Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39204516

RESUMO

To reduce production costs and enhance the high-temperature resistance of SiO2 aerogels, an aluminum-doped silica aerogel (ASA) was successfully prepared using the sol-gel method and atmospheric drying method. The composite silica sources included TEOS and inexpensive acidic silica sol, while the aluminum source was aluminum sol. The study investigated the influence of the molar ratio of acidic silica sol to TEOS, Al/Si, and calcination temperature on the composition, structure, and high-temperature resistance of the ASA. The results indicate that a sample with an acidic silica sol to TEOS molar ratio of 0.8 achieved a specific surface area of 683.204 m2·g-1. The Al/Si molar ratio significantly impacted the high-temperature resistance of the ASA, with the sample having a molar ratio of 0.02 Al/Si displaying the highest specific surface area of 705.956 m2·g-1 at 600 °C. Moreover, this surface area remained at 273.099 m2·g-1 after calcination at 1000 °C, notably higher than the sample without aluminum sol (16.082 m2·g-1). Mechanism analysis indicated that the addition of aluminum sol to the SiO2 aerogel inhibited phase transitions, and both acidic silica sol and aluminum sol particles enhanced the aerogel structure, contributing to a marked improvement in high-temperature resistance.

2.
Nanomaterials (Basel) ; 14(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39120409

RESUMO

Silica aerogels exhibit a unique nanostructure with low thermal conductivity and low density, making them attractive materials for thermal isolation under extreme conditions. The TiO2 particle is one of the common industrial additives used to reduce the thermal radiation of aerogel composites under high-temperature environments, but its influence on thermal resistance is almost unknown. Herein, we report the effect of TiO2 nanoparticles with different crystal phases and different sizes on the thermal stability of silica aerogel composites. By adding TiO2 nanoparticles, the aerogel can significantly resist collapse at high temperatures (up to 1000 °C). And compared with the rutile phase TiO2, the anatase phase TiO2 shows much higher temperature resistance performance, with shrinkage of only one-sixth of the rutile phase after 800 °C treatment. Interestingly, energy-dispersive spectrometer mapping results show that after 800 °C treatment, silica nanoparticles (NPs) are squeezed out in between anatase TiO2 particles, which resists the coarsening of silica NPs and ultimately enhances the stability of aerogel composites. The optimal anatase phase TiO2-doped silica aerogel demonstrates the integrated properties of crack-free morphology (2.84% shrinkage), low thermal conductivity (29.30 mW/(m·K)) and low density (149.4 mg/cm3) after 800 °C treatment. This study may provide new insights for developing oxide-doped silica aerogels with both high-temperature resistance and low thermal radiation.

3.
Gels ; 10(8)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39195068

RESUMO

Building fire will seriously threaten human safety. Silica aerogel with low thermal conductivity and thermal stability as fire-retardant material has been widely used in building fireproof structures. However, the natural fragility of silica aerogel will limit its application. In this work, the effects of faults on the thermal stability of silica aerogel are studied by molecular dynamics simulation with large simulation time (20 ns). Additionally, the atomic model of silica aerogel with random faults is built by a straining structure (tensile strains are 10%, 20%, 30%, and 40%). It is found that when the tensile strain is less than 20%, the silica backbone can remain stable. The effects of faults on the thermal stability can be neglected. The silica backbone thermally vibrates during the heating process. However, when the tensile strain is over 30%, it is observed that the faults will enhance the silica backbone merging. Silica aerogel can be stable under 800 K. It is believed that the results of this study will pave the way for the development of fireproof materials.

4.
ACS Appl Mater Interfaces ; 16(32): 42468-42475, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39080261

RESUMO

In this study, the electric energy harvesting capability of the hierarchical pore gradient silica aerogel (HPSA) is demonstrated due to its unique porous structure and inherent hydroxyl groups on the surface. Taking advantage of the positively charged surface of unwashed HPSA credited by the preparation strategy, poly(4-styrene sulfonic acid) (PSS) can be spontaneously adsorbed onto unwashed HPSA and shows gradient distribution due to the pore-gradient structure of HPSA. By virtue of the gradient distribution and the stronger ionization of PSS, PSS-modified HPSA (PSS-HPSA) shows enhanced electricity generation performance from natural water evaporation with an average output voltage of 0.77 V on an individual device. The water evaporation-induced electricity property of PSS-HPSA can be maintained in the presence of a low concentration of salt. The desirable salt resistance capability benefits from the unique 3D hierarchical porous structure of HPSA which ensures rapid water replenishment so as to effectively avoid the salt accumulation. The HPSA-based devices with the advantages of unique porous structure, easy functionalization, good physicochemical stability, good salt resistance capability, and eco-friendliness show great potential as water evaporation-induced electricity generators.

5.
Materials (Basel) ; 17(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38893905

RESUMO

Ambient pressure drying (APD) of silica aerogels has emerged as an attractive method adapting to large-scale production. Spring-back is a unique phenomenon during APD of silica aerogels with volume expansion after its shrinkage under capillary force. We attribute the intense spring-back at elevated drying temperatures to a dense structure formed on the surface and the formation of positive internal pressure. Furthermore, an APD-assisted foaming method with an in situ introduction of NH4HCO3 was proposed. NH4HCO3 decomposing at drying temperatures hastened the emergence of positive pressure, thereby increasing the expansion volume. Compared to the previous method, the porosity of silica aerogel increased from 82.2% to 92.6%, and mesopore volume from 1.79 cm3 g-1 to 4.54 cm3 g-1. By adjusting the amount of the silicon source, silica aerogels prepared by the APD-assisted foaming method generated higher volume expansion and lower thermal conductivity. After calcination to remove undecomposed ammonium salts, the hydrophobic silica aerogel with a density of 0.112 g cm-3 reached a mesopore volume of 5.07 cm3 g-1 and a thermal conductivity of 18.9 mW m-1·K-1. This strategy not only improves the thermal insulation properties, but also offers a significant advancement in tailoring silica aerogels with specific porosity and mesopore volume for various applications.

6.
Chem Asian J ; 19(18): e202400492, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38945828

RESUMO

Transparent silica aerogel, serving as one typical porous and transparent material, possesses various unique features (e. g., large amounts of pores and interfaces, super-lightweight, super thermal insulation, low refractive index similar to gas), and it has attracted great attention in the fields of science, technology, engineering, art, and others. Transparency is one important evaluation index of transparent silica aerogel, and it was influenced by various factors such as raw materials, sol-gel reactions, phase separation, and drying methods. The structure design and fabrication of transparent silica aerogel is one huge and fine engineering. In this review, the optical/chemical guidance and design for the preparation of transparent silica aerogels are discussed, and typical applications, such as Cherenkov detectors, solar energy collection, lighting systems, and transparent fabric, were also discussed. Finally, a future outlook on the opportunities and challenges of transparent silica aerogels was proposed.

7.
Food Chem ; 457: 140132, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38917570

RESUMO

The clarification conditions and the selection of the clarification agent are pivotal in eliminating the haze components from red grape juice (RGJ) while minimizing the loss of functional color components. In this context, we synthesized a water glass-based APTES functionalized magnesium silica aerogel (MSA-NH3) incorporating 61.44 molecules/nm2 of amine groups, resulting in a positively charged zeta potential value of 33.9 mV (pH 3.4) for clarification of RGJ by targeting negatively charged polyphenols. The optimum clarification conditions using MSA-NH3 were determined as 0.18 g MSA-NH3/L RGJ, 20 °C, and 60 min through the application of Box-Behnken design. Under these conditions, MSA-NH3 exhibited excellent adsorption of haze components (3.61 NTU), outperforming the commercial bentonite-gelatine combination (BGC) (5.45 NTU). Furthermore, it exhibited greater efficacy in preserving anthocyanins while adsorbing browning components. MSA-NH3 has a high potential to serve as a functional alternative clarification agent in the beverage industry due to its promising clarification performance.


Assuntos
Aminas , Sucos de Frutas e Vegetais , Dióxido de Silício , Vitis , Vitis/química , Sucos de Frutas e Vegetais/análise , Dióxido de Silício/química , Aminas/química , Géis/química , Magnésio/química , Manipulação de Alimentos , Adsorção
8.
Int J Biol Macromol ; 273(Pt 1): 132832, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834123

RESUMO

The fragility of the skeleton and poor bioaccessibility limit Silica aerogel's application in the food industry. In this study, composite gels were obtained by cross-linking pea proteins isolate (PPI) with Tetraethoxysilane (TEOS)to improve the bioavailability of silica-derived aerogels. It indicated that TEOS first condensed with H+ to form secondary particles and then complexed with PPI via hydroxyl groups to form a composite aerogel. Meanwhile, the PPI-Si composite aerogel formed a dense mesoporous structure with a specific surface area of 312.5 g/cm3. This resulted in a higher oil holding percentage of 89.67 % for the PPI (10 %)-Si aerogel, which was 34.1 % higher than other studies, leading to a more stable oleogel. Finally, as a delivery system, the composite oleogel not only could significantly increase the bioaccessibility rate by 27.4 % compared with silica aerogel, but also could efficiently inhibit the premature release of curcumin in the simulated gastric fluids, while allowed sustainably release in the simulated intestinal fluids. These results provided a theoretical basis for the application of silica-derived aerogels in food and non-food applications.


Assuntos
Curcumina , Proteínas de Ervilha , Dióxido de Silício , Curcumina/química , Curcumina/farmacologia , Dióxido de Silício/química , Proteínas de Ervilha/química , Géis/química , Portadores de Fármacos/química , Silanos/química , Disponibilidade Biológica , Porosidade , Sistemas de Liberação de Medicamentos , Compostos Orgânicos
9.
ACS Appl Mater Interfaces ; 16(19): 25568-25580, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701180

RESUMO

Continuous-wave lasers can cause irreversible damage to structured materials in a very short time. Modern high-energy laser protection materials are mainly constructed from ceramic, polymer, and metal constitutions. However, these materials are protected by sacrificing their structural integrity under the irradiation of high-energy lasers. In this contribution, we reported multilayer fibrous felt-reinforced aerogels that can sustain the continuous irradiation of a laser at a power density of 120 MW·m-2 without structural damage. It is found that the exceptional high-energy laser protection performance and the comparable mechanical properties of aerogel nanocomposites are attributed to the unique characteristics of hierarchical porous architectures. In comparison with various preparation methods and other aerogel materials, multilayer fibrous felt-reinforced aerogels exhibit the best performance in high-energy laser protection, arising from the gradual interception and the Raman-Rayleigh scattering cycles of a high-energy laser in the porous aerogels. Furthermore, a near-zero thermal expansion coefficient and extremely low thermal conductivity at high temperature allow the lightweight felt-reinforced aerogels to be applied in extreme conditions. The felt-reinforced aerogels reported herein offer an attractive material that can withstand complex thermomechanical stress and retain excellent insulation properties at extremely high temperature.

10.
Gels ; 10(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38667674

RESUMO

Nowadays, the protection of wood is becoming more important with the increasing demand for durable wood, in addition to its limited accessibility. One possible way to increase the durability is the use of nanoparticles, which can be effective even with a low intake of active ingredients. However, avoiding their leaching is a challenge. A possible solution to leaching is the use of silica aerogel as a fixative. This study investigated the use of mesoporous silica aerogel against the leaching of different nanoparticles under laboratory conditions. Tests were performed involving beech (Fagus sylvatica) and Scots pine (Pinus sylvestris) sapwood, using Trametes versicolor as a white rot and Coniophora puteana as a brown rot fungus. The results show that the subsequent treatment of the wood with mesoporous silica aerogel effectively fixed the nanoparticles in wood. The durability of the samples without aerogel significantly decreased as a result of leaching, whereas the resistance of the samples treated with aerogel decreased only slightly. However, the silica aerogel modification itself caused the leaching of silver nanoparticles, which is a limitation in the use of this method for the fixation of nanoparticles.

11.
Sensors (Basel) ; 24(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38676141

RESUMO

In the automotive industry, there has been considerable focus on developing various sensors for engine oil monitoring. However, when it comes to monitoring the condition of brake fluid, which is crucial for ensuring safety, there has been a lack of a secure online method for this monitoring. This study addresses this gap by developing a hybrid silica nanofiber mat, or an aerogel integrated with an optical fiber sensor, to monitor brake fluid condition. The incorporation of silica nanofibers in this hybrid enhances the sensitivity of the optical fiber glass surface by at least 3.75 times. Furthermore, creating an air gap between the glass surface of the optical fiber and the nanofibers boosts sensitivity by at least 5 times, achieving a better correlation coefficient (R2 = 0.98). In the case of silica aerogel, the sensitivity is enhanced by 10 times, but this enhancement relies on the presence of the established air gap. The air gap was adjusted to range from 0.5 mm to 1 mm, without any significant change in the measurement within this range. The response time of the developed sensor is a minimum of 15 min. The sensing material is irreversible and has a diameter of 2.5 mm, making it easily replaceable. Overall, the sensor demonstrates strong repeatability, with approximately 90% consistency, and maintains uncertainty levels below 5% across specific ranges: from 3% to 6% for silica aerogel and from 5% to 6% for silica nanofibers in the presence of an air gap. These findings hold promise for integrating such an optical fiber sensor into a car's electronic system, enabling the direct online monitoring of brake fluid quality. Additionally, the study elucidates the effect of water absorption on the refractive index of brake fluid, as well as on the silica nanomaterials.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38684012

RESUMO

Silica aerogels exhibit exceptional characteristics such as mesoporosity, light weight, high surface area, and pore volume. Nevertheless, their utilization in industrial settings remains constrained due to their brittleness, moisture sensitivity, and costly synthesis procedure. Several studies have proved that adding nanofillers, such as carbon nanotubes (CNT) or graphene nanoplatelets (GNP), can improve the mechanical strength of the aerogels. The incorporation of nanofillers is often accompanied by agglomeration and pore blockage, which, in turn, deteriorates the surface area, pore volume, and low density. Including flexible melamine foam (MF) as a scaffold for the silica aerogel and nanofiller composite can prevent the restacking of the nanofillers through π-π interaction, hence maintaining the incredible properties of aerogels and improving their mechanical properties. CNT, GNP, and the polymeric silica precursor, polyvinyltrimethoxysilane (PVTMS), were added to a MF, at varying concentrations, to fabricate the MF-aerogel nanocomposites. Surfactant and sonication were utilized to ensure a homogeneous dispersion of the nanofillers in the system. The presence of MF prevented the agglomeration of nanofillers, resulting in lower density and relatively higher surface properties (SBET up to 929 m2·g-1 and pore volume up to 4.34 cc·g-1). Moreover, the MF-supported samples could endure 80% strain without breakage and showed an outstanding compressive strength of up to ∼20 MPa. These aerogel nanocomposites also demonstrated an excellent volatile organic compound (∼2680 mg·g-1) and cationic dye adsorption (∼10 mg·g-1).

13.
ACS Appl Mater Interfaces ; 16(17): 22580-22592, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634565

RESUMO

The application of high-performance rubber nanocomposites has attracted wide attention, but its development is limited by the imbalance of interface and network effects caused by fillers. Herein, an ultrastrong polymer nanocomposite is successfully designed by introducing a superhydrophobic and mesoporous silica aerogel (HSA) as the filler to poly(methyl vinyl phenyl) siloxane (PVMQ), which increased the PVMQ elongation at break (∼690.1%) by ∼9.3 times and the strength at break (∼6.6 MPa) by ∼24.3 times. Furthermore, HSA/PVMQ with a high dynamic storage modulus (G'0) of ∼12.2 MPa and high Payne effect (ΔG') of ∼9.4 MPa is simultaneously achieved, which is equivalent to 2-3 times that of commercial fumed silica reinforced PVMQ. The superior performance is attributed to the filler-rubber interfacial interaction and the robust filler-rubber entanglement network which is observed by scanning electron microscopy. When the HSA-PVMQ entanglement network is subjected to external stress, both the HSA and bound-PVMQ chains are synergistically involved in resisting structural evolution, resulting in the maximized energy dissipation and deformation resistance through the desorption of the polymer chain and the slip/interpenetrating of the exchange hydrogen bond pairs. Hence, highly aggregated nanoporous silica aerogels may soon be widely used in the application of reinforced silicone rubber or other polymers shortly.

14.
Materials (Basel) ; 17(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38612128

RESUMO

This study focuses on using activated fly ash to preparate silica aerogel by the acid solution-alkali leaching method and ambient pressure drying. Additionally, to improve the performance of silica aerogel, C6H16O3Si (KH-570) and CH3Si(CH3O)3 (MTMS) modifiers were used. Finally, this paper investigated the factors affecting the desilication rate of fly ash and analyzed the structure and performance of silica aerogel. The experimental results show that: (1) The factors affecting the desilication rate are ranked as follows: hydrochloric acid concentration > solid-liquid ratio > reaction temperature > reaction time. (2) KH-570 showed the best performance, and when the volume ratio of the silica solution to it was 10:1, the density of silica aerogel reached a minimum of 183 mg/cm3. (3) The optimal process conditions are a hydrochloric acid concentration of 20 wt%, a solid-liquid ratio of 1:4, a reaction time of two hours, and a reaction temperature of 100 °C. (4) The optimal performance parameters of silica aerogel were the thermal conductivity, specific surface area, pore volume, average pore size, and contact angle values, with 0.0421 W·(m·K)-1, 487.9 m2·g-1, 1.107 cm3·g-1, 9.075 nm, and 123°, respectively. This study not only achieves the high-value utilization of fly ash, but also facilitates the effective recovery and utilization of industrial waste.

15.
Polymers (Basel) ; 16(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38475378

RESUMO

The effects of octaphenylsilsesquioxane (OPS), fumed silica, and silica aerogel on the thermal insulation properties of ethylene propylene diene monomer (EPDM) rubber were studied. On this basis, two kinds of fillers with good performances were selected to study the thermal insulation of an EPDM full-formula system. The results show that the addition of fumed silica or silica aerogel had a positive effect on the thermal insulation performance of EPDM rubber and its composite. A 30 wt% silica aerogel can be well dispersed in the EPDM rubber system and with a lower thermal conductivity compared with fumed silica. EPDM composite with 23.4 wt% fumed silica can produce more char residues at 1000 °C than at 500 °C in a burn-through test and formed the compact and porous char at 1000 °C, which had a lowest thermal conductivity. EPDM composite with fumed silica cannot be burned through 1000 °C burning, and comparison with silica aerogel revealed that it achieved the lowest back temperature and had a temperature of 388 °C after 800 s.

16.
Nanomaterials (Basel) ; 14(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38470798

RESUMO

Silica aerogels have gained much interest due to their unique properties, such as being the lightest solid material, having small pore sizes, high porosity, and ultralow thermal conductivity. Also, the advancements in synthesis methods have enabled the creation of silica aerogel-based composites in combination with different materials, for example, polymers, metals, and carbon-based structures. These new silica-based materials combine the properties of silica with the other materials to create a new and reinforced architecture with significantly valuable uses in different fields. Therefore, the importance of silica aerogels has been emphasized by presenting their properties, synthesis process, composites, and numerous applications, offering an updated background for further research in this interdisciplinary domain.

17.
ACS Appl Mater Interfaces ; 16(12): 15165-15176, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38476078

RESUMO

Amine-functionalized silica aerogel globules (AFSAGs) were first synthesized via a simple ball drop casting method followed by amine grafting. The effect of grafting time on the structure and CO2 adsorption performance of the AFSAGs was investigated. The CO2 adsorption performance was comprehensively studied by breakthrough curves, adsorption capacity and rates, surface amine loading and density, amine efficiency, adsorption halftime, and cyclic stability. The results demonstrate that prolonging the grafting time does not lead to a significant increase in surface amine content owing to pore space blockage by superabundant amine groups. The CO2 adsorption performance shows obvious dependence on surface amine density, determined by both the surface amine content and specific surface area, and working temperature. AFSAGs with a grafting time of 24 h (AFSAG24) with a moderate surface amine density have optimal CO2 adsorption capacities, which are 1.78 and 2.14 mmol/g at 25 °C with dry and humid 400 ppm CO2, respectively. The amine efficiency of AFSAG24 with low CO2 concentrations, 0.38-0.63 with dry 400 ppm-1% CO2, is the highest among the reported amine-functionalized adsorbents. After estimation with different diffusion models, the CO2 adsorption process of AFSAG24 is governed by film diffusion and intraparticle diffusion. In the range of 1-4 mm, the ball size does not affect the CO2 adsorption capacity of AFSAG24 obviously. AFSAG24 offers significant advantages for practical direct air capture compared with its state-of-the-art counterparts, such as high dynamic adsorption capacity and amine efficiency, excellent stability, and outstanding adaptation to the environment.

18.
ACS Appl Mater Interfaces ; 16(12): 15096-15106, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478831

RESUMO

With the progress of forgery and decryption, the traditional encryption technology is apparent not enough, which strongly requires the development of advanced multidimensional encryption strategies and technologies. Photo-stimuli responsive fluorescent materials are promising as candidate materials for advanced information encryption. Here, we have reported new photo-stimuli responsive materials by encapsulating photochromic molecules spiropyrans (SPs) into naphthalimide-functionalized silica aerogels. By introducing different modification groups (dimethylamino) into 1,8-naphthalimide, we obtained two kinds of silica aerogels that emit blue and green colors. The naphthalimide-functionalized silica aerogels/dye composite exhibits a blue (dimethylamino-modified naphthalimide-functionalized silica aerogel showing green) emission from naphthalimide of silica aerogels at 450 nm (520 nm) and a red emission around 650 nm of SP. Under exposure to ultraviolet light, SP gradually transformed into the merocyanine (MC) form, and a strong absorption band appeared near 540 nm. At that time, the fluorescence resonance energy-transfer (FRET) process occurred between naphthalimide and the MC isomer. As the irradiation time is extended, the fluorescence color changes continuously from blue (green) to red through the FRET process. Using the time dependence of fluorescence, dynamic encryption patterns and multiple codes were successfully developed based on these functionalized silica aerogels. This work has provided important guidance for designing advanced information encryption materials.

19.
ACS Appl Mater Interfaces ; 16(7): 9303-9312, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38343044

RESUMO

Daytime radiative cooling technology offers a low-carbon, environmentally friendly, and nonpower-consuming approach to realize building energy conservation. It is important to design materials with high solar reflectivity and high infrared emissivity in atmospheric windows. Herein, a porous calcium silicate composite SiO2 aerogel water-borne coating with strong passive radiative cooling and high thermal insulation properties is proposed, which shows an exceptional solar reflectance of 94%, high sky window emissivity of 96%, and 0.0854 W/m·K thermal conductivity. On the SiO2/CaSiO3 radiative cooling coating (SiO2-CS-coating), a strategy is proposed to enhance the atmospheric window emissivity by lattice resonance, which is attributed to the eight-membered ring structure of porous calcium silicate, thereby increasing the atmospheric window emissivity. In the daytime test (solar irradiance 900W/m2, ambient temperature 43 °C, wind speed 0.53 m/s, humidity 25%), the temperature inside the box can achieve a cooling temperature of 13 °C lower than that of the environment, which is 30 °C, and the theoretical cooling power is 96 W/m2. Compared with the commercial white coating, SiO2-CS-coating can save 70 kW·h of electric energy in 1 month, and the energy consumption is reduced by 36%. The work provides a scalable, widely applicable radiative-cooling coating for building comfort, which can greatly reduce indoor temperatures and is suitable for building surfaces.

20.
Mar Pollut Bull ; 199: 116011, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38183836

RESUMO

Silica aerogels are attractive oil-absorbing agents due to their low density, high porosity. However, how to discharge the oil which adsorbed by silica aerogels is a difficult issue. To address this challenge, new separation strategies with high efficiency are needed. In this study, we prepared the temperature and pH dual response flexible silica aerogel have temperature response and pH response effect, which can change its wettability by adjusting temperature or pH. On the one hand, the temperature and pH responsive flexible silica aerogel can be used to adsorb water at the temperature below 34.73 °C or pH > 7. On the other hand, it can adsorb oil at a temperature above 34.73 °C or pH < 7. The automatic desorption of oil can be achieved without consuming additional energy and damaging the pore structure. Therefore, the sample could continuously adsorb and filtrate efficiently and realize the recovery of oil and adsorption materials.


Assuntos
Dióxido de Silício , Molhabilidade , Temperatura , Dióxido de Silício/química , Géis/química , Concentração de Íons de Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA