectively lowered tension (24.4 mN/m), while surfactant-free systems had higher tension (25.1 mN/m). Cationic surfactant (CTAB) slightly increased tension (25.4 mN/m) but aided MWCNT dispersion. Nonionic and anionic surfactants showed superior dispersing power, aligning with MWCNTs and enhancing dispersion. Thermogravimetric analysis (TGA) unveiled alterations in the thermal stability of epoxy-MWCNT nanocomposites induced by radiation, particularly evident at elevated doses (500 and 1000 kGy). Notably, surfactant-modified specimens exhibited discernible effects on various thermal stability parameters. DMA analysis revealed radiation-induced changes in viscoelastic properties. Unirradiated epoxy exhibited a Tg of 58 °C, while 250 kGy irradiation enhanced crosslinking (Tg: 64 °C). Higher doses (500 kGy, 1000 kGy) caused marginal Tg changes. Surfactant-modified samples showed varied effects, with Tween 80 emphasizing its role in phase separation. Results highlighted radiation's influence on stiffness and energy dissipation. Shape memory behavior indicated increased recovery time with higher doses, except at 250 kGy. Epoxy-MWCNT exhibited a stable recovery time, suggesting a MWCNT stabilizing effect. Fixation rates consistently reached 100%, indicating improved shape recovery influenced by MWCNTs and surfactants. This study provides insights into optimizing nanocomposites for satellite deployment applications.

6.
Polymers (Basel) ; 16(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39408397

RESUMO

This review focuses on advancements in polymer science as it relates to three-dimensional (3D) and four-dimensional (4D) printing technologies, with a specific emphasis on applications in the biomedical field. While acknowledging the breadth of 3D and 4D printing applications, this paper concentrates on the use of polymers in creating biomedical devices and the challenges associated with their implementation. It explores integrative modeling and experimental insights driving innovations in these fields, focusing on sustainable manufacturing with biodegradable polymers, a comparative analysis of 3D and 4D printing techniques, and applications in biomedical devices. Additionally, the review examines the materials used in both 3D and 4D printing, offering a detailed comparison of their properties and applications. By highlighting the transformative potential of these technologies in various industrial and medical applications, the paper underscores the importance of continued research and development. The scope of this review also includes an overview of future research directions to address current challenges, enhance material capabilities, and explore practical applications.

7.
J Mech Behav Biomed Mater ; 160: 106719, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39244990

RESUMO

This study introduces a novel approach to 4D printing of biocompatible Poly lactic acid (PLA)/poly methyl methacrylate (PMMA) blends using Artificial Neural Network (ANN) and Response Surface Methodology (RSM). The goal is to optimize PMMA content, nozzle temperature, raster angle, and printing speed to enhance shape memory properties and mechanical strength. The materials, PLA and PMMA, are melt-blended and 4D printed using a pellet-based 3D printer. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Thermal Analysis (DMTA) assess the thermal behavior and compatibility of the blends. The ANN model demonstrates superior prediction accuracy and generalization capability compared to the RSM model. Experimental results show a shape recovery ratio of 100% and an ultimate tensile strength of 65.2 MPa, significantly higher than pure PLA. A bio-screw, 4D printed with optimized parameters, demonstrates excellent mechanical properties and shape memory behavior, suitable for biomedical applications such as orthopaedics and dental implants. This research presents an innovative method for 4D printing PLA/PMMA blends, highlighting their potential in creating advanced, high-performance biocompatible materials for medical use.

8.
Biomimetics (Basel) ; 9(9)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39329552

RESUMO

This review research aims to enhance the sustainability and functionality of shape-memory polymer composites (SMPCs) by integrating advanced 4D printing technologies and sustainable manufacturing practices. The primary objectives are to reduce environmental impact, improve material efficiency, and expand the design capabilities of SMPCs. The methodology involved incorporating recycled materials, bio-based additives, and smart materials into 4D printing processes, and conducting a comprehensive environmental impact and performance metrics analysis. Significant findings include a 30% reduction in material waste, a 25% decrease in energy consumption during production, and a 20% improvement in shape-memory recovery with a margin of error of ±3%. Notably, the study highlights the potential use of these SMPCs as biomimetic structural biomaterials and scaffolds, particularly in tissue engineering and regenerative medicine. The ability of SMPCs to undergo shape transformations in response to external stimuli makes them ideal for creating dynamic scaffolds that mimic the mechanical properties of natural tissues. This increased design flexibility, enabled by 4D printing, opens new avenues for developing complex, adaptive structures that support cell growth and tissue regeneration. In conclusion, the research demonstrates the potential of combining sustainable practices with 4D printing to achieve significant environmental, performance, and biomedical advancements in SMPC manufacturing.

9.
Small ; : e2406358, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254280

RESUMO

4D printing (4DP) of high-performance shape memory polymers (SMPs), particularly using digital light processing (DLP), has garnered intense global attention due to its capability for rapid and high-precision fabrication of complex configurations, meeting diverse application requirements. However, the development of high-performance dynamic shape memory polymers (DSMPs) for DLP printing remains a significant challenge due to the inherent incompatibilities between the photopolymerization process and the curing/polymerization of high-strength polymers. Here, a mechanically robust DSMP compatible is developed with DLP printing, which incorporates dynamic covalent bonds of imine linking polyimide rigid segments, exhibiting remarkable mechanical performance (tensile strength ≈41.7 MPa, modulus ≈1.63 GPa) and thermal stability (Tg ∼ 113 °C, Td ∼ 208 °C). More importantly, benefiting from the solid-state plasticity conferred by dynamic covalent bonds, 4D printed structures demonstrate rapid network adaptiveness, enabling effortless realization of reconfiguration, self-healing, and recycling. Meanwhile, the extensive π-π conjugated structures bestow DSMP with an intrinsic photothermal effect, allowing controllable morphing of the 4D configuration through dual-mode triggering. This work not only greatly enriches the application scope of high-performance personalized configurations but also provides a reliable approach to addressing environmental pollution and energy crises.

10.
Natl Sci Rev ; 11(10): nwae106, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39309978

RESUMO

Bio-inspired fibrillar adhesives have received worldwide attention but their potentials have been limited by a trade-off between adhesion strength and adhesion switchability, and a size scale effect that restricts the fibrils to micro/nanoscales. Here, we report a class of adhesive fibrils that achieve unprecedented adhesion strength (∼2 MPa), switchability (∼2000), and scalability (up to millimeter-scale at the single fibril level), by leveraging the rubber-to-glass (R2G) transition in shape memory polymers (SMPs). Moreover, R2G SMP fibrillar adhesive arrays exhibit a switchability of >1000 (with the aid of controlled buckling) and an adhesion efficiency of 57.8%, with apparent contact area scalable to 1000 mm2, outperforming existing fibrillar adhesives. We further demonstrate that the SMP fibrillar adhesives can be used as soft grippers and reusable superglue devices that are capable of holding and releasing heavy objects >2000 times of their own weight. These findings represent significant advances in smart fibrillar adhesives for numerous applications, especially those involving high-payload scenarios.

11.
Adv Mater ; 36(39): e2408324, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39097949

RESUMO

Shape memory polymers (SMPs) show attractive prospects in emerging fields such as soft robots and biomedical devices. Although their typical trigger-responsive character offers the essential shape-changing controllability, having to access external stimulation is a major bottleneck toward many applications. Recently emerged autonomous SMPs exhibit unique stimuli-free shape-shifting behavior with its controllability achieved via a delayed and programmable recovery onset. Achieving multi-shape morphing in an arbitrary fashion, however, is infeasible. In this work, a molecular design that allows to spatio-temporally define the recovery onset of an autonomous shape memory hydrogel (SMH) is reported. By introducing nitrocinnamate groups onto an SMH, its crosslinking density can be adjusted by light. This affects greatly the phase separation kinetics, which is the basis for the autonomous shape memory behavior. Consequently, the recovery onset can be regulated between 0 to 85 min. With masked light, multiple recovery onsets in an arbitrarily defined pattern which correspondingly enable multi-shape morphing can be realized. This ability to achieve highly sophisticated morphing without relying on any external stimulation greatly extends the versatility of SMPs.

12.
Adv Sci (Weinh) ; 11(39): e2407596, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39140246

RESUMO

Inspired by the Mimosa plant, this study herein develops a unique dynamic shape memory polymer (SMP) network capable of transitioning from hard to pliable with heat, featuring reversible actuation, self-healing, recyclability, and degradability. This material is adept at simulating the functionalities of artificial muscles for a variety of tasks, with a remarkable specific energy density of 1.8 J g-1-≈46 times higher than that of human skeletal muscle. As an intelligent manipulator, it demonstrates remarkable proficiency in identifying and handling items at high temperatures. Its suitable rate of shape recovery around human body temperature indicates its promising utility as an implant material for addressing acute obstructions. The dynamic covalent bonding within the network structure not only provides excellent resistance to solvents but also bestows remarkable abilities for self-healing, reprocessing, and degradation. These attributes significantly boost its practicality and environmental sustainability. Anticipated to promote advancements in the sectors of biomedical devices, soft robotics, and smart actuators, this SMP network represents a forward leap in simulating artificial muscles, marking a stride toward the future of adaptive and sustainable technology.

13.
Acta Biomater ; 187: 172-182, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39214160

RESUMO

There is an urgent critical need for a patient-forward vaginal stent that can prevent debilitating vaginal stenosis that occurs after pelvic radiation treatments and vaginal reconstruction. To this end, we developed a self-fitting vaginal stent based on a shape-memory polymer (SMP) foam that can assume a secondary, compressed shape for ease of deployment. Upon insertion, the change in temperature and hydration initiates foam expansion to shape fit to the individual patient and restore the lumen of the stent to allow egress of vaginal secretions. To achieve rapid actuation at physiological temperature, we investigated the effect of architecture of two photocurable, polycaprolactone (PCL) macromers. Star-PCL-tetraacrylate displayed a reduced melting temperature as compared to a linear-PCL-diacrylate. Upon fabrication into high porosity foams with emulsion-templating, both compositions displayed shape fixity (>90 %) in a crimped, temporary shape. However, only the PCL star-foams displayed shape recovery (∼84 %) at 37 °C with expansion back to its permanent shape. A custom mold and curing system were then used to fabricate the PCL star-foams into hollow, cylindrical stents. The stent was crimped to its temporary insertion shape (50 % reduction in diameter, OD ∼ 11 mm) with a custom radial crimper and displayed excellent shape fixity for deployment (> 95 %) and shape recovery (∼ 100 %). To screen vaginal stents, we developed a custom benchtop pelvic model that simulated vaginal anatomy, temperatures, and pressures with an associated computational model. The crimped SMP vaginal stent was deployed in the model and expanded to walls of the canal (∼70 % increase in cross-sectional area) in less than 5 min after irrigation with warm water. The vaginal stent demonstrated retention of vaginal caliber with less than 10 % decrease in cross-sectional area under physiological pressures. Collectively, this work demonstrates the potential for SMP foams as self-fitting vaginal stents to prevent stenosis and provides new open-source tools for the iterative design of other gynecological devices. STATEMENT OF SIGNIFICANCE: Vaginal stenosis, a painful narrowing of the vaginal canal, is a common complication after pelvic radiation therapy or reconstructive surgery. To address this clinical need, we have created a self-fitting vaginal stent from a shape-memory polymer foam. The stent compresses for easy insertion and then expands to adapt to each patient's anatomy to maintain an open vaginal canal and prevent stenosis. This innovative stent provides a patient-friendly solution that could make a significant difference for women undergoing pelvic treatments by reducing pain, aiding recovery, and improving quality of life.


Assuntos
Poliésteres , Stents , Vagina , Feminino , Poliésteres/química , Humanos , Materiais Inteligentes/química
14.
Micromachines (Basel) ; 15(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38930718

RESUMO

For the past two decades, researchers have been exploring the potential benefits of combining shape-memory polymers (SMP) with carbon nanotubes (CNT). By incorporating CNT as reinforcement in SMP, they have aimed to enhance the mechanical properties and improve shape fixity. However, the remarkable intrinsic properties of CNT have also opened up new paths for actuation mechanisms, including electro- and photo-thermal responses. This opens up possibilities for developing soft actuators that could lead to technological advancements in areas such as tissue engineering and soft robotics. SMP/CNT composites offer numerous advantages, including fast actuation, remote control, performance in challenging environments, complex shape deformations, and multifunctionality. This review provides an in-depth overview of the research conducted over the past few years on the production of SMP/CNT composites with both thermoset and thermoplastic matrices, with a focus on the unique contributions of CNT to the nanocomposite's response to external stimuli.

15.
Polymers (Basel) ; 16(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794591

RESUMO

This study introduces novel PETG-ABS-Fe3O4 nanocomposites that offer impressive 3D- and 4D-printing capabilities. These nanocomposites can be remotely stimulated through the application of a temperature-induced magnetic field. A direct granule-based FDM printer equipped with a pneumatic system to control the output melt flow is utilized to print the composites. This addresses challenges associated with using a high weight percentage of nanoparticles and the lack of control over geometry when producing precise and continuous filaments. SEM results showed that the interface of the matrix was smooth and uniform, and the increase in nanoparticles weakened the interface of the printed layers. The ultimate tensile strength (UTS) increased from 25.98 MPa for the pure PETG-ABS sample to 26.3 MPa and 27.05 MPa for the 10% and 15% Fe3O4 nanocomposites, respectively. This increase in tensile strength was accompanied by a decrease in elongation from 15.15% to 13.94% and 12.78%. The results of the shape-memory performance reveal that adding iron oxide not only enables indirect and remote recovery but also improves the shape-memory effect. Improving heat transfer and strengthening the elastic component can increase the rate and amount of shape recovery. Nanocomposites containing 20% iron oxide demonstrate superior shape-memory performance when subjected to direct heat stimulation and a magnetic field, despite exhibiting low print quality and poor tensile strength. Smart nanocomposites with magnetic remote-control capabilities provide opportunities for 4D printing in diverse industries, particularly in medicine, where rapid speed and remote control are essential for minimally invasive procedures.

16.
Adv Mater ; 36(27): e2401178, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648568

RESUMO

Shape memory polymers (SMPs) have attracted significant attention and hold vast potential for diverse applications. Nevertheless, conventional SMPs suffer from notable shortcomings in terms of mechanical properties, environmental stability, and energy density, significantly constraining their practical utility. Here, inspired by the structure of muscle fibers, an innovative approach that involves the precise incorporation of subtle, permanent cross-linking within a hierarchical hydrogen bonding supramolecular network is reported. This novel strategy has culminated in the development of covalent and supramolecular shape memory polyurea, which exhibits exceptional mechanical properties, including high stiffness (1347 MPa), strength (82.4 MPa), and toughness (312.7 MJ m-3), ensuring its suitability for a wide range of applications. Furthermore, it boasts remarkable recyclability and repairability, along with excellent resistance to moisture, heat, and solvents. Moreover, the polymer demonstrates outstanding shape memory effects characterized by a high energy density (24.5 MJ m-3), facilitated by the formation of strain-induced oriented nanostructures that can store substantial amounts of entropic energy. Simultaneously, it maintains a remarkable 96% shape fixity and 99% shape recovery. This delicate interplay of covalent and supramolecular bonds opens up a promising pathway to the creation of high-performance SMPs, expanding their applicability across various domains.

17.
Macromol Rapid Commun ; 45(14): e2400105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38623606

RESUMO

Intelligent materials derived from green and renewable bio-based materials garner widespread attention recently. Herein, shape memory polyurethane composite (PUTA/Fe) with fast response to near-infrared (NIR) light is successfully prepared by introducing Fe3+ into the tannic acid-based polyurethane (PUTA) matrix through coordination between Fe3+ and tannic acid. The results show that the excellent NIR light response ability is due to the even distribution of Fe3+ filler with good photo-thermal conversion ability. With the increase of Fe3+ content, the NIR light response shape recovery rate of PUTA/Fe composite films is significantly improved, and the shape recovery time is reduced from over 60 s to 40 s. In addition, the mechanical properties of PUTA/Fe composite film are also improved. Importantly, owing to the dynamic phenol-carbamate network within the polymer matrix, the PUTA/Fe composite film can reshape its permanent shape through topological rearrangement and show its good NIR light response shape memory performance. Therefore, PUTA/Fe composites with high content of bio-based material (TA content of 15.1-19.4%) demonstrate the shape memory characteristics of fast response to NIR light; so, it will have great potential in the application of new intelligent materials including efficient and environmentally friendly smart photothermal responder.


Assuntos
Carbamatos , Raios Infravermelhos , Ferro , Poliuretanos , Taninos , Taninos/química , Poliuretanos/química , Ferro/química , Carbamatos/química , Fenóis/química , Fenol/química , Materiais Inteligentes/química , Polifenóis
18.
Polymers (Basel) ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38475293

RESUMO

Surface wrinkling provides an approach to fabricate micron and sub-micron-level biomaterial topographies that can mimic features of the dynamic, in vivo cell environment and guide cell adhesion, alignment, and differentiation. Most wrinkling research to date has used planar, two-dimensional (2D) substrates, and wrinkling work on three-dimensional (3D) structures has been limited. To enable wrinkle formation on architecturally complex, biomimetic 3D structures, here, we report a simple, low-cost experimental wrinkling approach that combines natural silk fibroin films with a recently developed advanced manufacturing technique for programming strain in complex 3D shape-memory polymer (SMP) scaffolds. By systematically investigating the influence of SMP programmed strain magnitude, silk film thickness, and aqueous media on wrinkle morphology and stability, we reveal how to generate and tune silk wrinkles on the micron and sub-micron scale. We find that increasing SMP programmed strain magnitude increases wavelength and decreases amplitudes of silk wrinkled topographies, while increasing silk film thickness increases wavelength and amplitude. Silk wrinkles persist after 24 h in cell culture medium. Wrinkled topographies demonstrate high cell viability and attachment. These findings suggest the potential for fabricating biomimetic cellular microenvironments that can advance understanding and control of cell-material interactions in engineering tissue constructs.

19.
Heliyon ; 10(5): e26268, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444474

RESUMO

Minimally invasive surgery procedures are of utmost relevance in clinical practice. However, the associated mechanical stress on the material poses a challenge for new implant developments. In particular PLLA, one of the most widely used polymeric biomaterials, is limited in its application due to its high brittleness and low elasticity. In this context, blending is a conventional method of improving the performance of polymer materials. However, in implant applications and development, material selection is usually limited to the use of medical grade polymers. The focus of this work was to investigate the extent to which blending poly-l-lactide (PLLA) with low contents of a selection of five commercially available medical grade polyurethanes leads to enhanced material properties. The materials obtained by melt blending were characterized in terms of their morphology and thermal properties, and the mechanical performance of the blends was evaluated taking into account physiological conditions. From these data, we found that mixing PLLA with Pellethane 80A is a promising approach to improve the material's performance, particularly for stent applications. It was found that PLLA/Pellethane blend with 10% polyurethane exhibits considerable plastic deformation before fracture, while pure PLLA fractures with almost no deformation. Furthermore, the addition of Pellethane only leads to a moderate reduction in elongation at yield and yield stress. In addition, dynamic mechanical analysis for three different PLLA/Pellethane ratios was performed to investigate thermally induced shape retention and shape recovery of the blends.

20.
J Biomed Mater Res B Appl Biomater ; 112(2): e35385, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38345190

RESUMO

Insufficient healing of aneurysms following treatment with vascular occlusion devices put patients at severe risk of fatal rupture. Therefore, promoting healing and not just occlusion is vital to enhance aneurysm healing. Following occlusion device implantation, healing is primarily orchestrated by macrophage immune cells, ending with fibroblasts depositing collagen to stabilize the aneurysm neck and dome, preventing rupture. Several modified occlusion devices are available currently on-market. Previous in vivo work demonstrated that modifications of occlusion devices with a shape memory polymer foam had enhanced aneurysm healing outcomes. To better understand cellular response to occlusion devices and improve aneurysm occlusion device design variables, we developed an in vitro assay to isolate prominent interactions between devices and key healing players: macrophages and fibroblasts. We used THP-1 monocyte derived macrophages and human dermal fibroblasts in our cell culture models. Macrophages were allowed device contact with on-market competitor aneurysm occlusion devices for up to 96 h, to allow for any spontaneous device-driven macrophage activation. Macrophage secreted factors were captured in the culture media, in response to device-specific activation. Fibroblasts were then exposed to device-conditioned macrophage media (with secreted factors alone), to determine if there were any device-induced changes in collagen secretion. Our in vitro studies were designed to test the direct effect of devices on macrophage activation, and the indirect effect of devices on collagen secretion by fibroblasts to promote aneurysm healing and stabilization. Over 96 h, macrophages displayed significant migration toward and interaction with all tested devices. As compared to other devices, shape memory polymer foams (SMM, Shape Memory Medical) induced significant changes in gene expression indicating a shift toward an anti-inflammatory pro-healing M2-like phenotype. Similarly, macrophages in contact with SMM devices secreted more vascular endothelial growth factor (VEGF) compared with other devices. Macrophage conditioned media from SMM-contacted macrophages actively promoted fibroblast secretion of collagen, comparable to amounts observed with exogenous stimulation via VEGF supplementation. Our data indicate that SMM devices may promote good aneurysm healing outcomes, because collagen production is an essential step to ultimately stabilize an aneurysm.


Assuntos
Aneurisma , Materiais Inteligentes , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Aneurisma/terapia , Colágeno/metabolismo , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Materiais Inteligentes/metabolismo , Fibroblastos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA