Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.444
Filtrar
1.
Front Immunol ; 15: 1427475, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38953023

RESUMO

Background: Anoikis is a form of programmed cell death essential for preventing cancer metastasis. In some solid cancer, anoikis resistance can facilitate tumor progression. However, this phenomenon is underexplored in clear-cell renal cell carcinoma (ccRCC). Methods: Using SVM machine learning, we identified core anoikis-related genes (ARGs) from ccRCC patient transcriptomic data. A LASSO Cox regression model stratified patients into risk groups, informing a prognostic model. GSVA and ssGSEA assessed immune infiltration, and single-cell analysis examined ARG expression across immune cells. Quantitative PCR and immunohistochemistry validated ARG expression differences between immune therapy responders and non-responders in ccRCC. Results: ARGs such as CCND1, CDKN3, PLK1, and BID were key in predicting ccRCC outcomes, linking higher risk with increased Treg infiltration and reduced M1 macrophage presence, indicating an immunosuppressive environment facilitated by anoikis resistance. Single-cell insights showed ARG enrichment in Tregs and dendritic cells, affecting immune checkpoints. Immunohistochemical analysis reveals that ARGs protein expression is markedly elevated in ccRCC tissues responsive to immunotherapy. Conclusion: This study establishes a novel anoikis resistance gene signature that predicts survival and immunotherapy response in ccRCC, suggesting that manipulating the immune environment through these ARGs could improve therapeutic strategies and prognostication in ccRCC.


Assuntos
Anoikis , Carcinoma de Células Renais , Neoplasias Renais , Análise de Célula Única , Humanos , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/tratamento farmacológico , Anoikis/efeitos dos fármacos , Neoplasias Renais/imunologia , Neoplasias Renais/genética , Neoplasias Renais/patologia , Prognóstico , Regulação Neoplásica da Expressão Gênica , Resistencia a Medicamentos Antineoplásicos/genética , Microambiente Tumoral/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Transcriptoma , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Linfócitos T Reguladores/imunologia , Perfilação da Expressão Gênica , Masculino , Multiômica
2.
Front Immunol ; 15: 1415736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962012

RESUMO

Background: Neuroblastoma (NB), characterized by its marked heterogeneity, is the most common extracranial solid tumor in children. The status and functionality of mitochondria are crucial in regulating NB cell behavior. While the significance of mitochondria-related genes (MRGs) in NB is still missing in key knowledge. Materials and methods: This study leverages consensus clustering and machine learning algorithms to construct and validate an MRGs-related signature in NB. Single-cell data analysis and experimental validation were employed to characterize the pivotal role of FEN1 within NB cells. Results: MRGs facilitated the classification of NB patients into 2 distinct clusters with considerable differences. The constructed MRGs-related signature and its quantitative indicators, mtScore and mtRisk, effectively characterize the MRGs-related patient clusters. Notably, the MRGs-related signature outperformed MYCN in predicting NB patient prognosis and was adept at representing the tumor microenvironment (TME), tumor cell stemness, and sensitivity to the chemotherapeutic agents Cisplatin, Topotecan, and Irinotecan. FEN1, identified as the most contributory gene within the MRGs-related signature, was found to play a crucial role in the communication between NB cells and the TME, and in the developmental trajectory of NB cells. Experimental validations confirmed FEN1's significant influence on NB cell proliferation, apoptosis, cell cycle, and invasiveness. Conclusion: The MRGs-related signature developed in this study offers a novel predictive tool for assessing NB patient prognosis, immune infiltration, stemness, and chemotherapeutic sensitivity. Our findings unveil the critical function of FEN1 in NB, suggesting its potential as a therapeutic target.


Assuntos
Perfilação da Expressão Gênica , Neuroblastoma , Análise de Célula Única , Transcriptoma , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Mitocôndrias/genética , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Prognóstico
3.
Front Oncol ; 14: 1413273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962272

RESUMO

Background: Angiogenesis plays a pivotal role in colorectal cancer (CRC), yet its underlying mechanisms demand further exploration. This study aimed to elucidate the significance of angiogenesis-related genes (ARGs) in CRC through comprehensive multi-omics analysis. Methods: CRC patients were categorized according to ARGs expression to form angiogenesis-related clusters (ARCs). We investigated the correlation between ARCs and patient survival, clinical features, consensus molecular subtypes (CMS), cancer stem cell (CSC) index, tumor microenvironment (TME), gene mutations, and response to immunotherapy. Utilizing three machine learning algorithms (LASSO, Xgboost, and Decision Tree), we screen key ARGs associated with ARCs, further validated in independent cohorts. A prognostic signature based on key ARGs was developed and analyzed at the scRNA-seq level. Validation of gene expression in external cohorts, clinical tissues, and blood samples was conducted via RT-PCR assay. Results: Two distinct ARC subtypes were identified and were significantly associated with patient survival, clinical features, CMS, CSC index, and TME, but not with gene mutations. Four genes (S100A4, COL3A1, TIMP1, and APP) were identified as key ARCs, capable of distinguishing ARC subtypes. The prognostic signature based on these genes effectively stratified patients into high- or low-risk categories. scRNA-seq analysis showed that these genes were predominantly expressed in immune cells rather than in cancer cells. Validation in two external cohorts and through clinical samples confirmed significant expression differences between CRC and controls. Conclusion: This study identified two ARG subtypes in CRC and highlighted four key genes associated with these subtypes, offering new insights into personalized CRC treatment strategies.

4.
Exp Mol Pathol ; 138: 104915, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38964052

RESUMO

A subset of head and neck squamous cell carcinomas present solely as metastatic disease in the neck and are of unknown primary origin (SCCUP). Most primary tumors will ultimately be identified, usually in the oropharynx. In a minority of cases, the primary site remains elusive. Here, we examine the role of ancillary testing, including mutational signature analysis (MSA), to help identify likely primary sites in such cases. Twenty-two cases of SCCUP in the neck, collected over a 10-year period, were classified by morphology and viral status; including human papillomavirus (HPV) testing by p16 immunohistochemistry (IHC) and RT-qPCR, as well as Epstein-Barr virus (EBV) testing by EBER-ISH. CD5 and c-KIT (CD117) IHC was done to evaluate for possible thymic origin in all virus-negative cases. Whole exome sequencing, followed by MSA, was used to identify UV signature mutations indicative of cutaneous origin. HPV was identified in 12 of 22 tumors (54.5%), favoring an oropharyngeal origin, and closely associated with nonkeratinizing tumor morphology (Fisher's exact test; p = 0.0002). One tumor with indeterminant morphology had discordant HPV and p16 status (p16+/HPV-). All tumors were EBV-negative. Diffuse expression of CD5 and c-KIT was identified in 1 of 10 virus-negative SCCUPs (10%), suggesting a possible ectopic thymic origin rather than a metastasis. A UV mutational signature, indicating cutaneous origin, was identified in 1 of 10 (10%) virus-negative SCCUPs. A cutaneous auricular primary emerged 3 months after treatment in this patient. Primary tumors became clinically apparent in 2 others (1 hypopharynx, 1 hypopharynx/larynx). Thus, after follow-up, 6 tumors remained unclassifiable as to the possible site of origin (27%). Most SCCUPs of the neck in our series were HPV-associated and thus likely of oropharyngeal origin. UV signature mutation analysis and additional IHC for CD5 and c-KIT for possible thymic origin may aid in further classifying virus-negative unknown primaries. Close clinical inspection of hypopharyngeal mucosa may also be helpful, as a subset of primary tumors later emerged at this site.

5.
Eur J Med Res ; 29(1): 358, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970067

RESUMO

Ovarian cancer (OC) was the fifth leading cause of cancer death and the deadliest gynecological cancer in women. This was largely attributed to its late diagnosis, high therapeutic resistance, and a dearth of effective treatments. Clinical and preclinical studies have revealed that tumor-infiltrating CD8+T cells often lost their effector function, the dysfunctional state of CD8+T cells was known as exhaustion. Our objective was to identify genes associated with exhausted CD8+T cells (CD8TEXGs) and their prognostic significance in OC. We downloaded the RNA-seq and clinical data from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. CD8TEXGs were initially identified from single-cell RNA-seq (scRNA-seq) datasets, then univariate Cox regression, the least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression were utilized to calculate risk score and to develop the CD8TEXGs risk signature. Kaplan-Meier analysis, univariate Cox regression, multivariate Cox regression, time-dependent receiver operating characteristics (ROC), nomogram, and calibration were conducted to verify and evaluate the risk signature. Gene set enrichment analyses (GSEA) in the risk groups were used to figure out the closely correlated pathways with the risk group. The role of risk score has been further explored in the homologous recombination repair deficiency (HRD), BRAC1/2 gene mutations and tumor mutation burden (TMB). A risk signature with 4 CD8TEXGs in OC was finally built in the TCGA database and further validated in large GEO cohorts. The signature also demonstrated broad applicability across various types of cancer in the pan-cancer analysis. The high-risk score was significantly associated with a worse prognosis and the risk score was proven to be an independent prognostic biomarker. The 1-, 3-, and 5-years ROC values, nomogram, calibration, and comparison with the previously published models confirmed the excellent prediction power of this model. The low-risk group patients tended to exhibit a higher HRD score, BRCA1/2 gene mutation ratio and TMB. The low-risk group patients were more sensitive to Poly-ADP-ribose polymerase inhibitors (PARPi). Our findings of the prognostic value of CD8TEXGs in prognosis and drug response provided valuable insights into the molecular mechanisms and clinical management of OC.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Prognóstico , RNA-Seq/métodos , Biomarcadores Tumorais/genética , Análise de Célula Única/métodos , Regulação Neoplásica da Expressão Gênica , Análise da Expressão Gênica de Célula Única
6.
Cancer Sci ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970292

RESUMO

The specificity and clinical relevance of cancer-associated fibroblasts (CAFs) in prostate cancer (PCa), as well as the effect of androgen deprivation therapy (ADT) on CAFs, remain to be fully elucidated. Using cell lineage diversity and weighted gene co-expression network analysis (WGCNA), we pinpointed a unique CAF signature exclusive to PCa. The specificity of this CAF signature was validated through single-cell RNA sequencing (scRNA-seq), cell line RNA sequencing, and immunohistochemistry. This signature associates CAFs with tumor progression, elevated Gleason scores, and the emergence of castration resistant prostate cancer (CRPC). Using scRNA-seq on collected samples, we demonstrated that the CAF-specific signature is not altered by ADT, maintaining its peak signal output. Identifying a PCa-specific CAF signature and observing signaling changes in CAFs after ADT lay essential groundwork for further PCa studies.

7.
Neurophysiol Clin ; 54(5): 102985, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38970865

RESUMO

OBJECTIVE: This study aimed to explore the relationships between potential neurophysiological biomarkers and upper limb motor function recovery in stroke patients, specifically focusing on combining two neurophysiological markers: electroencephalography (EEG) and transcranial magnetic stimulation (TMS). METHODS: This cross-sectional study analyzed neurophysiological, clinical, and demographical data from 102 stroke patients from the DEFINE cohort. We searched for correlations of EEG and TMS measurements combined to build a prediction model for upper limb motor functionality, assessed by five outcomes, across five assessments: Fugl-Meyer Assessment (FMA), Handgrip Strength Test (HST), Finger Tapping Test (FTT), Nine-Hole Peg Test (9HPT), and Pinch Strength Test (PST). RESULTS: Our multivariate models agreed on a specific neural signature: higher EEG Theta/Alpha ratio in the frontal region of the lesioned hemisphere is associated with poorer motor outcomes, while increased MEP amplitude in the non-lesioned hemisphere correlates with improved motor function. These relationships are held across all five motor assessments, suggesting the potential of these neurophysiological measures as recovery biomarkers. CONCLUSION: Our findings indicate a potential neural signature of brain compensation in which lower frequencies of EEG power are increased in the lesioned hemisphere, and lower corticospinal excitability is also increased in the non-lesioned hemisphere. We discuss the meaning of these findings in the context of motor recovery in stroke.

8.
Front Immunol ; 15: 1417398, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966636

RESUMO

Introduction: Acute myeloid leukemia (AML) is an aggressive blood cancer with high heterogeneity and poor prognosis. Although the metabolic reprogramming of nicotinamide adenine dinucleotide (NAD) has been reported to play a pivotal role in the pathogenesis of acute myeloid leukemia (AML), the prognostic value of NAD metabolism and its correlation with the immune microenvironment in AML remains unclear. Methods: We utilized our large-scale RNA-seq data on 655 patients with AML and the NAD metabolism-related genes to establish a prognostic NAD metabolism score based on the sparse regression analysis. The signature was validated across three independent datasets including a total of 1,215 AML patients. ssGSEA and ESTIMATE algorithms were employed to dissect the tumor immune microenvironment. Ex vivo drug screening and in vitro experimental validation were performed to identify potential therapeutic approaches for the high-risk patients. In vitro knockdown and functional experiments were employed to investigate the role of SLC25A51, a mitochondrial NAD+ transporter gene implicated in the signature. Results: An 8-gene NAD metabolism signature (NADM8) was generated and demonstrated a robust prognostic value in more than 1,800 patients with AML. High NADM8 score could efficiently discriminate AML patients with adverse clinical characteristics and genetic lesions and serve as an independent factor predicting a poor prognosis. Immune microenvironment analysis revealed significant enrichment of distinct tumor-infiltrating immune cells and activation of immune checkpoints in patients with high NADM8 scores, acting as a potential biomarker for immune response evaluation in AML. Furthermore, ex vivo drug screening and in vitro experimental validation in a panel of 9 AML cell lines demonstrated that the patients with high NADM8 scores were more sensitive to the PI3K inhibitor, GDC-0914. Finally, functional experiments also substantiated the critical pathogenic role of the SLC25A51 in AML, which could be a promising therapeutic target. Conclusion: Our study demonstrated that NAD metabolism-related signature can facilitate risk stratification and prognosis prediction in AML and guide therapeutic decisions including both immunotherapy and targeted therapies.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , NAD , Microambiente Tumoral , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Prognóstico , NAD/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Biomarcadores Tumorais/genética , Feminino , Masculino , Pessoa de Meia-Idade , Regulação Leucêmica da Expressão Gênica , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular Tumoral
9.
Sci Rep ; 14(1): 15395, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965255

RESUMO

The APOBEC/AID family is known for its mutator activity, and recent evidence also supports the potential impact of ADARs. Furthermore, the mutator impacts of APOBEC/ADAR mutations have not yet been investigated. Assessment of pancancer TCGA exomes identified enriched somatic variants among exomes with nonsynonymous APOBEC1, APOBEC3B, APOBEC3C, ADAR, and ADARB1 mutations, compared to exomes with synonymous ones. Principal component (PC) analysis reduced the number of potential players to eight in cancer exomes/genomes, and to five in cancer types. Multivariate regression analysis was used to assess the impact of the PCs on each COSMIC mutational signature among pancancer exomes/genomes and particular cancers, identifying several novel links, including SBS17b, SBS18, and ID7 mainly determined by APOBEC1 mRNA levels; SBS40, ID1, and ID2 by age; SBS3 and SBS16 by APOBEC3A/APOBEC3B mRNA levels; ID5 and DBS9 by DNA repair/replication (DRR) defects; and SBS7a-d, SBS38, ID4, ID8, ID13, and DBS1 by ultraviolet (UV) radiation/ADARB1 mRNA levels. APOBEC/ADAR mutations appeared to potentiate the impact of DRR defects on several mutational signatures, and some factors seemed to inversely affect certain signatures. These findings potentially implicate certain APOBEC/ADAR mutations/mRNA levels in distinct mutational signatures, particularly APOBEC1 mRNA levels in aging-related signatures and ADARB1 mRNA levels in UV radiation-related signatures.


Assuntos
Adenosina Desaminase , Envelhecimento , Mutação , RNA Mensageiro , Proteínas de Ligação a RNA , Raios Ultravioleta , Humanos , Raios Ultravioleta/efeitos adversos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Envelhecimento/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Desaminases APOBEC/genética , Desaminases APOBEC/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Neoplasias/genética , Exoma
10.
Genetics ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946641

RESUMO

APOBEC proteins are cytidine deaminases that restrict the replication of viruses and transposable elements. Several members of the APOBEC3 family, APOBEC3A, APOBEC3B, and APOBEC3H-I, can access the nucleus and cause what is thought to be indiscriminate deamination of the genome, resulting in mutagenesis and genome instability. Although APOBEC3C is also present in the nucleus, the full scope of its deamination target preferences is unknown. By expressing human APOBEC3C in a yeast model system, I have defined the APOBEC3C mutation signature, as well as the preferred genome features of APOBEC3C targets. The APOBEC3C mutation signature is distinct from those of the known cancer genome mutators APOBEC3A and APOBEC3B. APOBEC3C produces DNA strand-coordinated mutation clusters, and APOBEC3C mutations are enriched near the transcription start sites of active genes. Surprisingly, APOBEC3C lacks the bias for the lagging strand of DNA replication that is seen for APOBEC3A and APOBEC3B. The unique preferences of APOBEC3C constitute a mutation profile that will be useful in defining sites of APOBEC3C mutagenesis in human genomes.

11.
Physiol Genomics ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949516

RESUMO

Chilika, a native buffalo breed of the Eastern coast of India, is mainly distributed around the Chilika brackish water lake connected with the Bay of Bengal Sea. This breed possesses a unique ability to delve deep into the salty water of the lake and stay there to feed on local vegetation of saline nature. Adaptation to salinity is a genetic phenomenon, however, the genetic basis underlying the salinity tolerance is still limited in animals specifically in livestock. The present study explores the genetic evolution that unveils the Chilika buffalo's adaptation to the harsh saline habitat (water and food system). For this study, whole genome resequencing data on 18 Chilika buffalo and for comparison 10 Murrah buffalo of normal habitat were generated. For identification of selection sweeps, intrapopulation and interpopulation statistics were employed. A total of 709, 309, 468, and 354 genes were detected having selection sweeps in Chilika buffalo using the nucleotide diversity (θπ), Tajima's D, nucleotide diversity ratio (θπ-ratio), and FST methods, respectively. Further analysis revealed a total of 23 genes including EXOC6B, VPS8, LYPD1, VPS35, CAMKMT, NCKAP5, COMMD1, MYLK3, B3GNT2 were found to be common by all the methods. Furthermore, functional annotation study of identified genes provided pathways such as MAPK signaling, renin secretion, endocytosis, oxytocin signaling pathway, etc. Gene network analysis enlists hub genes, provide insights into their interactions with each other. In conclusion, this study has highlighted the genetic basis underlying the local adaptive function of Chilika buffalo under saline environment.

12.
Sci Rep ; 14(1): 15037, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951569

RESUMO

The NK cell is an important component of the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC), also plays a significant role in PDAC development. This study aimed to explore the relationship between NK cell marker genes and prognosis, immune response of PDAC patients. By scRNA-seq data, we found the proportion of NK cells were significantly downregulated in PDAC and 373 NK cell marker genes were screened out. By TCGA database, we enrolled 7 NK cell marker genes to construct the signature for predicting prognosis in PDAC patients. Cox analysis identified the signature as an independent factor for pancreatic cancer. Subsequently, the predictive power of signature was validated by 6 GEO datasets and had an excellent evaluation. Our analysis of relationship between the signature and patients' immune status revealed that the signature has a strong correlation with immunocyte infiltration, inflammatory reaction, immune checkpoint inhibitors (ICIs) response. The NK cell marker genes are closely related to the prognosis and immune capacity of PDAC patients, and they have potential value as a therapeutic target.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Células Matadoras Naturais , Neoplasias Pancreáticas , Análise de Célula Única , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/mortalidade , Células Matadoras Naturais/imunologia , Prognóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Biomarcadores Tumorais/genética , Análise de Célula Única/métodos , Feminino , Masculino , Regulação Neoplásica da Expressão Gênica , Análise de Sequência de RNA , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Pessoa de Meia-Idade , Idoso , Perfilação da Expressão Gênica
13.
Cell Rep ; 43(7): 114424, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959111

RESUMO

Metabolic reprogramming dictates tumor molecular attributes and therapeutic potentials. However, the comprehensive metabolic characteristics in gastric cancer (GC) remain obscure. Here, metabolic signature-based clustering analysis identifies three subtypes with distinct molecular and clinical features: MSC1 showed better prognosis and upregulation of the tricarboxylic acid (TCA) cycle and lipid metabolism, combined with frequent TP53 and RHOA mutation; MSC2 had moderate prognosis and elevated nucleotide and amino acid metabolism, enriched by intestinal histology and mismatch repair deficient (dMMR); and MSC3 exhibited poor prognosis and enhanced glycan and energy metabolism, accompanied by diffuse histology and frequent CDH1 mutation. The Shandong Provincial Hospital (SDPH) in-house dataset with matched transcriptomic, metabolomic, and spatial-metabolomic analysis also validated these findings. Further, we constructed the metabolic subtype-related prognosis gene (MSPG) scoring model to quantify the activity of individual tumors and found a positive correlation with cuproptosis signaling. In conclusion, comprehensive recognition of the metabolite signature can enhance the understanding of diversity and heterogeneity in GC.

14.
Artigo em Inglês | MEDLINE | ID: mdl-38963643

RESUMO

BACKGROUND: The current understanding of the prognostic significance of B cells and their role in the tumor microenvironment (TME) in esophageal carcinoma (ESCA) is limited. METHODS: We conducted a screening for B-cell-related genes through the analysis of single-cell transcriptome data. Subsequently, we developed a B-cell-related gene signature (BRGrisk) using LASSO regression analysis. Patients from The Cancer Genome Atlas cohort were divided into a training cohort and a test cohort. Patients were categorized into high- and low-risk groups based on their median BRGrisk scores. The overall survival was assessed using the Kaplan-Meier method, and a nomogram based on BRGrisk was constructed. Immune infiltration profiles between the risk groups were also compared. RESULTS: The BRGrisk prognostic model indicated significantly worse outcomes for patients with high BRGrisk scores (p < 0.001). The BRGrisk-based nomogram exhibited good prognostic performance. Analysis of immune infiltration revealed that patients in the high-BRGrisk group had notably higher levels of immune cell infiltration and were more likely to be in an immunoresponsive state. Enrichment analysis showed a strong correlation between the prognostic gene signature and cancer-related pathways. IC50 results indicated that patients in the low-BRGrisk group were more responsive to common drugs compared to those in the high-BRGrisk group. CONCLUSIONS: This study presents a novel BRGrisk that can be used to stratify the prognosis of ESCA patients and may offer guidance for personalized treatment strategies aimed at improving prognosis.

15.
Sci Rep ; 14(1): 15142, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956267

RESUMO

Multiple myeloma (MM) is an incurable hematological malignancy with poor survival. Accumulating evidence reveals that lactylation modification plays a vital role in tumorigenesis. However, research on lactylation-related genes (LRGs) in predicting the prognosis of MM remains limited. Differentially expressed LRGs (DELRGs) between MM and normal samples were investigated from the Gene Expression Omnibus database. Univariate Cox regression and LASSO Cox regression analysis were applied to construct gene signature associated with overall survival. The signature was validated in two external datasets. A nomogram was further constructed and evaluated. Additionally, Enrichment analysis, immune analysis, and drug chemosensitivity analysis between the two groups were investigated. qPCR and immunofluorescence staining were performed to validate the expression and localization of PFN1. CCK-8 and flow cytometry were performed to validate biological function. A total of 9 LRGs (TRIM28, PPIA, SOD1, RRP1B, IARS2, RB1, PFN1, PRCC, and FABP5) were selected to establish the prognostic signature. Kaplan-Meier survival curves showed that high-risk group patients had a remarkably worse prognosis in the training and validation cohorts. A nomogram was constructed based on LRGs signature and clinical characteristics, and showed excellent predictive power by calibration curve and C-index. Moreover, biological pathways, immunologic status, as well as sensitivity to chemotherapy drugs were different between high- and low-risk groups. Additionally, the hub gene PFN1 is highly expressed in MM, knocking down PFN1 induces cell cycle arrest, suppresses cell proliferation and promotes cell apoptosis. In conclusion, our study revealed that LRGs signature is a promising biomarker for MM that can effectively early distinguish high-risk patients and predict prognosis.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Mieloma Múltiplo , Profilinas , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/mortalidade , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/patologia , Prognóstico , Profilinas/genética , Profilinas/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Nomogramas , Proliferação de Células/genética , Perfilação da Expressão Gênica , Estimativa de Kaplan-Meier , Linhagem Celular Tumoral , Transcriptoma , Apoptose/genética , Pessoa de Meia-Idade
16.
Int J Biol Sci ; 20(9): 3497-3514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993569

RESUMO

Resistance to HER2-targeted therapy is the major cause of treatment failure in patients with HER2+ breast cancer (BC). Given the key role of immune microenvironment in tumor development, there is a lack of an ideal prognostic model that fully accounts for immune infiltration. In this study, WGCNA analysis was performed to discover the relationship between immune-related signaling and prognosis of HER2+ BC. After Herceptin-resistant BC cell lines established, transcriptional profiles of resistant cell line and RNA-sequencing data from GSE76360 cohort were analyzed for candidate genes. 85 samples of HER2+ BC from TCGA database were analyzed by the Cox regression, XGBoost and Lasso algorithm to generalize a credible immune-related prognostic index (IRPI). Correlations between the IRPI signature and tumor microenvironment were further analyzed by multiple algorithms, including single-cell RNA sequencing data analysis. Patients with high IRPI had suppressive tumor immune microenvironment and worse prognosis. The suppression of type I interferon signaling indicated by the IRPI in Herceptin-resistant HER2+ BC was validated. And we elucidated that the suppression of cGAS-STING pathway is the key determinant underlying immune escape in Herceptin-resistant BC with high IRPI. A combination of STING agonist and DS-8201 could serve as a new strategy for Herceptin-resistant HER2+ BC.


Assuntos
Neoplasias da Mama , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana , Nucleotidiltransferases , Receptor ErbB-2 , Trastuzumab , Microambiente Tumoral , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Feminino , Trastuzumab/uso terapêutico , Trastuzumab/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Transdução de Sinais , Linhagem Celular Tumoral , Prognóstico , Regulação Neoplásica da Expressão Gênica
17.
Heliyon ; 10(12): e33092, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38994057

RESUMO

Objective: This study aimed to explore disulfidptosis-related clusters of triple-negative breast cancer (TNBC) and build a reliable disulfidptosis-related gene signature for forecasting TNBC prognosis. Methods: The disulfidptosis-related clusters of TNBC were identified based on public datasets, and a comparative analysis was conducted to assess their differences in the overall survival (OS) and immune cell infiltration. Morever, the differentially expressed genes (DEGs) between clusters were recognized. Then, the prognostic DEGs were then chosen. A prognostic signature was constructed by the prognostic DEGs, followed by nomogram construction, drug sensitivity, immune correlation, immunotherapy response prediction, and cluster association analyses. Results: Two disulfidptosis-related clusters of TNBC were identified, which had different OS and macrophage infiltration. Moreover, 235 DEGs were identified between two clusters. A prognostic signature was then constructed by five prognostic DEGs including HLA-DQA2, CCL13, GBP1, LAMP3, and SLC7A11. This signature was highly valuable in predicting prognosis. A nomogram was built by risk score and AJCC stage, which could forecast OS accurately. Moreover, patients with high-risk scores exhibited greater sensitivity to chemotherapy drugs such as lapatinib and had a lower immunotherapy response. Conclusions: Two TNBC clusters linked to disulfidptosis were identified, with different OS and immune cell infiltration. Moreover, a five-disulfidptosis-related gene signature may be a powerful prognostic biomarker for TNBC.

18.
JID Innov ; 4(4): 100286, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994234

RESUMO

Basal cell carcinoma (BCC) is classified histologically into subtypes that determine treatment decisions. MicroRNAs (miRs) are short noncoding RNAs that may serve as diagnostic biomarkers. We investigated if particular miRs could distinguish BCC subtypes. We sequenced miRs from 55 archival BCC and 9 control skin specimens and then validated these miRs by qRT-PCR assay on a second BCC cohort (18 superficial, 16 nodular, 15 infiltrative) and control skin (n = 12). Expression values for individual miRs were normalized to miR-16-5p, which was the least variant among the control skin and BCC samples. We found that (i) miR-383-5p and miR-145-5p are downregulated in all BCC subtypes compared with control skin, (ii) miR-181c-5p is downregulated in superficial compared with invasive (nodular/infiltrative) BCC, and (iii) miR-22-5p and miR-708-5p are upregulated in infiltrative compared with superficial/nodular BCC and miR-30c-5p is downregulated in infiltrative compared with nodular BCC. Receiver operating characteristic analysis demonstrated excellent capacity of these miRs to discriminate between BCC and control skin (area under the curve, 0.94-0.98), whereas the capacity to discriminate between superficial and invasive subtypes was less robust (area under the curve, 0.7-0.8). Future prospective studies may determine the utility of these miRs as diagnostic biomarkers to guide biopsy and treatment of BCC.

19.
J Thorac Dis ; 16(6): 3967-3989, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983159

RESUMO

Background: Esophageal squamous cell carcinoma (ESCC) has a poor early detection rate, prognosis, and survival rate. Effective prognostic markers are urgently needed to assist in the prediction of ESCC treatment outcomes. There is accumulating evidence of a strong relationship between cancer cell growth and amino acid metabolism. This study aims to determine the relationship between amino acid metabolism and ESCC prognosis. Methods: This study comprehensively evaluates the association between amino acid metabolism-related gene (AAMRG) expression profiles and the prognosis of ESCC patients based on data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to verify the expression of prognosis-related genes. Results: A univariate Cox regression analysis of TCGA data identified 18 prognosis-related AAMRGs. The gene expression profiles of 90 ESCC tumor and normal tissues were obtained from the GSE20347 and GSE67269 datasets. Two differently expressed genes (DEGs) were considered as ESCC prognosis-related genes; and they were branched-chain amino acid transaminase 1 (BCAT1) and methylmalonic aciduria and homocystinuria type C protein (MMACHC). These two AAMRGs were used to develop a novel AAMRG-related gene signature to predict 1- and 2-year prognostic risk in ESCC patients. Both BCAT1 and MMACHC expression were verified by RT-qPCR. A prognostic nomogram that incorporated clinical factors and BCAT1 and MMACHC gene expression was constructed, and the calibration plots showed that it had good prognostic performance. Conclusions: The AAMRG signature established in our study is efficient and could be used in clinical settings to predict the early prognosis of ESCC patients.

20.
Comput Struct Biotechnol J ; 24: 464-475, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38983753

RESUMO

The discovery of novel therapeutic targets, defined as proteins which drugs can interact with to induce therapeutic benefits, typically represent the first and most important step of drug discovery. One solution for target discovery is target repositioning, a strategy which relies on the repurposing of known targets for new diseases, leading to new treatments, less side effects and potential drug synergies. Biological networks have emerged as powerful tools for integrating heterogeneous data and facilitating the prediction of biological or therapeutic properties. Consequently, they are widely employed to predict new therapeutic targets by characterizing potential candidates, often based on their interactions within a Protein-Protein Interaction (PPI) network, and their proximity to genes associated with the disease. However, over-reliance on PPI networks and the assumption that potential targets are necessarily near known genes can introduce biases that may limit the effectiveness of these methods. This study addresses these limitations in two ways. First, by exploiting a multi-layer network which incorporates additional information such as gene regulation, metabolite interactions, metabolic pathways, and several disease signatures such as Differentially Expressed Genes, mutated genes, Copy Number Alteration, and structural variants. Second, by extracting relevant features from the network using several approaches including proximity to disease-associated genes, but also unbiased approaches such as propagation-based methods, topological metrics, and module detection algorithms. Using prostate cancer as a case study, the best features were identified and utilized to train machine learning algorithms to predict 5 novel promising therapeutic targets for prostate cancer: IGF2R, C5AR, RAB7, SETD2 and NPBWR1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA