Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 277(Pt 2): 134301, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094875

RESUMO

The requirement for accurate treatments for skin diseases and wounds, generated a rising interest towards multifunctional polymer composites, that are capable of mimicking the natural compositions in human body. Also, electroactive composite films disseminate endogenous electrical stimulations that encourage cell migration and its proliferation at wound site, proposing greater opportunities in upgrading the conventional wound patches. In this work, the composite film made of graphene oxide, Ag2O, PVA and chitosan were developed for wound healing applications, by the solution casting method. The even dispersibility of nanofiller in polymeric matrix was validated from the physicochemical analyses. The increment in roughness of the composite film surface was noted from AFM images. The thermal stability and porous nature of the polymer composite were also verified. A conductivity value of 0.16 × 10-4 Scm-1 was obtained for the film. From MTT assay, it was noted that the films were non-cytotoxic and supported cell adhesion along with cell proliferation of macrophage (RAW 264.7) cells. Moreover, the composite film also demonstrated non-hemolytic activity of <2 %, as well as excellent antibacterial activity towards E. coli and S. aureus. Thus, the obtained results validated that the prepared composite film could be chosen as an innovative candidate for developing state-of-the-art wound dressings.


Assuntos
Antibacterianos , Quitosana , Grafite , Óxidos , Álcool de Polivinil , Cicatrização , Grafite/química , Quitosana/química , Cicatrização/efeitos dos fármacos , Camundongos , Animais , Álcool de Polivinil/química , Óxidos/química , Antibacterianos/farmacologia , Antibacterianos/química , Células RAW 264.7 , Compostos de Prata/química , Compostos de Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Polímeros/química , Bandagens , Humanos
2.
Microb Cell Fact ; 23(1): 220, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107838

RESUMO

BACKGROUND: Biotechnology provides a cost-effective way to produce nanomaterials such as silver oxide nanoparticles (Ag2ONPs), which have emerged as versatile entities with diverse applications. This study investigated the ability of endophytic bacteria to biosynthesize Ag2ONPs. RESULTS: A novel endophytic bacterial strain, Neobacillus niacini AUMC-B524, was isolated from Lycium shawii Roem. & Schult leaves and used to synthesize Ag2ONPS extracellularly. Plackett-Burman design and response surface approach was carried out to optimize the biosynthesis of Ag2ONPs (Bio-Ag2ONPs). Comprehensive characterization techniques, including UV-vis spectral analysis, Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering analysis, Raman microscopy, and energy dispersive X-ray analysis, confirmed the precise composition of the Ag2ONPS. Bio-Ag2ONPs were effective against multidrug-resistant wound pathogens, with minimum inhibitory concentrations (1-25 µg mL-1). Notably, Bio-Ag2ONPs demonstrated no cytotoxic effects on human skin fibroblasts (HSF) in vitro, while effectively suppressing the proliferation of human epidermoid skin carcinoma (A-431) cells, inducing apoptosis and modulating the key apoptotic genes including Bcl-2 associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), Caspase-3 (Cas-3), and guardian of the genome (P53). CONCLUSIONS: These findings highlight the therapeutic potential of Bio-Ag2ONPs synthesized by endophytic N. niacini AUMC-B524, underscoring their antibacterial efficacy, anticancer activity, and biocompatibility, paving the way for novel therapeutic strategies.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Compostos de Prata , Humanos , Nanopartículas Metálicas/química , Compostos de Prata/farmacologia , Compostos de Prata/química , Antibacterianos/farmacologia , Antibacterianos/biossíntese , Testes de Sensibilidade Microbiana , Bacillaceae/metabolismo , Óxidos/farmacologia , Óxidos/química , Fibroblastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos
3.
Bot Stud ; 65(1): 17, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985236

RESUMO

BACKGROUND: Silver nanoparticles are widely used in various fields such as industry, medicine, biotechnology, and agriculture. However, the inevitable release of these nanoparticles into the environment poses potential risks to ecosystems and may affect plant productivity. Coronatine is one of the newly identified compounds known for its beneficial influence on enhancing plant resilience against various stress factors. To evaluate the effectiveness of coronatine pretreatment in mitigating the stress induced by silver nanoparticles on cress plants, the present study was carried out. RESULTS: Our findings indicated a decrease in multiple growth parameters, proline content, chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids in cress plants exposed to silver nanoparticle treatment. This decline could be attributed to the oxidative stress induced by the presence of silver nanoparticles in the plants. Conversely, when coronatine treatment was applied, it effectively mitigated the reduction in growth parameters and pigments induced by the silver nanoparticles. Furthermore, we observed an increase in silver content in both the roots and shoot portions, along with elevated levels of malondialdehyde (MDA) content, hydrogen peroxide (H2O2), anthocyanins, glutathione (GSH), and antioxidant enzyme activities in plants exposed to silver nanoparticles. Concurrently, there was a decrease in total phenolic compounds, ascorbate, anthocyanins, and proline content. Pre-treatment of cress seeds with coronatine resulted in increased levels of GSH, total phenolic compounds, and proline content while reducing the silver content in both the root and shoot parts of the plant. CONCLUSIONS: Coronatine pre-treatment appeared to enhance both enzymatic and non-enzymatic antioxidant activities, thereby alleviating oxidative stress and improving the response to stress induced by silver nanoparticles.

4.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39065758

RESUMO

Silver oxide (Ag2O) particles are wonderful candidates due to their unique properties, and their use in a wide range of research, industrial and biomedical applications is rapidly increasing. This makes it fundamental to develop simple, environmentally friendly methods with possible scaling. Herein, sodium borohydride and Datura innoxia leaf extract were applied as chemical and biological stabilizing and reducing agents to develop Ag2O particles. The primary aim was to evaluate the anticancer and antiviral activity of Ag2O particles prepared via two methods. XRD, UV-visible and SEM analyses were used to examine the crystallite structure, optical properties and morphology, respectively. The resulting green-synthesized Ag2O particles exhibited small size, spherically agglomerated shape, and high anticancer and antiviral activities compared to chemically synthesized Ag2O particles. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium-bromide) assay of green-synthesized Ag2O particles showed high anticancer activity against MCF-7 cells with IC50 = 17.908 µg/mL compared to chemically synthesized Ag2O particles with IC50 = 23.856 µg/mL. The antiviral activity of green-synthesized Ag2O particles and chemically synthesized Ag2O particles was also evaluated by a plaque-forming assay, and green-synthesized Ag2O particles showed higher antiviral ability with IC50 = 0.618 µg/mL as compared to chemically synthesized Ag2O particles with IC50 = 6.129 µg/mL. We propose the use of green-synthesized Ag2O particles in cancer treatment and drug delivery.

5.
Chemistry ; 30(44): e202401637, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38837442

RESUMO

We propose silver oxide as a cost-effective and sustainable alternative to noble metals for the catalytic reduction of nitroaromatics. In the present investigation, we adopt a facile and green synthetic route for the synthesis of silver oxide nanostructures. The prepared nanostructures were found to crystallize in the cuprite phase and exhibit absorbance across the entire visible range of the electromagnetic spectrum. The catalytic potential of the silver oxide was evaluated by following the kinetics of nitrophenol reduction under ambient conditions and is observed to follow pseudo-first order kinetics with the apparent rate constant k a p p = 4 . 24 × 10 - 3 ${{k}_{app}=4.24\ \times {10}^{-3}}$ s-1 at minimum concentration of the catalyst. We attribute the observed catalytic activity to the freshly generated catalytic surface featuring a partially reduced form of silver oxide during reaction. The findings highlight the efficacy of silver oxide in mitigating the environmental pollution originating from the recalcitrant nitroarenes.

6.
Small ; : e2401558, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829043

RESUMO

By primarily adjusting the reagent amounts, particularly the volume of AgNO3 solution introduced, Ag2O cubes with decreasing sizes from 440 to 79 nm, octahedra from 714 to 106 nm, and rhombic dodecahedra from 644 to 168 nm are synthesized. 733 nm cuboctahedra are also prepared for structural analysis. With in-house X-ray diffraction (XRD) peak calibration, shape-related peak shifts are recognizable. Synchrotron XRD measurements at 100 K reveal the presence of bulk and surface layer lattices. Bulk cell constants also deviate slightly. They show a negative thermal expansion behavior with shrinking cell constants at higher temperatures. The Ag2O crystals exhibit size- and facet-dependent optical properties. Bandgaps red-shift continuously with increasing particle sizes. Optical facet effect is also observable. Moreover, synchrotron XRD peaks of a mixture of Cu2O rhombicuboctahedra and edge- and corner-truncated cubes exposing all three crystal faces can be deconvoluted into three components with the bulk and the [111] microstrain phase as the major component. Interestingly, while the unheated Cu2O sample shows clear diffraction peak asymmetry, annealing the sample to 450 K yields nearly symmetric peaks even when returning the sample to room temperature, meaning even moderately high temperatures can permanently change the crystal lattice.

7.
Sci Rep ; 14(1): 10484, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714767

RESUMO

The current research aimed to study the green synthesis of silver oxide nanoparticles (AgONPs) using Rhynchosia capitata (RC) aqueous extract as a potent reducing and stabilizing agent. The obtained RC-AgONPs were characterized using UV, FT-IR, XRD, DLS, SEM, and EDX to investigate the morphology, size, and elemental composition. The size of the RC-AgONPs was found to be ~ 21.66 nm and an almost uniform distribution was executed by XRD analysis. In vitro studies were performed to reveal biological potential. The AgONPs exhibited efficient DPPH free radical scavenging potential (71.3%), reducing power (63.8 ± 1.77%), and total antioxidant capacity (88.5 ± 4.8%) to estimate their antioxidative power. Antibacterial and antifungal potentials were evaluated using the disc diffusion method against various bacterial and fungal strains, and the zones of inhibition (ZOI) were determined. A brine shrimp cytotoxicity assay was conducted to measure the cytotoxicity potential (LC50: 2.26 µg/mL). In addition, biocompatibility tests were performed to evaluate the biocompatible nature of RC-AgONPs using red blood cells, HEK, and VERO cell lines (< 200 µg/mL). An alpha-amylase inhibition assay was carried out with 67.6% inhibition. Moreover, In vitro, anticancer activity was performed against Hep-2 liver cancer cell lines, and an LC50 value of 45.94 µg/mL was achieved. Overall, the present study has demonstrated that the utilization of R. capitata extract for the biosynthesis of AgONPs offers a cost-effective, eco-friendly, and forthright alternative to traditional approaches for silver nanoparticle synthesis. The RC-AgONPs obtained exhibited significant bioactive properties, positioning them as promising candidates for diverse applications in the spheres of medicine and beyond.


Assuntos
Nanopartículas Metálicas , Compostos de Prata , Nanopartículas Metálicas/química , Animais , Humanos , Compostos de Prata/química , Compostos de Prata/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Artemia/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Química Verde/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Células Vero , Antifúngicos/farmacologia , Antifúngicos/química , Prata/química , Prata/farmacologia , Óxidos
8.
Biometals ; 37(4): 971-982, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38409305

RESUMO

The 'sacred leaf' or "Hoja Santa" (Piper auritum Kunth) has a great value for Mexican culture and has gained popularity worldwide for its excellent properties from culinary to remedies. To contribute to its heritage, in this project we proposed the green synthesis of silver oxide nanoparticles (Ag2O NPs) using an extract of "Hoja Santa" (Piper auritum) as a reducing and stabilizing agent. The synthesized Ag2O NPs were characterized by UV-Visible spectroscopy (plasmon located at 405 nm), X-ray diffraction (XRD) (particle size diameter of 10 nm), scanning electron microscopy (SEM) (particle size diameter of 13.62 ± 4.61 nm), and Fourier-transform infrared spectroscopy (FTIR) (functional groups from "Hoja Santa" attached to nanoparticles). Antioxidant capacity was evaluated using DPPH, ABTS and FRAP methods. Furthermore, the antimicrobial activity of NPs against a panel of clinically relevant bacterial strains, including both Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Salmonella Enteritidis and Escherichia coli O157:H7), was over 90% at concentrations of 200 µg/mL. Additionally, we assessed the antibiofilm activity of the NPs against Pseudomonas aeruginosa (reaching 98% of biofilm destruction at 800 µg/mL), as biofilm formation plays a crucial role in bacterial resistance and chronic infections. Moreover, we investigated the impact of Ag2O NPs on immune cell viability, respiratory burst, and phagocytic activity to understand their effects on the immune system.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Piper , Extratos Vegetais , Compostos de Prata , Staphylococcus aureus , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Compostos de Prata/química , Compostos de Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Piper/química , Nanopartículas Metálicas/química , Óxidos/química , Óxidos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , Animais , Camundongos , Salmonella enteritidis/efeitos dos fármacos , Tamanho da Partícula , Células RAW 264.7 , Escherichia coli O157/efeitos dos fármacos , Folhas de Planta/química
9.
Int J Biol Macromol ; 264(Pt 1): 129990, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360246

RESUMO

In this study, a single step in situ sol-gel method was used to syntheses nanocomposite films using chitosan (CS) as the basis material, with the addition of silver oxide nanoparticles (Ag2O) at several weight percentages (5 %, 10 %, and 15 % Ag2O/CS). The structural characteristics of Ag2O/CS films were investigated using a range of analytical techniques. The presence of the primary distinctive peaks of chitosan was verified using FTIR spectra analysis. However, a minor displacement was observed in these peaks due to the chemical interaction occurring with silver oxide molecules. XRD analysis demonstrated a significant increase in the crystallinity of chitosan when it interacted with metal oxide nanoparticles. Furthermore, it is believed that the interaction between silver oxide and the active binding sites of chitosan is responsible for the evenly dispersed clusters shown in the micrographs of the chitosan surface, as well as the random aggregations within the pores. EDS technique successfully identified the presence of distinctive silver signals within the nanocomposite material, indicating the successful absorption of silver into the surface of the polymer. The developed Ag2O/CS nanocomposite showed promising antibacterial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Bacillus subtilis, Enterococcus faecalis and Staphylococcus aureus). Also, Ag2O/CS nanocomposite exhibited marked antifungal activity against Candida albicans, Aspergillus flavus, A. fumigatus, A. niger, and Penicillium chrysogenum. The antioxidant activity of the developed nanocomposite films was studied by ABTS radical scavenging. The highest antioxidant and antibacterial properties were achieved by including 15 % silver oxide into the chitosan. Therefore, our finding indicate that chitosan­silver oxide nanocomposites exhibits significant potential as a viable material for application in several sectors of the food packaging industry.


Assuntos
Anti-Infecciosos , Quitosana , Nanopartículas Metálicas , Nanocompostos , Óxidos , Compostos de Prata , Quitosana/química , Antioxidantes/farmacologia , Embalagem de Alimentos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Nanocompostos/química
10.
Protein Pept Lett ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37921156

RESUMO

INTRODUCTION: Bacterial biofilm is known as the main cause of periodontal disease. Generally, the anaerobic Gram-negative, such as Porphyromonas gingivalis and Fusobacterium nucleatum, are considered the most identified bacteria. OBJECTIVE: This study aimed to investigate the antimicrobial effect and cytotoxicity of two experimental composites containing chitosan-silver oxide (CH-Ag2O) particles. MATERIALS AND METHODS: Four experimental groups, including Ag2O and CH, along with two composites of CH-Ag2O 20 and CH-Ag2O 60 mg, were prepared. Antimicrobial activity was performed against Porphyromonas gingivalis (ATCC#33277) and Fusobacterium nucleatum (ATCC#25586) using the agar dilution method. Moreover, the cytotoxicity assay was performed on human gingival fibroblasts (HGF) by the use of the MTT method. The obtained data were analyzed with descriptive methods, one-way ANOVA, and Tukey's LSD tests. RESULTS: The antibacterial activity of both composites was higher than both CH and Ag2O, and the greatest antibacterial properties were presented in CH-Ag2O 60. In all three measurements (24, 48, and 72h), the greatest cytotoxicity was seen in Ag2O, followed by CH, CH-Ag2O 20, and CH-Ag2O 60 in descending order, respectively. The cytotoxicity of these components was related to the concentration and not to the time of exposure. The results showed that Ag2O in 3.7 and 7.5 µg/ml concentrations and CH-containing groups in 250 and 500 µg/ml were toxic to the cultured HGF. CONCLUSION: The experimental composite containing CH-Ag2O 60 showed the greatest antibacterial properties against two periodontal pathogens evaluated. In order to clarify the clinical significance of composite cytotoxicity, further clinical studies are necessary.

11.
ACS Appl Mater Interfaces ; 15(42): 48978-48995, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877381

RESUMO

With the increasing prevalence of microbial infections, which results in prolonged inflammation and delayed wound healing, the development of effective and safe antimicrobial wound dressings of multiple properties remains challenging for public health. Despite their various formats, the available developed dressings with limited functions may not fulfill the diverse demands involved in the complex wound healing process. In this study, multifunctional sandwich-structured electrospinning nanofiber membranes (ENMs) were fabricated. According to the structural composition, the obtained ENMs included a hydrophilic inner layer loaded with curcumin and gentamicin sulfate, an antibacterial middle layer consisting of bovine serum albumin stabilized silver oxide nanoparticles, and a hydrophobic outer layer. The prepared sandwich-structured ENMs (SNM) exhibited good biocompatibility and killing efficacy on Escherichia coli, Staphylococcus aureus, and Methicillin-resistant S. aureus (MRSA). In particular, transcriptomic analysis revealed that SNM inactivated MRSA by inhibiting its carbohydrate and energy metabolism and reduced the bacterial resistance by downregulating mecA. In the animal experiment, SNM showed improved wound healing efficiency by reducing the bacterial load and inflammation. Moreover, 16S rDNA sequencing results indicated that SNM treatment may accelerate wound healing without observed influence on the normal skin flora. Therefore, the constructed sandwich-structured ENMs exhibited promising potential as dressings to deal with the infected wound management.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Nanofibras , Animais , Antibacterianos/química , Nanofibras/química , Resistência a Meticilina , Inflamação/tratamento farmacológico
12.
Environ Sci Technol ; 57(41): 15715-15724, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37807513

RESUMO

Bisphenol B (BPB, 2,2-bis(4-hydroxyphenyl) butane), as a substitute for bisphenol A, has been widely detected in the environment and become a potential threat to environmental health. This work found that silver oxide nanoparticles (Ag2O) could greatly promote the removal of BPB by ferrate (Fe(VI)). With the presence of 463 mg/L Ag2O, the amount of Fe(VI) required for the complete removal of 10 µM BPB will be reduced by 70%. Meanwhile, the recyclability and stability of Ag2O have been verified by recycling experiments. The characterization results and in situ electrochemical analyses showed that Ag(II) was produced from Ag(I) in the Fe(VI)-Ag2O system, which has a higher electrode potential to oxidize BPB to enhance its removal. A total of 13 intermediates were identified by high-resolution mass spectrometry, and three main reaction pathways were proposed, including oxygen transfer, bond breaking, and polymerization. Based on the toxicity assessment through the ECOSAR program, it is considered that the presence of Ag2O reduced the toxicity of BPB oxidation intermediates to aquatic organisms. These results would deepen our understanding of the interaction between Fe(VI) and Ag2O, which may provide an efficient and environmentally friendly method for water and wastewater treatment.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Purificação da Água , Ferro/química , Oxirredução , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodos
13.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614309

RESUMO

Foodborne infections are an important global health problem due to their high prevalence and potential for severe complications. Bacterial contamination of meat during processing at the enterprise can be a source of foodborne infections. Polymeric coatings with antibacterial properties can be applied to prevent bacterial contamination. A composite coating based on fluoroplast and Ag2O NPs can serve as such a coating. In present study, we, for the first time, created a composite coating based on fluoroplast and Ag2O NPs. Using laser ablation in water, we obtained spherical Ag2O NPs with an average size of 45 nm and a ζ-potential of -32 mV. The resulting Ag2O NPs at concentrations of 0.001-0.1% were transferred into acetone and mixed with a fluoroplast-based varnish. The developed coating made it possible to completely eliminate damage to a Teflon cutting board. The fluoroplast/Ag2O NP coating was free of defects and inhomogeneities at the nano level. The fluoroplast/Ag2O NP composite increased the production of ROS (H2O2, OH radical), 8-oxogualnine in DNA in vitro, and long-lived active forms of proteins. The effect depended on the mass fraction of the added Ag2O NPs. The 0.01-0.1% fluoroplast/NP Ag2O coating exhibited excellent bacteriostatic and bactericidal properties against both Gram-positive and Gram-negative bacteria but did not affect the viability of eukaryotic cells. The developed PTFE/NP Ag2O 0.01-0.1% coating can be used to protect cutting boards from bacterial contamination in the meat processing industry.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Antibacterianos/farmacologia , Politetrafluoretileno , Peróxido de Hidrogênio , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Bactérias , Carne
14.
Environ Sci Pollut Res Int ; 30(2): 4079-4093, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35962168

RESUMO

Currently, nanomaterials with exceptional antibacterial activity have become an emerging domain in research. The optimization of nanomaterials against infection causing agents is the next step in dealing with the present-day problem of antibiotics. In this research work, Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO are prepared by chemical methods. Ag2O was prepared by co-precipitation method, while solvothermal technique was utilized for the synthesis of CoFe2O4. The ternary nanocomposite was synthesized by a simple in situ reduction using a two-step approach. The structural and morphological properties were studied by UV-Vis spectroscopy, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). From the X-ray diffraction analysis, the crystallite size is found to be 14 nm, 5 nm, and 6 nm for Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO respectively. The synthesized nanomaterials were investigated for antibacterial activities against gram-positive strain Staphylococcus aureus (S. aureus) and gram-negative strain Escherichia coli (E. coli) using Agar well diffusion method. Ag2O and CoFe2O4 showed zones of inhibition (ZOI) of 13 mm and 11 mm against gram positive bacteria while 12 mm against gram negative bacteria respectively, while ternary nanocomposite showed 14 mm and 13 mm of ZOI. The antibacterial activity of nanomaterials showed a gradual increment with an increase in the concentration of the materials. Ag2O, CoFe2O4, and Ag2O/CoFe2O4/rGO showed minimum inhibitory concentration (MIC) values of 4.5, 6.5, and 4.5 µg/mL for S. aureus and 6.5, 7.2, and 4.8 µg/mL for E. coli respectively. Minimum bactericidal concentrations were found to be same as the MIC values. Additionally, a time-kill curve analysis was performed and for ternary nanocomposite; the killing response was most effective as the complete killing was achieved at 3 h of incubation at 3-MIC (9.75 µg/mL). These results demonstrate that all the nanomaterials, as a kind of antibacterial material, have a great potential for a wide range of biomedical applications.


Assuntos
Grafite , Nanopartículas Metálicas , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/química , Grafite/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química
15.
Pharmaceutics ; 14(12)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36559136

RESUMO

Tegumentary leishmaniasis (TL) is caused by parasites of the genus Leishmania. Leishmania braziliensis (L.b) is one of the most clinically relevant pathogens that affects the skin and mucosa, causing single or multiple disfiguring and life-threatening injuries. Even so, the few treatment options for patients have significant toxicity, high dropout rates, high cost, and the emergence of resistant strains, which implies the need for studies to promote new and better treatments to combat the disease. Zinc oxide nanocrystals are microbicidal and immunomodulatory agents. Here, we develop new Ag-ZnO/xAgO nanocomposites (NCPs) with three different percentages of silver oxide (AgO) nanocrystals (x = 49%, 65%, and 68%) that could act as an option for tegumentary leishmaniasis treatment. Our findings showed that 65% and 68% of AgO inhibit the extra and intracellular replication of L.b. and present a high selectivity index. Ag-ZnO/65%AgO NCPs modulate activation, expression of surface receptors, and cytokine production by human peripheral blood mononuclear cells toward a proinflammatory phenotype. These results point to new Ag-ZnO/AgO nanocomposites as a promising option for L. braziliensis treatment.

16.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-36015116

RESUMO

Antibiotic resistance in microorganisms is an important problem of modern medicine which can be solved by searching for antimicrobial preparations of the new generation. Nanoparticles (NPs) of metals and their oxides are the most promising candidates for the role of such preparations. In the last few years, the number of studies devoted to the antimicrobial properties of silver oxide NPs have been actively growing. Although the total number of such studies is still not very high, it is quickly increasing. Advantages of silver oxide NPs are the relative easiness of production, low cost, high antibacterial and antifungal activities and low cytotoxicity to eukaryotic cells. This review intends to provide readers with the latest information about the antimicrobial properties of silver oxide NPs: sensitive organisms, mechanisms of action on microorganisms and further prospects for improving the antimicrobial properties.

17.
Micromachines (Basel) ; 13(7)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35888922

RESUMO

In this work, we obtained silver nanoparticles stabilized with polyvinylpyrrolidone, ranging in size from 70 to 110 nm, which exhibits good crystallinity and anisotropic structure. For the first time, we studied the influence of the molar ratio of silver between silver and peroxide on the oxidation process of the nanoparticles and determined the regularities of this process by analyzing changes in absorption spectra. Our results showed that at molar ratios of Ag:H2O2 = 1:1 and 1:5, dependences of changes in the intensity, position and half-width of the absorption band of the plasmon resonance are rectilinear. In vivo studies of silver nanoparticles have shown that silver nanoparticles belong to the toxicity class III (moderately hazardous substance) and to the third group according to the degree of accumulation. We established that silver nanoparticles and oxidized silver nanoparticles form a uniform layer on the surface of the suture material. We found that the use of the suture material with silver nanoparticles and oxidized silver nanoparticles does not cause allergic reactions in the organisms of laboratory animals.

18.
Nanotechnology ; 33(40)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35767930

RESUMO

Alternating current electroluminescent (AC-EL) device can be considered as a potential candidate for next generation of multifunctional light-emitting sources. In this work, we present a new design of AC-EL device with inclusion of a silver oxide humidity-sensing layer instead of an insulating buffer layer for humidity detection. The ZnS:Cu, Cl and ZnS:Ag+(Zn,Cd)S:Ag phosphors were used as an emissive layer prepared by screen printing method. The silver oxide (AgO/Ag2O) nanoparticles synthesized via a green method were employed as a humidity sensing layer. The developed AC-EL devices exhibited high response, good productivity, high stability, high repeatability and linear relationship with humidity in range of 10%-90% RH as well as no significant effects with several VOCs/gases such as NH3, CO2, acetone, methanol, toluene and propan at room temperature. The effects of parameters such as excitation frequency, applied voltage, and waveforms on the luminance intensity are discussed. The development of the present AC-EL device offers a simplified architecture to enable sensing functions of the AC-EL device via monitoring of light emission changing.

19.
Food Chem Toxicol ; 165: 113170, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35613679

RESUMO

In this study, synthesis of silver nanoparticles (AgNPs) was carried out utilizing the red and green parts of the pistachio hulls then their several biological activities were investigated. The DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate) activities of the AgNPs synthesized from red pistachio hulls extracts (PhR-AgNPs) and green pistachio hulls extracts (PhG-AgNPs) were investigated. The DPPH scavenging capability at 200 mg/L concentration of PhR-AgNPs was around 93.01% however PhG-AgNPs displayed 91.00%. The synthesized PhR-AgNPs and PhG-AgNPs acted on the E. coli plasmid DNA, causing its complete degradation and exhibiting effective chemical nuclease activity. Furthermore, PhR-AgNPs and PhG-AgNPs showed quite good antimicrobial activity against the studied strains with a range of the minimum inhibition concentration (MIC) of 8-16 mg/L. Moreover, it was observed that both pistachio hulls coated with AgNPs were highly effective in inhibiting the biofilm generation studied strains. Moreover, PhR-AgNP and PhG-AgNP displayed a completely inhibition effect on cellular viability of E. coli with 100% at 125 mg/L.


Assuntos
Nanopartículas Metálicas , Pistacia , Antibacterianos/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Prata/farmacologia
20.
J Environ Manage ; 311: 114884, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35287075

RESUMO

In this study, nano-sized silver oxides were loaded on activated carbon (nAg2O/AC) through a facile impregnation-calcination method for enhanced bacterial inactivation from drinking water, in which Escherichia coli (E. coli) was used as target bacteria. XRD and SEM characterization confirmed that nano-sized Ag2O particles (50-200 nm) were successfully prepared and uniformly distributed on the surfaces and pores of AC. Due to the structural reducing groups of AC, surface-bound Ag(I) was partially converted to Ag in the nAg2O matrix and the resulted Ag could sterilize E. coli directly. More importantly, surface-bound Ag could catalyze O2 and H2O to generate reactive oxygen species (ROS) for oxidation sterilization, thus significantly enhanced the inactivation efficiency from 0.8 log10 CFU/mL (nAg2O control) and 0.2 log10 CFU/mL (AC control) to 6.0 log10 CFU/mL in the nAg2O/AC system. The inactivation process was highly pH-dependent, and neutral pH was favorable for sterilization. A sterilization efficiency of 5.2 log10 CFU/mL could still be achieved after 5 running cycles, indicating stable sterilization performance of nAg2O/AC. In addition, the nAg2O/AC also exhibited excellent renewability since a sterilization efficiency of 5.8 log10 CFU/mL was obtained after nAg2O being stripped and reloaded on the AC. These results demonstrated that nAg2O-modified AC is an efficient material for sterilization in water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA