RESUMO
Identifying the baseline status and the timing of ecosystem disturbances are essential for restoration programs. The historical bioaccumulation of heavy metals was assessed from an 80-cm-long core from the Manzala Lagoon (Nile Delta). The heavy metal concentrations increased slightly upward and peaked around 1964, after the completion of Aswan High Dam. The metal concentrations of shells are 2-3 times less than those of bulk sediment. The topmost sediments are enriched in Cd, Cu, and Pb above USEPA. Sediment type and sediment grain size have a minor effect on the heavy metal concentration in mollusk shells, suggesting a priority over bulk sediments. Although correlated, the shells of the grazer gastropod Melanoides tuberculata have the highest concentration of all metals relative to the suspension-feeder bivalves Cerastoderma glaucum and Saccostrea cuculata. This was attributed to the influences of the eco-physiological traits, which exert a similar influence on the bioaccumulation process of all metals.
RESUMO
This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 requirement of Kirchhoff-Love-based discretizations. Weak enforcement of coupling conditions is achieved through the symmetric interior penalty method, where the fluxes are computed using their correct variationally consistent expression that was only recently proposed and is unprecedentedly adopted herein in the context of coupling conditions. The constitutive relationship accounts for generically laminated materials, although the proposed tests are conducted under the assumption of uniform thickness and lamination sequence. Numerical experiments assess the method for an isotropic and a laminated plate, as well as an isotropic hyperbolic paraboloid shell from the new shell obstacle course. The boundary conditions and domain force are chosen to reproduce manufactured analytical solutions, which are taken as reference to compute rigorous convergence curves in the L 2 , H 1 , and H 2 norms, that closely approach optimal ones predicted by theory. Additionally, we conduct a final test on a complex structure comprising five intersecting laminated cylindrical shells, whose geometry is directly imported from a STEP file. The results exhibit excellent agreement with those obtained through commercial software, showcasing the method's potential for real-world industrial applications.
RESUMO
Currently, scientific studies have are focusing on environmentally friendly solutions, such as the effective use of waste in new green polymeric materials according to circular economy. Waste valorization is the main driving force for upcoming academic research. In this study, the impact of mussel particle size on reinforced biopoly(terphtalate ethylene) (bPET) is investigated. The waste filler was modified using NaOH. The filler content was 10 wt% and the same for all samples. The strength properties of the materials were determined in static tensile, bending and impact tests. The wetting angle was also analyzed for the obtained biocomposites. A low-cycle dynamic test was carried out to determine changes in dissipation energy and to observe the development of relaxation processes. This present study proves that preparation of new biocomposites based on waste mussels is an effective option in waste management.
RESUMO
Glass ionomer cement (GIC) is one of the most widely used restorative materials for temporary fillings and reconstructions in dentistry, but it has relatively poor mechanical properties that make its use limited, especially in places subject to high pressure. Thus, to extend the applicability of GIC, samples based on SiO2, P2O5, Al2O3, CaF2, and NaF were prepared with the addition of calcium oxide CaO extracted from natural sources (oyster shells) in different ratios of 0, 5, 10, 15, 20, and 25% wt. The suggested glass samples were evaluated, and their physical and mechanical properties were compared. XRD, SEM, and FTIR were performed on the samples. 24 specimens were prepared for each test in order to assess the mechanical properties as per the specific requirements. The tests included measuring bending strength, elastic modulus, adjusted direct tensile strength, absorption, water solubility, and diffusion coefficients after the specimens were stored in distilled water for 60 days. All calculations were carried out in accordance with standard procedures. The findings indicated a slight improvement in the bending resistance of the recommended GIC. Glass modified with 20% by weight of calcium oxide was the best among the ratios in terms of the results obtained and compared to the traditional commercial type. The malleable strength of the sample was 54.121 MPa, while the flexural modulus increased, the tensile strength reached 10.154 MPa, and the solubility was 25.87 µg/mm3 after storage for 60 days. These indicate that the developed material is suitable for use as a dental restoration material when compared to international commercial cement specifications.
Assuntos
Cimentos de Ionômeros de Vidro , Teste de Materiais , Ostreidae , Resistência à Tração , Cimentos de Ionômeros de Vidro/química , Animais , Ostreidae/química , Exoesqueleto/química , Módulo de Elasticidade , Compostos de Cálcio/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Recycling oyster shells-an abundant industrial waste-is essential to reduce marine pollution. Indirect carbonation is promising; however, is cost-prohibitive. This study is a pioneering endeavor to merge indirect carbonation and probiotic encapsulation technologies using oyster shells. Probiotics were encapsulated in the CaCO3 produced through indirect carbonation with oyster shells, and the performance was evaluated. Confocal laser scanning microscopy certified the survival of a substantial proportion of the encased probiotics. Importantly, the majority of the enveloped probiotics demonstrated robust survivability while passing through gastrointestinal and bile fluids. These findings underscore the applicability of oyster shells as an optimal precursor for probiotic encapsulation which is eco-friendly and addresses the challenges faced in industrial waste recycling. This novel approach overcomes the economic limitations associated with indirect carbonation and mitigates the shortcomings of existing probiotic encapsulation methods. Convergence of indirect carbonation and probiotic encapsulation technologies can chart new routes for the environmental sector.
Assuntos
Exoesqueleto , Ostreidae , Probióticos , Animais , Exoesqueleto/química , Carbonato de Cálcio/química , Reciclagem , Resíduos IndustriaisRESUMO
Quantum information processing demands efficient quantum light sources (QLS) capable of producing high-fidelity single photons or entangled photon pairs. Single epitaxial quantum dots (QDs) have long been proven to be efficient sources of deterministic single photons; however, their production via molecular-beam epitaxy presents scalability challenges. Conversely, colloidal semiconductor QDs offer scalable solution processing and tunable photoluminescence, but suffer from broader linewidths and unstable emissions. This leads to spectrally inseparable emission from exciton (X) and biexciton (XX) states, complicating the production of single photons and triggered photon pairs. Here, we demonstrate that colloidal semiconductor quantum shells (QSs) achieve significant spectral separation (â¼75-80 meV) and long temporal stability of X and XX emissive states, enabling the observation of exciton-biexciton bunching in colloidal QDs. Our low-temperature single-particle measurements show cascaded XX-X emission of single photon pairs for over 200 s, with minimal overlap between X and XX features. The X-XX distinguishability allows for an in-depth theoretical characterization of cross-correlation strength, placing it in perspective with photon pairs of epitaxial counterparts. These findings highlight a strong potential of semiconductor quantum shells for applications in quantum information processing.
RESUMO
The present study reports the green synthesis of cellulose nanocrystals from the shells of Sterculia foetida (SFS) cellulose. Three different methods, alkali, acid and organic acid, were screened for the maximum cellulose extraction. A maximum cellulose yield, 30.6 ± 0.84 w/w, was obtained using 90% formic acid at 110 °C in 120 min. The extracted cellulose was characterized and identified by instrumental analyses. SEM analysis showed skeletal rod-like microfibril structures and similar intra-fibrillar widths. CP/MAS 13C NMR and FTIR spectrum revealed the purity of cellulose and the absence of other components like hemicellulose and lignin. XRD study revealed a cellulose crystallinity index of 88.07%. BET analysis showed a good surface area (3.3213 m2/g) and a micro-pore area of 1.871 m2/g. The cellulose nanocrystals were synthesized from the extracted cellulose using deep eutectic solvents (DES), choline chloride and lactic acid (1:2 ratio). The cellulose nanocrystals (CNC) synthesized from DES-based exhibited zeta potential and particle size of -16.7 mV and 576.3 d.nm. DES-synthesized cellulose nanocrystals were spherical-like shapes, as observed from TEM images. The present results exposed that formic acid is an effective and green catalyst for the extraction of cellulose and DES for the sustainable synthesis of CNC.
RESUMO
FHWSB as an integrated absorptive catalyst, based on Walnut shell biochar (WSB) via hydrochloric acid modification and ferrous chloride impregnation, was prepared, reacted with H2O2 to generate active free radicals â¢OH and â¢O2-, which oxidized and degraded about 80% of micro-pollutant sulfamethoxazole (SMX) from water, effectively resolving micro-pollutants' removal being inefficient because of high toxicity, persistence, and bioaccumulation in existed methods. It was clarified the specific degradation pathways and mechanisms of SMX by FHWSB synergistic H2O2 via characterization and analysis assisted DFT calculations. Furthermore, it was found that the toxicity of a series of intermediates produced by SMX degraded continued to decline, consistent with its direction of degradation via toxicological analysis. The work provides a simple and feasible strategy for the effective removal of antibiotic micro-pollutants in aquatic environments.
Assuntos
Carvão Vegetal , Peróxido de Hidrogênio , Sulfametoxazol , Poluentes Químicos da Água , Sulfametoxazol/química , Poluentes Químicos da Água/química , Adsorção , Carvão Vegetal/química , Peróxido de Hidrogênio/química , Anti-Infecciosos/química , Anti-Infecciosos/toxicidade , Juglans/químicaRESUMO
In this work, biochars were used as adsorbents to remove Cu, Cd, and Zn ions in a real stabilized leachate from a controlled landfill. Oak fruit shells biochar (OFSBC) and date palm fibers biochar (DPFBC) were obtained by pyrolysis of oak fruit shells and date palm fibers at 700 °C and 400 °C, respectively. OFSBC and DPFBC showed well-developed structures and high specific surface areas (520.16 m2/g and 470.46 m2/g, respectively). Equilibrium adsorption of heavy metal ions on DPFBC and OFSBC occurred after 4 h and 2 h of stirring. The removal efficiencies of Cu, Cd, and Zn ions were 97.01%, 94.40%, and 80.59% with DPFBC and 90.10%, 88.33%, and 76.16% using OFSBC, respectively. The Avrami fractional order model was appropriate for describing kinetic adsorption. Increasing the dose of adsorbent improves heavy metal ion retention. Thermodynamic tests have proven the spontaneous and endothermic adsorption of these heavy metals. The electrostatic attraction, ion exchange, complexation, metal-π bending, and surface precipitation and pore filling were regarded as the most predominant heavy metal retention mechanisms from the landfill leachate onto the biochar surface. Separately, the DPFBC showed the best performance than OFSBC regarding the improvement of leachate quality. Chemical oxygen demand (COD), biological oxygen demand (BOD5), ammoniacal nitrogen (NH3-N), and phosphorus (P) were respectively removed at an efficiency of 53.57%, 29.17%, 36.07%, and 37.5%, respectively. Thus, the results allow highlighting that the adsorption on DPFBC and OFSBC can be an effective alternative in the practice of landfill leachate treatment.
Assuntos
Carvão Vegetal , Metais Pesados , Poluentes Químicos da Água , Metais Pesados/química , Carvão Vegetal/química , Poluentes Químicos da Água/química , Adsorção , Agricultura , CinéticaRESUMO
By using crawfish shells as the precursor and hydrothermal synthesis, Bovine serum albumin doped carbon dots (BSA@CDs) were prepared without excessive chemical reagents. The relationship between the fluorescence properties of different BSA@CDs and BSA amount was investigated by variouscharacterization techniques. When the amount of BSA added was 30 %, the prepared BSA@CDs' quantum yield (QY) reached 25.01 %, which was the highest. Inner Filter Effect (IFE) suggested that Cr (VI) can selectively quench the fluorescence of BSA@CDs. Cr (VI) can be reduced to Cr (III) by Hydroquinone (HQ), thus recovering the fluorescence. Accordingly, using BSA@CDs as a probe, a "turn-on" fluorescence sensor applied in HQ determination was constructed. The linear range was 10-200 µmol/L and limit of detection (LOD) was 0.18 µmol/L. Further, it has been employed to the determination of HQ in both crawfish tail meat and aquaculture water with good performance.
RESUMO
The substantial deformation exhibited by hyperelastic cylindrical shells under pressurization makes them an ideal platform for programmable inflatable structures. If negative pressure is applied, the cylindrical shell will buckle, leading to a sequence of rich deformation modes, all of which are fully recoverable due to the hyperelastic material choice. While the initial buckling event under vacuum is well understood, here, the post-buckling regime is explored and a region in the design space is identified in which a coupled twisting-contraction deformation mode occurs; by carefully controlling the geometry of our homogeneous shells, the proportion of contraction versus twist can be controlled. Additionally, bending as a post-buckling deformation mode can be unlocked by varying the thickness of our shells across the circumference. Since these soft shells can fully recover from substantial deformations caused by buckling, then these instability-driven deformations are harnessed to build soft machines capable of a programmable sequence of movements with a single actuation input.
RESUMO
The effects of replacing 5-25% of wheat flour (WF) with Taiwanese cocoa bean shells (CBSs) on the physicochemical, antioxidant, starch digestion, and sensory properties of the bread were studied. The lead (0.18) and cadmium (0.77) contents (mg/kg) of the CBSs were below the Codex Alimentarius specifications for cocoa powder. Ochratoxin A and aflatoxins (B1, B2, G1, and G2) were not detected in the CBSs. The CBSs were rich in dietary fiber (42.9%) and bioactive components and showed good antioxidant capacity. The ash, fat, protein, dietary fiber, crumb a* and c*, hardness, chewiness, total phenols, and antioxidant activities of the bread increased with an increasing CBSs level. The starch hydrolysis rate (45.1-36.49%) of the CBS breads at 180 min was lower than that of the control (49.6%). The predicted glycemic index of the bread (CBS20 and CBS25) with 20-25% of the WF replaced with CBSs was classified as a medium-GI food using white bread as a reference. In the nine-point hedonic test, the overall preference scores were highest for control (6.8) and CBS breads, where CBSs replaced 5-10% of WF, with scores of 7.2 and 6.7. CBS20 supplemented with an additional 20-30% water improved its volume, specific volume, and staling rate, but the overall liking score (6.5-7.2) was not significantly different from the control (p > 0.05). Overall, partially replacing wheat flour with CBSs in the production of baked bread can result in a new medium-GI value food containing more dietary fiber, bioactive compounds, and enhanced antioxidant capacity.
RESUMO
The extraction of bioactive compounds from food by-products is one of the most important research areas for the nutraceutical, pharmaceutical, and food industries. This research aimed to evaluate the efficiency of Ultrasound-Assisted Extraction (UAE) and Microwave-Assisted Extraction (MAE), either alone or in combination, of phenolic compounds from cocoa bean shells (CBSs). These extraction techniques were compared with conventional methods, such as under simple magnetic stirring and the Soxhlet apparatus. After the preliminary characterization of the gross composition of CBSs, the total polyphenol content and radical scavenging of extracts obtained from both raw and defatted cocoa bean shells were investigated. Quantification of the main polyphenolic compounds was then performed by RP-HPLC-DAD, identifying flavonoids and phenolic acids, as well as clovamide. The application of MAE and UAE resulted in a similar or superior extraction of polyphenols when compared with traditional methods; the concentration of individual polyphenols was variously influenced by the extraction methods employed. Combining MAE and UAE at 90 °C yielded the highest antiradical activity of the extract. Spectrophotometric analysis confirmed the presence of high-molecular-weight melanoidins, which were present in higher concentrations in the extracts obtained using MAE and UAE, especially starting from raw material. In conclusion, these results emphasize the efficiency of MAE and UAE techniques in obtaining polyphenol-rich extracts from CBS and confirm this cocoa by-product as a valuable biomass for the recovery of antioxidant compounds, with a view to possible industrial scale-up.
RESUMO
Bacterial keratitis (BK) is a severe eye infection commonly associated with Staphylococcus aureus (S. aureus), posing a significant risk to vision, especially among contact lens wearers. This research introduces a novel smart nanoplatform (deMS@cNF), developed from demineralized mussel shells (deMS) and reinforced with chitin (CT) nanofibrils, specifically designed for portable photothermal disinfection of contact lenses. The nanoplatform leverages the photothermal properties of eumelanin in mussel shells (MS), which, when activated by a simple bike flashlight, rapidly heats to temperatures up to 95 °C, effectively destroying bacterial contamination. In vitro tests demonstrate that the nanoplatform is biocompatible and non-toxic, making it suitable for medical applications. This study highlights an innovative approach to converting marine biowaste into a safe, effective, and low-cost portable method for disinfecting contact lenses, showcasing the potential of the deMS@cNF platform for broader antimicrobial applications.
RESUMO
The increasing contamination of water sources by heavy metals necessitates the development of efficient and sustainable adsorption materials. This study evaluates the potential of nano-hydroxyapatite (HA) powders synthesized from chemical reagents (Chem-HA) and clam shells (Bio-HA) as adsorbents for Cu ions in aqueous solutions. Both powders were synthesized using microwave irradiation at 700 W for 5 min, resulting in nano-sized rod-like particles confirmed as HA by X-ray diffraction (XRD). Bio-HA exhibited higher crystallinity (67.5%) compared to Chem-HA (34.9%), which contributed to Bio-HA's superior adsorption performance. The maximum adsorption capacities were 436.8 mg/g for Bio-HA and 426.7 mg/g for Chem-HA, as determined by the Langmuir isotherm model. Kinetic studies showed that the Cu ion adsorption followed the pseudo-second-order model, with Bio-HA achieving equilibrium faster and displaying a higher rate constant (6.39 × 10â»4 g/mg·min) than Chem-HA (5.16 × 10â»4 g/mg·min). Thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic, with Bio-HA requiring less energy (ΔH° = 39.00 kJ/mol) compared to Chem-HA (ΔH° = 43.77 kJ/mol). Additionally, the activation energy for Bio-HA was lower (41.62 kJ/mol) than that for Chem-HA (46.39 kJ/mol), suggesting better energy efficiency. The formation of a new Cu2(OH)PO4 phase after adsorption, as evidenced by XRD, confirmed that the Cu ions replaced the Ca ions in the HA lattice. These findings demonstrate that Bio-HA, derived from natural sources, offers environmental benefits as a recyclable material, enhancing heavy metal removal efficiency while contributing to sustainability by utilizing waste materials and reducing an environmental impact.
RESUMO
This article studies the vibrational behavior of composite conical-cylindrical shells (CCSs) with functionally graded coatings (FGCs) in thermal environments using the first-order shear deformation theory. Firstly, the equivalent material parameters, fundamental frequency, and resonant displacement responses of the CCSs with FGCs are derived using the mixture principle, complex modulus method, and transfer function approach. Then, detailed thermal vibration tests are performed on CCS structures with and without coatings to assess the reliability of the proposed model, revealing that the current model accurately forecasts the thermal vibration behavior of the CCSs with FGCs. Finally, the effect of key parameters on the vibrational properties of the CCSs with FGCs is investigated. The results demonstrate that increasing the functionally graded index, coating thickness, and Young's modulus ratio can greatly enhance the vibration suppression capability of the structure.
RESUMO
Recently, the influence of the concept of environmental sustainability has increased, which includes environmentally friendly measures related to reducing the consumption of petrochemical fuels and converting post-production feedstocks into raw materials for the synthesis of polymeric materials, the addition of which would improve the performance of the final product. In this regard, the development of bio-based polyurethane foams can be carried out by, among other things, modifying polyurethane foams with vegetable or waste fillers. This paper investigates the possibility of using walnut shells (WS) and the mineral fillers vermiculite (V) and perlite (P) as a flame retardant to increase fire safety and thermal stability at higher temperatures. The effects of the fillers in amounts of 10 wt.% on selected properties of the polyurethane composites, such as rheological properties (dynamic viscosity and processing times), mechanical properties (compressive strength, flexural strength, and hardness), insulating properties (thermal conductivity), and flame retardant properties (e.g., ignition time, limiting oxygen index, and peak heat release) were investigated. It has been shown that polyurethane foams containing fillers have better performance properties compared to unmodified polyurethane foams.
RESUMO
Herbicide contamination in aquatic systems has become a global concern due to their long- term persistence, accumulation and health risks to humans. Paraquat, a widely used and cost-effective nonselective herbicide, is frequently applied in agricultural fields for pest control. Consequently, the removal of paraquat from contaminated water is crucial. This research presents a sustainable and environmentally benign method for paraquat removal from aqueous system by integrating wetland plants (Eichhornia crassipes) with biochar derived from melamine-modified palm kernel shells. The prepared biochar was characterized by using various analytical techniques. The effectiveness of biochar in enhancing phytoremediation was evaluated through a series of experiments, showing significant paraquat removal efficiencies of 99.7, 98.3, and 82.8% at different paraquat concentrations 50, 100, and 150 mg L-1, respectively. Additionally, present study examined the impact of biochar on the growth of E. crassipes, highlighting its potential to reduce the toxic effects of paraquat even present at higher concentrations. The paraquat removal mechanism was elucidated, focusing on the synergistic role of biochar adsorption and phytoremediation capability of E. crassipes. This innovative approach is an effective, feasible, sustainable and eco-friendly technique that can contribute to the development of advanced and affordable water remediation processes for widespread application.
The novelty of this study lies in the implementation of combined approach by phytoremediation with biochar modified with melamine. This study highlighted synergistic integration of two concurrent systems. The biochar generated from waste palm kernel shells played a pivotal role in facilitating the plants' survival and resilience against the paraquat toxicity, rather than succumbing to its deleterious effects. This research delineates a robust methodology for the elimination of emerging pollutants, offering researchers a platform to make pioneering advancements in this scientific field for sustainable future.
Assuntos
Biodegradação Ambiental , Carvão Vegetal , Eichhornia , Herbicidas , Paraquat , Triazinas , Poluentes Químicos da Água , Áreas Alagadas , Carvão Vegetal/química , Poluentes Químicos da Água/metabolismo , Herbicidas/metabolismo , Triazinas/metabolismoRESUMO
Solar-based desalination is one of the prominent contributors to overcoming the water scarcity problems in desert areas and a major alternative to fossil fuel-based desalination methods. The present study focuses on utilizing green almond shells (green almond shells) as energy storage materials in tubular solar still (TSS) to enhance water productivity, energy efficiency, and economic and environmental analyses. Further, this study discusses the yearly water output, annual energy efficiency, and economic and environmental analyses. Two different TSS were utilized which consists of conventional TSS (CTSS) without any storage materials and modified TSS with the inclusion of green almond shells (MTSS) in the climatic conditions of Chennai, India. The yearly distilled water output from the CTSS and MTSS was evaluated as 512 and 691.2 kg/m2, respectively. The yearly distilled water output from the MTSS is 26% higher when compared to the CTSS. Furthermore, the maximum monthly energy efficiency of the CTSS and MTSS was 14.4 and 19.44%, respectively. The annual energy efficiency of the CTSS and MTSS is 12.6 and 17.02%, respectively. The economic analysis of the system is also carried out, and the findings show that better economic feasibility is achieved in MTSS considering the INR 5 (Indian Rupees) cost of water. The payback period for MTSS was 12 months, while for CTSS it is calculated to be 20 months. Furthermore, CO2 emission and mitigation have also been evaluated, and the results indicate that the utilization of porous material has increased the emission for MTSS, while CO2 mitigation has been significantly higher as compared to the CTSS system.
Assuntos
Prunus dulcis , Prunus dulcis/química , ÍndiaRESUMO
Waste from non-degradable packaging materials poses a serious environmental risk and has led to interest in developing sustainable bio-based packaging materials. Sustainable packaging materials have been made from diverse naturally derived materials such as bamboo, sugarcane, and corn starch. In this study, we made a sustainable packaging film using chitosan extracted from the biomass of yellow mealworm (Tenebrio molitor) shell waste. The extracted chitosan was used to create films, cross-linked with citric acid (CA) and with the addition of glycerol to impart flexibility, using the solvent casting method. The successful cross-linking was evaluated using Fourier-Transform Infrared (FTIR) analysis. The CA cross-linked mealworm chitosan (CAMC) films exhibited improved water resistance with moisture content reduced from 19.9 to 14.5%. Improved barrier properties were also noted, with a 28.7% and 10.2% decrease in vapor permeability and vapor transmission rate, respectively. Bananas were selected for food preservation, and significant changes were observed over a duration of 10 days. Compared to the control sample, bananas packaged in CAMC pouches exhibited a lesser loss in weight because of excellent barrier properties against water vapor. Moreover, the quality and texture of bananas packaged in CAMC pouch remained intact over the duration of the experiment. This indicates that adding citric acid and glycerol to the chitosan structure holds promise for effective food wrapping and contributes to the enhancement of banana shelf life. Through this study, we concluded that chitosan film derived from mealworm biomass has potential as a valuable resource for sustainable packaging solutions, promoting the adoption of environmentally friendly practices in the food industry.