Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.629
Filtrar
1.
Methods Mol Biol ; 2855: 357-372, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39354318

RESUMO

Shotgun Lipidomics is a robust methodology for the characterization of the lipidome of complex biological samples. This assay is among the most quantitative lipidomics methods and is capable of surveying a wide breadth of lipid subclasses, both neutral and polar. The shortfalls of the technique include limitations in lipid species characterization and computationally demanding data analysis requiring isotopic and isobaric overlap correction. Differential Mobility Spectrometry (DMS) has demonstrated its utility in enabling acyl tail characterization within a Shotgun Lipidomics experiment. Here, we present a workflow for DMS Shotgun Lipidomics that measures 1400 possible lipid species. It utilizes the Shotgun Lipidomics Assistant (SLA) application, an open-source application that supervises the data analysis for an expansive Shotgun Lipidomics experiment.


Assuntos
Lipidômica , Lipídeos , Lipidômica/métodos , Animais , Lipídeos/análise , Lipídeos/química , Software , Fluxo de Trabalho , Mamíferos/metabolismo , Metabolismo dos Lipídeos , Espectrometria de Mobilidade Iônica/métodos , Humanos , Espectrometria de Massas/métodos
2.
Methods Mol Biol ; 2852: 289-309, 2025.
Artigo em Inglês | MEDLINE | ID: mdl-39235751

RESUMO

Next-generation sequencing revolutionized food safety management these last years providing access to a huge quantity of valuable data to identify, characterize, and monitor bacterial pathogens on the food chain. Shotgun metagenomics emerged as a particularly promising approach as it enables in-depth taxonomic profiling and functional investigation of food microbial communities. In this chapter, we provide a comprehensive step-by-step bioinformatical workflow to characterize bacterial ecology and resistome composition from metagenomic short-reads obtained by shotgun sequencing.


Assuntos
Bactérias , Biologia Computacional , Microbiologia de Alimentos , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Metagenômica/métodos , Biologia Computacional/métodos , Microbiologia de Alimentos/métodos , Bactérias/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenoma , Microbiota/genética
3.
Food Chem ; 462: 140966, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197244

RESUMO

Noni fruit has an unpleasant flavour but is highly bioactive. Therefore, it is necessary to clarify the effect of temperature regulation on quality of fermented noni fruit. In the present study, the formation of flavours, amino acid profiles, and iridoid glycosides during noni fruit fermentation at different temperatures were investigated. We initially found that different temperatures affected core microbial communities. The general evolutionary trends of Acetobacter and Gluconobacter were influenced by different temperatures. Furthermore, high temperature helped maintain low octanoic and hexanoic acids. Subsequently, we found that high temperature improved total amino acids and iridoid glycosides. The correlation network analysis revealed that bacterial communities impacted the quality (volatile flavours, amino acid profiles, and iridoid glycosides) of fermented noni fruit. Overall, altering the temperature induced variations in microbial communities and quality during the noni fruit fermentation process. These results are instrumental in the pursuit of quality control in natural fermentation processes.


Assuntos
Aminoácidos , Bactérias , Fermentação , Frutas , Glicosídeos Iridoides , Microbiota , Morinda , Temperatura , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Aminoácidos/metabolismo , Aminoácidos/análise , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Morinda/química , Morinda/metabolismo , Glicosídeos Iridoides/metabolismo , Glicosídeos Iridoides/análise , Glicosídeos Iridoides/química , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Aromatizantes/metabolismo , Aromatizantes/química
4.
BMC Vet Res ; 20(1): 447, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363353

RESUMO

BACKGROUND: Dairy cow milking practices require cleaning and disinfection of the teat skin before and after milking to ensure the safety and quality of milk and prevent intramammary infections. Antimicrobial proteins of natural origin can be valuable alternatives to traditional disinfectants. In a recent field trial, we demonstrated that a teat dip based on a nisin A-producing Lactococcus cremoris (L) had comparable efficacy to conventional iodophor dip (C) in preventing dairy cow mastitis. Here, we present the differential shotgun proteomics investigation of the milk collected during the trial. METHODS: Four groups of quarter milk samples with low (LSCC) and high somatic cell count (HSCC) collected at the beginning (T0) and end (TF) of the trial were analyzed for a total of 28 LSCC (14 LSCC T0 and 14 LSCC TF) and 12 HSCC (6 HSCC T0 and 6 HSCC TF) samples. Milk proteins were digested into peptides, separated by nanoHPLC, and analyzed by tandem mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Tribrid mass spectrometer. The proteins were identified with MaxQuant and interaction networks of the differential proteins were investigated with STRING. The proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD045030. RESULTS: In healthy milk (LSCC), we detected 90 and 80 differential proteins at T0 and TF, respectively. At TF, the Lactococcus group showed higher levels of antimicrobial proteins. In mastitis milk (HSCC), we detected 88 and 106 differential proteins at T0 and TF, respectively. In the Lactococcus group, 14 proteins with antimicrobial and immune defense functions were enriched at TF vs. 4 proteins at T0. Cathelicidins were among the most relevant enriched proteins. Western immunoblotting validation confirmed the differential abundance. CONCLUSIONS: At T0, the proteomic differences observed in healthy milk of the two groups were most likely dependent on physiological variation. On the other hand, antimicrobial and immune defense functions were higher in the milk of cows with mammary gland inflammation of the Lactococcus-treated group. Among other factors, the immunostimulatory action of nisin A might be considered as a contributor.


Assuntos
Lactococcus , Glândulas Mamárias Animais , Leite , Proteoma , Animais , Bovinos , Leite/química , Leite/microbiologia , Feminino , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia , Mastite Bovina/prevenção & controle , Nisina/farmacologia , Desinfetantes/farmacologia , Proteômica , Indústria de Laticínios/métodos , Proteínas do Leite/análise
6.
One Health ; 19: 100902, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39399231

RESUMO

To provide some glimpses on the possibility of shaping the human gut microbiome (GM) through probiotic exchange with natural ecosystems, here we explored the impact of 15 days of daily interaction with horses on the GM of 10 urban-living Italian children. Specifically, the children were in close contact with the horses in an "educational farm", where they spent almost 10 h/day interacting with the animals. The children's GM was assessed before and after the horse interaction using metabarcoding sequencing and shotgun metagenomics, along with the horses' skin, oral and fecal microbiomes. Targeted metabolomic analysis for GM-produced beneficial metabolites (i.e., short-chain fatty acids) in the children's feces was also performed. Interaction with horses facilitated the acquisition of health-related traits in the children's GM, such as increased diversity, enhanced butyrate production and an increase in several health-promoting species considered to be next-generation probiotics. Among these, the butyrate producers Facecalibacterium prausnitzii and F. duncaniae and a species belonging to the order Christensenellales. Interaction with horses was also associated with increased proportions of Eggerthella lenta, Gordonibacter pamelae and G. urolithinfaciens, GM components known to play a role in the bioconversion of dietary plant polyphenols into beneficial metabolites. Notably, no increase in potentially harmful traits, including toxin genes, was observed. Overall, our pilot study provides some insights on the existence of possible health-promoting exchanges between children and horses microbiomes. It lays the groundwork for an implemented and more systematic enrollment effort to explore the full complexity of human GM rewilding through exchange with natural ecosystems, aligning with the One Health approach.

7.
Sci Rep ; 14(1): 23723, 2024 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-39390025

RESUMO

Medication can affect the gut microbiota composition and function. The aim of this study was to investigate connections between use of common non-antibiotic medicines and the gut microbiota composition and function in a large Swedish cohort (N = 2223). Use of 67 medications and polypharmacy (≥ 5 medications), based on self-reported and prescription registry data, were associated with the relative abundance of 881 gut metagenomic species (> 5% prevalence) and 103 gut metabolic modules (GMMs). Altogether, 97 associations of 26 medications with 40 species and of four medications with five GMMs were observed (false discovery rate < 5%). Several earlier findings were replicated like the positive associations of proton pump inhibitors (PPIs) with numerous oral species, and those of metformin with Escherichia species and with lactate consumption I and arginine degradation II. Several new associations were observed between, among others, use of antidepressants, beta-blockers, nonsteroidal anti-inflammatory drugs and calcium channel blockers, and specific species. Polypharmacy was positively associated with Enterococcus faecalis, Bacteroides uniformis, Rothia mucilaginosa, Escherichia coli and Limosilactobacillus vaginalis, and with 13 GMMs. We confirmed several previous findings and identified numerous new associations between use of medications/polypharmacy and the gut microbiota composition and functional potential. Further studies are needed to confirm the new findings.


Assuntos
Microbioma Gastrointestinal , Polimedicação , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Suécia , Idoso , Adulto
8.
FEMS Microbiol Ecol ; 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39400741

RESUMO

The role of the skin microbiome in resistance and susceptibility of wildlife to fungal pathogens has been examined from a taxonomic perspective but skin microbial function, in the context of fungal infection, has yet to be studied. Our objective was to understand effects of a bat fungal pathogen site infection status and course of invasion on skin microbial function. We sampled seven hibernating colonies of Myotis lucifugus covering three-time points over the course of Pseudogymnoascus destructans (Pd) invasion and white nose syndrome (pre-invasion, epidemic and established). Our results support three new hypotheses about Pd and skin functional microbiome: 1) there is an important effect of Pd invasion stage, especially at the epidemic stage; 2) disruption by the fungus at the epidemic stage could decrease anti-fungal functions with potential negative effects on the microbiome and bat health; 3) the collection site might have a larger influence on microbiomes at the pre-invasion stage rather than at epidemic and established stages. Future studies with larger samples size and using meta-omics approaches will help confirm these hypotheses, and determine the influence of the microbiome on wildlife survival to fungal disease.

9.
Nutrients ; 16(19)2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39408280

RESUMO

Background: Peanut consumption could impact cardiometabolic health through gut microbiota, a hypothesis that remains to be investigated. A randomized clinical trial in Vietnam evaluated whether peanut consumption alters gut microbiome communities. Methods: One hundred individuals were included and randomly assigned to the peanut intervention and control groups. A total of 51 participants were provided with and asked to consume 50 g of peanuts daily, while 49 controls maintained their usual dietary intake for 16 weeks. Stool samples were collected before and on the last day of the trial. After excluding 22 non-compliant participants and those who received antibiotic treatment, 35 participants from the intervention and 43 from the control were included in the analysis. Gut microbiota composition was measured by shotgun metagenomic sequencing. Associations of changes in gut microbial diversity with peanut intervention were evaluated via linear regression analysis. Linear mixed-effects models were used to analyze associations of composition, sub-community structure, and microbial metabolic pathways with peanut intervention. We also performed beta regression analysis to examine the impact of peanut intervention on the overall and individual stability of microbial taxa and metabolic pathways. All associations with false discovery rate (FDR)-corrected p-values of <0.1 were considered statistically significant. Results: No significant changes were found in α- and ß-diversities and overall gut microbial stability after peanut intervention. However, the peanut intervention led to lower enrichment of five phyla, five classes, two orders, twenty-four metabolic pathways, and six species-level sub-communities, with a dominant representation of Bifidobacterium pseudocatenulatum, Escherichia coli D, Holdemanella biformis, Ruminococcus D bicirculans, Roseburia inulinivorans, and MGYG-HGUT-00200 (p < 0.05 and FDR < 0.1). The peanut intervention led to the short-term stability of several species, such as Faecalibacterium prausnitzii F and H, and a metabolic pathway involved in nitrate reduction V (p < 0.05; FDR < 0.1), known for their potential roles in human health, especially cardiovascular health. Conclusions: In summary, a 16-week peanut intervention led to significant changes in gut microbial composition, species-level sub-communities, and the short-term stability of several bacteria, but not overall gut microbial diversity and stability. Further research with a larger sample size and a longer intervention period is needed to confirm these findings and investigate the direct impact of gut-microbiome-mediated health effects of peanut consumption. Trial registration: The International Traditional Medicine Clinical Trial Registry (ITMCTR). Registration number: ITMCTR2024000050. Retrospectively Registered 24 April 2024.


Assuntos
Arachis , Fezes , Microbioma Gastrointestinal , Humanos , Masculino , Feminino , Fezes/microbiologia , Adulto , Bactérias/classificação , Bactérias/genética , Vietnã , Dieta , Pessoa de Meia-Idade
10.
Environ Pollut ; 363(Pt 1): 124876, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39383988

RESUMO

Watersheds and estuaries are impacted by multiple anthropogenic stressors that affect their biodiversity and functioning. Assessing their ecological quality has consequently remained challenging for scientists and stakeholders. In this paper, we propose a multidisciplinary approach to identify the stressors in seven small French estuaries located in agricultural watersheds. We collected data from landscape (geography, hydrobiology) to estuary (pollutant chemistry) and fish individual scales (environmental signatures, proteomics). This integrative approach focused on the whole hydrosystems, from river basins to estuaries. To characterize each watershed, we attempted to determine the land use considering geographic indicators (agricultural and urbanised surfaces) and landscape patterns (hedges density and riparian vegetation). Juveniles of European flounder (Platichthys flesus) were captured in September, after an average residence of five summer months in the estuary. Analyses of water, sediments and biota allowed to determine the concentrations of dissolved inorganic nitrogen species, pesticides and trace elements in the systems. Environmental signatures were also measured in flounder tissues. These environmental parameters were used to establish a typology of the watersheds. Furthermore, data from proteomics on fish liver were combined with environmental signatures to determine the responses of fish to stressors in their environments. Differential protein abundances highlighted a dysregulation related to the detoxification of xenobiotics (mainly pesticides) in agricultural watersheds, characterized by intensive cereal and vegetable crops and high livestock. Omics also revealed a dysregulation of proteins associated with the response to hypoxia and heat stress in some estuaries. Furthermore, we highlighted a dysregulation of proteins involved in urea cycle, immunity and metabolism of fatty acids in several systems. Finally, the combination of environmental and molecular signatures appears to be a relevant method to identify the major stressors operating within hydrosystems.

11.
PeerJ ; 12: e17887, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39346050

RESUMO

Background: The Neotropics harbors the largest species richness of the planet; however, even in well-studied groups, there are potentially hundreds of species that lack a formal description, and likewise, many already described taxa are difficult to identify using morphology. Specifically in small mammals, complex morphological diagnoses have been facilitated by the use of molecular data, particularly from mitochondrial sequences, to obtain accurate species identifications. Obtaining mitochondrial markers implies the use of PCR and specific primers, which are largely absent for non-model organisms. Oxford Nanopore Technologies (ONT) is a new alternative for sequencing the entire mitochondrial genome without the need for specific primers. Only a limited number of studies have employed exclusively ONT long-reads to assemble mitochondrial genomes, and few studies have yet evaluated the usefulness of such reads in multiple non-model organisms. Methods: We implemented fieldwork to collect small mammals, including rodents, bats, and marsupials, in five localities in the northern extreme of the Cordillera Central of Colombia. DNA samples were sequenced using the MinION device and Flongle flow cells. Shotgun-sequenced data was used to reconstruct the mitochondrial genome of all the samples. In parallel, using a customized computational pipeline, species-level identifications were obtained based on sequencing raw reads (Whole Genome Sequencing). ONT-based identifications were corroborated using traditional morphological characters and phylogenetic analyses. Results: A total of 24 individuals from 18 species were collected, morphologically identified, and deposited in the biological collection of Universidad EAFIT. Our different computational pipelines were able to reconstruct mitochondrial genomes from exclusively ONT reads. We obtained three new mitochondrial genomes and eight new molecular mitochondrial sequences for six species. Our species identification pipeline was able to obtain accurate species identifications for up to 75% of the individuals in as little as 5 s. Finally, our phylogenetic analyses corroborated the identifications from our automated species identification pipeline and revealed important contributions to the knowledge of the diversity of Neotropical small mammals. Discussion: This study was able to evaluate different pipelines to reconstruct mitochondrial genomes from non-model organisms, using exclusively ONT reads, benchmarking these protocols on a multi-species dataset. The proposed methodology can be applied by non-expert taxonomists and has the potential to be implemented in real-time, without the need to euthanize the organisms and under field conditions. Therefore, it stands as a relevant tool to help increase the available data for non-model organisms, and the rate at which researchers can characterize life specially in highly biodiverse places as the Neotropics.


Assuntos
Genoma Mitocondrial , Mamíferos , Análise de Sequência de DNA , Animais , Mamíferos/genética , Genoma Mitocondrial/genética , Análise de Sequência de DNA/métodos , Nanoporos , Colômbia , DNA Mitocondrial/genética , Filogenia , Quirópteros/genética , Sequenciamento por Nanoporos/métodos
12.
Forensic Sci Int ; 364: 112238, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39340902

RESUMO

Polymers are present in many different products, such as paints, plastics, and rubbers, which are routinely encountered in forensic casework. Comparison of such samples involves an initial visual examination followed by comparison of the chemical compositions of the exhibits. Techniques such as Fourier transform infrared spectroscopy (FTIR) and pyrolysis gas chromatography - mass spectrometry (PyGC-MS) have been reported for determining the chemical compositions of polymers in forensic samples. Double-shot pyrolysis gas chromatography - mass spectrometry (DS-PyGC-MS) is an extension of single-shot pyrolysis gas chromatography - mass spectrometry (SS-PyGC-MS) which is the current PyGC-MS method used in most forensic laboratories. DS-PyGC-MS involves a preliminary thermal desorption GC-MS step, followed by the pyrolysis GC-MS step, with this second step being analogous to SS-PyGC-MS. The pyrolyser furnace operates at a lower temperature during the thermal desorption step, allowing low volatility compounds, such as additives, to be thermally desorbed and detected, minimising interference from the polymeric component of the sample. This pilot study analysed four different polymeric substrates, commonly encountered in forensic casework, by DS-PyGC-MS. The substrates chosen were tyre rubber, road cones, cling film, and shotgun wads. The aim was to investigate whether more chemical information was generated by DS-PyGC-MS compared to SS-PyGC-MS, potentially providing increased discrimination of such samples. Qualitative results showed that tyre rubber and road cones were ideal substrates for DS-PyGC-MS. A wide range of additives were detected in these samples in the thermal desorption step, which were not detected using SS-PyGC-MS. All of the rubber tyres (n=5) and road cones (n=6) were able to be uniquely distinguished using DS-PyGC-MS. Some additional compounds were detected in the thermal desorption analysis of shotgun wads (n=4), providing increased discrimination compared to SS-PyGC-MS. For the cling film samples analysed (n=7) the polyethylene-based cling films (n=6) could not be distinguished from each other, with no compounds detected in the thermal desorption step. The other cling film sample contained a mixture of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) and could easily be distinguished from the polyethylene-based cling films using either SS- or DS-PyGC-MS, or other common analytical methods such as Fourier transform infrared spectroscopy (FTIR). This pilot study has demonstrated that DS-PyGC-MS has the potential to provide more comprehensive chemical composition information for some polymeric substrates and is a promising method for the forensic comparison of polymer evidence.

13.
Diagnostics (Basel) ; 14(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39335716

RESUMO

Vaginitis is a widespread issue for women worldwide, yet current diagnostic tools are lacking. Bacterial vaginosis (BV) is the most prevalent type of vaginitis, found in 10-50% of reproductive-aged women. Current diagnostic methods for BV rely on clinical criteria, microscopy, or the detection of a few microbes by qPCR. However, many vaginal infections lack a single etiological agent and are characterized by changes in the vaginal microbiome community structure (e.g., BV is defined as a loss of protective lactobacilli resulting in an overgrowth of anaerobic bacteria). Shotgun metagenomic sequencing provides a comprehensive view of all the organisms present in the vaginal microbiome (VMB), allowing for a better understanding of all potential etiologies. Here, we describe a robust VMB metagenomics sequencing test with a sensitivity of 93.1%, a specificity of 90%, a negative predictive value of 93.4%, and a positive predictive value of 89.6% certified by Clinical Laboratory Improvement Amendments (CLIA), the College of American Pathologist (CAP), and the Clinical Laboratory Evaluation Program (CLEP). We sequenced over 7000 human vaginal samples with this pipeline and described general findings and comparisons to US census data.

14.
Environ Sci Pollut Res Int ; 31(48): 58363-58374, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39307865

RESUMO

Marine environments are subject to various naturally occurring phenomena, including marine snow and mucilage. In 2021, the rapid emergence of mucilage in the Marmara Sea raised concerns about its environmental impact. This study investigates the microbial communities in mucilage and seawater samples from the Marmara Sea using metagenomic-scale comparative analyses. The results indicate significant differences in microbial composition and diversity, with mucilage samples showing higher levels of polysaccharide biosynthesis-related enzymes. Over 50% of reads in mucilage samples remained unclassified (dark matter), highlighting unknown microbial taxa. Clean seawater was characterized by a higher presence of Euryarchaeota, Proteobacteria, and Rhodothermaeota, while Chlamydiae and Fusobacteria were dominant in mucilage. The study underscores the necessity for comprehensive metagenomic analyses to understand microbial roles in mucilage formation and persistence. Early detection of microbial shifts could serve as a warning system for mucilage outbreaks, aiding in the development of management strategies.


Assuntos
Microbiota , Água do Mar , Água do Mar/microbiologia , Metagenômica , Bactérias/genética
15.
Ecol Evol ; 14(9): e70302, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39290662

RESUMO

Despite a surge in microbiota-focused studies in teleosts, few have reported functional data on whole metagenomes as it has proven difficult to extract high biomass microbial DNA from fish intestinal samples. The zebrafish is a promising model organism in functional microbiota research, yet studies on the functional landscape of the zebrafish gut microbiota through shotgun based metagenomics remain scarce. Thus, a consensus on an appropriate sampling method accurately representing the zebrafish gut microbiota, or any fish species is lacking. Addressing this, we systematically tested four methods of sampling the zebrafish gut microbiota: collection of faeces from the tank, the whole gut, intestinal content, and the application of ventral pressure to facilitate extrusion of gut material. Additionally, we included water samples as an environmental control to address the potential influence of the environmental microbiota on each sample type. To compare these sampling methods, we employed a combination of genome-resolved metagenomics and 16S metabarcoding techniques. We observed differences among sample types on all levels including sampling, bioinformatic processing, metagenome co-assemblies, generation of metagenome-assembled genomes (MAGs), functional potential, MAG coverage, and population level microdiversity. Comparison to the environmental control highlighted the potential impact of the environmental contamination on data interpretation. While all sample types tested are informative about the zebrafish gut microbiota, the results show that optimal sample type for studying fish microbiomes depends on the specific objectives of the study, and here we provide a guide on what factors to consider for designing functional metagenome-based studies on teleost microbiomes.

16.
Int J Pharm ; 665: 124663, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39265854

RESUMO

Elucidation of the role of gut microbiota in the metabolism of orally administered drugs may improve therapeutic effectiveness and contribute to the development of personalized medicine. In this study, ten different artificial gut microbiota (AGM), obtained by culturing fecal samples in a continuous fermentation system, were challenged for their metabolizing capacity on a panel of six glucocorticoids selected from either prodrugs or drugs. Data from metabolic stability assays highlighted that, while the hydrolysis-mediated conversion of prodrugs to drugs represented only a minor metabolic pathway, significant differences in the stability of parent compounds and in their conversion rates to multiple reductive metabolites were obtained for the selected drugs. In the latter case, a taxonomic composition-dependent ability to convert parent drugs to metabolites was observed. Indeed, the artificial microbial communities dominated by the genus Bacteroides showed the maximal conversion of parent glucocorticoids to several metabolites. Furthermore, the effect of drugs on AGM was also evaluated through shallow shotgun sequencing and flow cytometry-based total bacterial cell count highlighting that these drugs can affect both the taxonomic composition and growth performances of the human gut microbiota.


Assuntos
Fezes , Microbioma Gastrointestinal , Glucocorticoides , Microbioma Gastrointestinal/efeitos dos fármacos , Glucocorticoides/metabolismo , Glucocorticoides/administração & dosagem , Humanos , Fezes/microbiologia , Hidrólise , Administração Oral , Pró-Fármacos/metabolismo , Fermentação
17.
World J Microbiol Biotechnol ; 40(10): 327, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39299940

RESUMO

An animal charcoal contaminated cottage industry soil in Lagos, Nigeria (ACGT) was compared in an ex post facto study with a nearby unimpacted soil (ACGC). Hydrocarbon content was higher than regulatory limits in ACGT (180.2 mg/kg) but lower in ACGC (19.28 mg/kg). Heavy metals like nickel, cadmium, chromium and lead were below detection limit in ACGC. However, all these metals, except cadmium, were detected in ACGT, but at concentrations below regulatory limits. Furthermore, copper (253.205 mg/kg) and zinc (422.630 mg/kg) were above regulatory limits in ACGT. Next generation sequencing revealed that the procaryotic community was dominated by bacteria in ACGC (62%) while in ACGT archaea dominated (76%). Dominant phyla in ACGC were Euryarchaeota (37%), Pseudomonadota (16%) and Actinomycetota (12%). In ACGT it was Euryarchaeota (76%), Bacillota (9%), Pseudomonadota (7%) and Candidatus Nanohaloarchaeota (5%). Dominant Halobacteria genera in ACGT were Halobacterium (16%), Halorientalis (16%), unranked halophilic archaeon (13%) Salarchaeum (6%) and Candidatus Nanohalobium (5%), whereas ACGC showed greater diversity dominated by bacterial genera Salimicrobium (7%) and Halomonas (3%). Heavy metals homeostasis genes, especially for copper, were fairly represented in both soils but with bacterial taxonomic affiliations. Sites like ACGT, hitherto poorly studied and understood, could be sources of novel bioresources.


Assuntos
Archaea , Bactérias , Carvão Vegetal , Metais Pesados , Microbiologia do Solo , Poluentes do Solo , Solo , Metais Pesados/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Archaea/metabolismo , Poluentes do Solo/análise , Solo/química , Nigéria , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Hidrocarbonetos/metabolismo , Hidrocarbonetos/análise , RNA Ribossômico 16S/genética , Filogenia
18.
Cureus ; 16(8): e66911, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39280511

RESUMO

In Hungary, possessing certain weapons (e.g. firearms, bows, air pistols, and air guns mainly over 7.5 Joule muzzle velocity) is strictly regulated. In case of firearm deaths, in our country, we usually have to consider the role of military personnel or a hunter. Getting a game license for five years is a complex procedure. Class participation in weapon training, hunter ethics, and rules, first aid, manners of hunting, wild animals' knowledge, wildlife management, game laws, etc. is compulsory besides a prosperous exam at the Hunt Authority. A psychological license is also mandatory. Through permission from the police for a firearm license, buying weapons for hunting is possible. The storage of firearms and cartridges is rigidly controlled and checked. Some special types of hunting (e.g. with a bow, bird of prey) require additional licenses. The fact and the duration of the hunt and all shoots should be registered. The authors report an extraordinary fatal hunting accident because of non-regulation rifle (Blaser R8 338) use (unintentional shot), in which the travel distance of the projectile was more than 2000 m and the victim suffered fatal injuries at his daughter's homeyard. This was a non-target, extreme long-range shot. The ethical range in hunting is within 150 m, a practiced hunter with proper precision tools can shoot accurately within 300-400 m and in extremely rare cases within 700-800 m. Military snipers can operate over a 1000 m distance. Even if this was a targeted shot (with a 2161 m range), not many professionals would have been able to aim at the target. A sequence of accidents was necessary for this fatal case. With the application of X-ray examination and a special layer-by-layer method of forensic autopsy, the bullet, the entry wound, the primary shot channel, and lethal injuries have been revealed. With the help of the found projectile and the rigorous hunting regulations, the alleged perpetrator was identified within a short time.

19.
Front Microbiol ; 15: 1467847, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301187

RESUMO

Actinobacillus pleuropneumoniae, a significant respiratory pig pathogen, is causing substantial losses in the global swine industry. The resistance spectrum of A. pleuropneumoniae is expanding, and multidrug resistance is a severe issue. Horizontal gene transfer (HGT) plays a crucial role in the development of the bacterial genome by facilitating the dissemination of resistance determinants. However, the horizontal transfer of resistance genes via A. pleuropneumoniae-derived outer membrane vesicles (OMVs) has not been previously reported. In this study, we used Illumina NovaSeq and PacBio SequeI sequencing platforms to determine the whole genome sequence of A. pleuropneumoniae GD2107, a multidrug-resistant (MDR) isolate from China. We detected a plasmid in the isolate named pGD2107-1; the plasmid was 5,027 bp in size with 7 putative open reading frames (ORF) and included the floR resistance genes. The carriage of resistance genes in A. pleuropneumoniae OMVs was identified using a polymerase chain reaction (PCR) assay, and then we thoroughly evaluated the influence of OMVs on the horizontal transfer of drug-resistant plasmids. The transfer of the plasmid to recipient bacteria via OMVs was confirmed by PCR. In growth competition experiments, all recipients carrying the pGD2107-1 plasmid exhibited a fitness cost compared to the corresponding original recipients. This study revealed that OMVs could mediate interspecific horizontal transfer of the resistance plasmid pGD2107-1 into Escherichia coli recipient strains and significantly enhance the resistance of the transformants. In summary, A. pleuropneumoniae-OMVs play the pivotal role of vectors for dissemination of the floR gene spread and may contribute to more antimicrobial resistance gene transfer in other Enterobacteriaceae.

20.
BMC Microbiol ; 24(1): 377, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342083

RESUMO

The concept of the gut-kidney axis is gaining significant attention due to the close relationship between gut microbiota and kidney disease. Peritoneal dialysis is recognized as a crucial renal replacement therapy for end-stage renal disease (ESRD). The alterations in gut microbiota and related mechanisms after receiving this dialysis method are not fully understood. This study conducted shotgun metagenomic sequencing on fecal samples from 11 end-stage renal disease patients who did not receive dialysis (ESRD_N) and 7 patients who received peritoneal dialysis (ESRD_P). After quality control and correlation analysis of the data, our study is aimed at exploring the impact of peritoneal dialysis on the gut microbiota and health of ESRD patients. Our research findings indicate that the complexity and aggregation characteristics of gut microbiota interactions increase in ESRD_P. In addition, the gut microbiota drives the biosynthesis pathways of sesquiterpenes and triterpenes in ESRD_P patients, which may contribute to blood purification and improve circulation. Therefore, our research will lay the foundation for the prevention and treatment of ESRD.


Assuntos
Fezes , Microbioma Gastrointestinal , Falência Renal Crônica , Diálise Peritoneal , Sesquiterpenos , Triterpenos , Humanos , Falência Renal Crônica/terapia , Falência Renal Crônica/metabolismo , Falência Renal Crônica/microbiologia , Sesquiterpenos/metabolismo , Masculino , Feminino , Fezes/microbiologia , Pessoa de Meia-Idade , Triterpenos/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Vias Biossintéticas , Adulto , Metagenômica , Idoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA