Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.903
Filtrar
1.
J Environ Sci (China) ; 149: 512-523, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181663

RESUMO

Oxygen activation leading to the generation of reactive oxygen species (ROS) is essential for photocatalytic environmental remediation. The limited efficiency of O2 adsorption and reductive activation significantly limits the production of ROS when employing C3N4 for the degradation of emerging pollutants. Doping with metal single atoms may lead to unsatisfactory efficiency, due to the recombination of photogenerated electron-hole pairs. Here, Mn and S single atoms were introduced into C3N4, resulting in the excellent photocatalytic performances. Mn/S-C3N4 achieved 100% removal of bisphenol A, with a rate constant 11 times that of pristine C3N4. According to the experimental results and theoretical simulations, S-atoms restrict holes, facilitating the photo-generated carriers' separation. Single-atom Mn acts as the O2 adsorption site, enhancing the adsorption and activation of O2, resulting the generation of ROS. This study presents a novel approach for developing highly effective photocatalysts that follows a new mechanism to eliminate organic pollutants from water.


Assuntos
Oxigênio , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Oxigênio/química , Catálise , Manganês/química , Compostos Benzidrílicos/química , Nitrilas/química , Adsorção , Espécies Reativas de Oxigênio , Recuperação e Remediação Ambiental/métodos , Fenóis/química
2.
J Hazard Mater ; 480: 135839, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39298965

RESUMO

A precious metal catalyst with loaded Pt single atoms was prepared and used for the complete oxidation of C3H6O. Detailed results show that the T100 of the 1.5Pt SA/γ-Al2O3 catalyst in the oxidation process of acetone is 250 °C, the TOF of Pt is 1.09 × 10-2 s-1, and the catalyst exhibits good stability. Characterization reveals that the high dispersion of Pt single atoms and strong interaction with the carrier improve the redox properties of the catalyst, enhancing the adsorption and dissociation capability of gaseous oxygen. DFT calculations show that after the introduction of Pt, the oxygen vacancy formation energy on the catalyst surface is reduced to 1.2 eV, and PDOS calculations prove that electrons on Pt atoms can be quickly transferred to O atoms, increasing the number of electrons on the σp * bond and promoting the escape of lattice oxygen. In addition, in situ DRIFTS and adsorption experiments indicate that the C3H6O oxidation process follows the Mars-van Krevelen reaction mechanism, and CH2 =C(CH3)=O(ads), O* (O2-), formate, acetate, and carbonate are considered as the main intermediate species and/or transients in the reaction process. Particularly, the activation rate of O2 and the cleavage of the -C-C- bond are the main rate-determining steps in the oxidation of C3H6O. This work will further enhance the study of the oxidation mechanism of oxygenated volatile organic pollutants over loaded noble metal catalysts.

3.
Small ; : e2406658, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39302004

RESUMO

Developing single-atomic electrocatalysts (SACs) with high activity and stability for electrocatalytic water-splitting has been challenging. Moreover, the practical utilization of SACs is still far from meeting the the theoretical prediction. Herein a facile and easy scale-up fabrication method is proposed for designing a novel carbon-iron-nitrogen (C-Fe-N) electrocatalyst with a single atom electron bridge (C-Fe-N SAEBs), which exhibits lower overpotential and impedance than previously reported electrocatalysts. 0.8-C-Fe-N SAEBs exhibits significant activity and excellent stability in the bi-functional decomposition of water. The excellent performance of the C-Fe-N SAEBs electrocatalyst can be attributed to the strong coupling effect at the interface owing to the formation of a single atom C3-Fe-N local coordination microenvironment at the interface, which enhance the exposure of active sites and charge transfer, and reduced the adsorption energy barrier of intermediates. Theoretical calculation and synchrotron radiation analysis are performed to understand the mechanistic insights behind the experimental results. The results reveal that the active C3-Fe-N local coordination microenvironment at the interface not only improves water-splitting behavior but also provides a deeper understanding of local-interface geometry/electronic structure for improving the electrocatalytic activity. Thus, the proposed electrocatalyst, as well as the mechanistic insights into its properties, presents a significant stride toward practical application.

4.
Nanomicro Lett ; 17(1): 1, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39317789

RESUMO

Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.

5.
Adv Mater ; : e2401648, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39318088

RESUMO

Exploring single-atom-catalysts for the acidic oxygen evolution reaction (OER) is of paramount importance for cost-effective hydrogen production via acidic water electrolyzers. However, the limited durability of most single-atom-catalysts and Ir/Ru-based oxides under harsh acidic OER conditions, primarily attributed to excessive lattice oxygen participation resulting in metal-leaching and structural collapse, hinders their practical application. Herein, an innovative strategy is developed to fabricate short-range Ir single-atom-ensembles (IrSAE) stabilized on the surface of Mn-substituted spinel Co3O4 (IrSAE-CMO), which exhibits excellent mass activity and significantly improved durability (degradation-rate: ≈2 mV h-1), outperforming benchmark IrO2 (≈44 mV h-1) and conventional Irsingle-atoms on pristine-Co3O4 for acidic OER. First-principle calculations reveal that Mn-substitution in the octahedral sites of Co3O4 substantially reduces the migration energy barrier for Irsingle-atoms on the CMO surface compared to pristine-Co3O4, facilitating the migration of Irsingle-atoms to form strongly correlated IrSAE during pyrolysis. Extensive ex situ characterization, operando X-ray absorption and Raman spectroscopies, pH-dependence activity tests, and theoretical calculations indicate that the rigid IrSAE with appropriate Ir-Ir distance stabilized on the CMO surface effectively suppresses lattice oxygen participation while promoting direct O─O radical coupling, thereby mitigating Ir-dissolution and structural collapse, boosting the stability in an acidic environment.

6.
Small ; : e2405150, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301975

RESUMO

Zeolites with band-like charge transport properties have exhibited their potential activities in sensing, optics, and electronics. Herein, a precisely designed Cu@ZSM-5 catalyst is presented with an ultra-wide bandgap of 4.27 eV, showing excellent photocatalytic activity in hydroxylation of benzene with benzene conversion 27.9% and phenol selectivity 97.6%. The SXRD and Rietveld refinement results illustrate that Cu@ZSM-5 has an average of 0.8 Cu atoms per unit cell and the single Cu atoms located in the cross-section of the sinusoidal and straight channels. XANES and EXAFS further demonstrate that the Cu atoms have an oxidation state of +2, coordinated with three OMFI-framework atoms and one ─OH group. Detailed characterizations demonstrate that the Cu@ZSM-5 with tailored bandgap is able to enhance the photoinduced electron-hole separation and hence promote selective hydroxylation of benzene to phenol via the superoxide radical route. This work may open a new way for designing electrically conductive zeolite-supported photocatalysts.

7.
Angew Chem Int Ed Engl ; : e202416711, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297431

RESUMO

Single-atom catalysts with precise structure and extremely high catalytic efficiency remain a fervent focus in the fields of materials chemistry and catalytic science. Herein, a nickel-substituted polyoxometalate (POM) {NiSb6O4(H2O)3[ß-Ni(hmta)SbW8O31]3}15- (NiPOM) with one extremely exposed nickel site [NiO3(H2O)3] was synthesized using the conventional aqueous method. The uniform dispersion of single nickel center with well-defined structure was facilely achieved by anchoring nanosized NiPOM on graphene oxide (GO). The resulting NiPOM/GO can couple with CdS photoabsorber for the construction of low-cost and ultra-efficient hydrogen evolution system. The H2 yield can reach to 2753.27 mmol gPOM-1 h-1, which represents a record value among all the POM-based photocatalytic systems. Remarkablely, an extremely high hydrogen yield of 3647.28 mmol gPOM-1 h-1 was achieved with simultaneous photooxidation of commercial waste plastic, representing the first POM-based photocatalytic system for H2 evolution and waste plastic conversion. This work highlights a straightforward strategy for constructing extremely exposed single-metal site with precise microenvironment by facilely manipulating nanosized molecular cluster to control individual atom.

8.
Nano Lett ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297545

RESUMO

Amid the world's escalating energy needs, rechargeable zinc-air batteries stand out because of their environmental sustainability, with their performance being critically dependent on the oxygen reduction reaction (ORR). The inherent slow kinetics of the ORR at air electrodes frequently constrains their operational efficiency. Here, we develop a new self-catalytic approach for in situ growth of carbon nanotubes with new cathode material Co@CoN3/CNTs-800 without external additives. Density functional theory calculation reveals this method integrates nonprecious single-atom catalysis with spatial confinement, facilitating large-scale, in situ fabrication of CNTs, which can support dispersed atomic CoN3 sites and enforce spatial confinement on Co nanoparticles. The Co@CoN3/CNTs-800 electrode achieves an electron transfer number close to ideal (3.9 out of 4.0). In rechargeable zinc-air flow batteries, it achieves a peak power density of 169.5 mW cm-2 and a voltage gap that is only 1.6% larger than the original after 700 h. This work surmounts critical challenges in the ORR kinetics for zinc-air batteries.

9.
ACS Nano ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39297690

RESUMO

Electrocatalytic CO2 reduction is garnering significant interest due to its potential applications in mitigating CO2 and producing fuel. However, the scaling up of related catalysis is still hindered by several challenges, including the cost of the catalytic materials, low selectivity, small current densities to maintain desirable selectivity. In this study, Fluorine (F) atoms were introduced into an N-doped carbon-supported single nickel (Ni) atom catalyst via facile polymer-assisted pyrolysis. This method not only maintains the high atom utilization efficiency of Ni in a cost-effective and sustainable manner but also effectively manipulates the electronic structure of the active Ni-N4 site through F doping. The catalyst has also been further optimized by controlling the F states, including convalent and semi-ionic states, by adjusting the fluorine sources involved. Consequently, this catalyst with unique structure exhibited comparable electrocatalytic performance for CO2-to-CO conversion, achieving a Faradaic efficiency (FE) of over 99% across a wide potential range and an exceptional CO evolution rate of 9.5 × 104 h-1 at -1.16 V vs reversible hydrogen electrode (RHE). It also delivered a practical current of 400 mA cm-2 while maintaining more than 95% CO FE. Experimental analysis combined with density functional theory (DFT) calculations have also shown that F-doping modifies the electron configuration at the central Ni-N4 sites. This modification lowers the energy barrier for CO2 activation, thereby facilitating the production of the crucial *COOH intermediate.

10.
J Colloid Interface Sci ; 678(Pt C): 742-753, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39307062

RESUMO

The construction of ultra-close 2D atomic-thickness Van der Waals heterojunctions with high-speed charge transfer still faces challenges. Here, we synthesized single-layer ZnIn2S4 and g-C3N4, and introduced silver single atoms to regulate Van der Waals heterojunctions at the atomic level to optimize charge transfer and catalytic activity. At the atomic scale, the impact of detailed structural differences between the two characteristic surfaces of ZnIn2S4 ([Zn-S4] and [In-S4]) on catalytic performance has been first proposed. Experiments combined with the DFT study demonstrate that single atom Ag not only acts as a charge transfer bridge but also regulates the energy band and intrinsic catalytic activity. Benefiting from the enhanced electron delocalization, the synthesized catalyst ZIS/Ag@CN exhibits excellent photocatalytic performance, with a hydrogen production rate of 5.50 mmol·g-1·h-1, which is much higher than the reported Ag-based single-atom catalysts so far. This work provides a new understanding of atomic-level heterojunction interface regulation and modification.

11.
Angew Chem Int Ed Engl ; : e202413769, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313757

RESUMO

Growing interest in p-block metal single-atom catalysts (PM-SACs) is driven by their low toxicity, economic viability, and transition metal-like catalytic properties. However, selection criteria for p-block single-atom species and catalytic mechanisms of PM-SACs remain unclear. This study explores the catalytic abilities of PM-SACs and their transition metal counterparts (TM-SACs) based on polymetric carbon nitride (PCN) for photocatalytic hydrogen peroxide (H2O2) production. Using thermodynamic barriers as a key descriptor, it was found that PM-SACs can surpass TM-SACs in H2O2 production due to a lower energy barrier for *OOH intermediate formation resulting from optimized p-p hybridization. Specifically, Sb-SAC based on PCN shows the highest apparent quantum yield of 35.3% at 400 nm. This study offers a rationale for the utilization of p-block SACs in the context of sustainable chemical synthesis.

12.
ACS Nano ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312392

RESUMO

Urea electrosynthesis by coelectrolysis of NO3- and CO2 (UENC) holds enormous promise for sustainable urea production, while the efficient UENC process relies on the rational design of high-performance catalysts to facilitate the electrocatalytic C-N coupling efficiency and the hydrogenation reaction process. Herein, Fe single atoms supported on MoS2 (Fe1/MoS2) are developed as a highly effective and robust catalyst for UENC. Theoretical calculations and operando spectroscopic measurements reveal a tandem catalysis mechanism of the Fe1-S3 motif and MoS2-edge to jointly promote the UENC process, where the Fe1-S3 motif drives the early C-N coupling and subsequent *CO2NO2-to-*CO2NH2 step. The generated *CO2NH2 is then migrated from the Fe1-S3 motif to the nearby MoS2-edge, which facilitates the *CO2NH2 → *COOHNH2 step for urea formation. Noticeably, Fe1/MoS2 assembled in a flow cell reaches a maximum urea Faraday efficiency of 54.98% with a corresponding urea yield rate of 18.98 mmol h-1 g-1, performing at the top level among all of the UENC catalysts reported to date.

13.
Adv Mater ; : e2410652, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308225

RESUMO

The outbreak of antibiotic-resistant bacteria, or "superbugs", poses a global public health hazard due to their resilience against the most effective last-line antibiotics. Identifying potent antibacterial agents capable of evading bacterial resistance mechanisms represents the ultimate defense strategy. This study shows that -the otherwise essential micronutrient- manganese turns into a broad-spectrum potent antibiotic when coordinated with a carboxylated nitrogen-doped graphene. This antibiotic material (termed NGA-Mn) not only inhibits the growth of a wide spectrum of multidrug-resistant bacteria but also heals wounds infected by bacteria in vivo and, most importantly, effectively evades bacterial resistance development. NGA-Mn exhibits up to 25-fold higher cytocompatibility to human cells than its minimum bacterial inhibitory concentration, demonstrating its potential as a next-generation antibacterial agent. Experimental findings suggest that NGA-Mn acts on the outer side of the bacterial cell membrane via a multimolecular collective binding, blocking vital functions in both Gram-positive and Gram-negative bacteria. The results underscore the potential of single-atom engineering toward potent antibiotics, offering simultaneously a long-sought solution for evading drug resistance development while being cytocompatible to human cells.

14.
Angew Chem Int Ed Engl ; : e202415642, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311690

RESUMO

Electrochemical carbon dioxide reduction (ECO2RR) shows great potential to create high-value carbon-based chemicals, while designing advanced catalysts at the atomic level remains challenging. The ECO2RR performance is largely dependent on the catalyst microelectronic structure that can be effectively modulated through surface defect engineering. Here, we provide an atmosphere-assisted low-temperature calcination strategy to prepare a series of single-atomic Cu/ceria catalysts with varied oxygen vacancy concentrations for robust electrolytic reduction of CO2 to methane. The obtained Cu/ceria catalyst under H2 environment (Cu/ceria-H2) exhibits a methane Faraday efficiency (FECH4) of 70.03% with a turnover frequency (TOFCH4) of 9946.7 h-1 at an industrial-scale current density of 150 mA cm-2 in a flow cell. Detailed studies indicate the copious oxygen vacancies in the Cu/ceria-H2 are conducive to regulating the surface microelectronic structure with stabilized Cu+ active center. Furthermore, density functional theory calculations and operando ATR-SEIRAS demonstrate that the Cu/ceria-H2 can markedly enhance the activation of CO2, facilitate the adsorption of pivotal intermediates *COOH and *CO, thus ultimately enabling the high selectivity for CH4 production. This study presents deep insights into designing effective electrocatalysts for CO2 to CH4 conversion by controlling the surface microstructure via the reaction atmosphere.

15.
ACS Nano ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261016

RESUMO

Heteroatom immobilization engineering (HAIE) is becoming a forefront approach in materials science and engineering, focusing on the precise control and manipulation of atomic-level interactions within heterogeneous systems. HAIE has emerged as an efficient strategy to fabricate single-atom sites for enhancing the performance of metal-based batteries. Despite the significant progress achieved through HAIE in metal anodes for metal-based batteries, several critical challenges such as metal dendrites, side reactions, and sluggish reaction kinetics are still present. In this review, we delve into the fundamental principles underlying heteroatom immobilization engineering in metal anodes, aiming to elucidate its role in enhancing the electrochemical performance in batteries. We systematically investigate how HAIE facilitates uniform nucleation of metal in anodes, how HAIE inhibits side reactions at the metal anode-electrolyte interface, and the role of HAIE in promoting the desolvation of metal ions and accelerating reaction kinetics within metal-based batteries. Finally, we discuss various strategies for implementing HAIE in electrode materials, such as high-temperature pyrolysis, vacancy reduction, and molten-salt etching and anchoring. These strategies include selecting appropriate heteroatoms, optimizing immobilization methods, and constructing material architectures. They can be utilized to further refine the performance to enhance the capabilities of HAIE and facilitate its widespread application in next-generation metal-based battery technologies.

16.
Angew Chem Int Ed Engl ; : e202414202, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261287

RESUMO

Single-atom catalysts with maximal atom-utilization have emerged as promising alternatives for chlorine evolution reaction (CER) toward valuable Cl2 production. However, understanding their intrinsic CER activity have so far been plagued due to the lack of well-defined atomic structure controlling. Herein, we prepare and identify a series of atomically dispersed noble metals (e.g., Pt, Ir, Ru) in nitrogen-doped nanocarbons (M1-N-C) with an identical M-N4 moiety, which allows objective activity evaluation. Electrochemical experiments, operando Raman spectroscopy, and quasi-in situ electron paramagnetic resonance spectroscopy analyses collectively reveal that all the three M1-N-C proceed the CER via a direct Cl-mediated Vomer-Heyrovský mechanism with reactivity following the trend of Pt1-N-C > Ir1-N-C > Ru1-N-C. Density functional theory (DFT) calculations reveal that this activity trend is governed by the binding strength of Cl*-Cl intermediate (ΔGCl*-Cl) on M-N4 sites (Pt < Ir < Ru) featuring distinct d-band centers, providing a reliable thermodynamic descriptor for rational design of single metal sites toward Cl2 electrosynthesis.

17.
Angew Chem Int Ed Engl ; : e202415203, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263728

RESUMO

Developing an efficient strategy to replace the conventional synthesis method for producing isoindolinone (IIO) scaffold, a crucial structural motif for constructing pharmaceutical molecules, remains to be a great challenge. Herein, a single-atom Pd/TiO2 tandem catalysis has been developed for the IIO scaffold synthesis by using readily available phthalic anhydride (PA), ammonia, and H2. The single-atom Pd/TiO2 catalyst demonstrates superior catalytic performance, achieving a PA conversion of 99%, an IIO selectivity of 91%, and a turnover frequency (TOF) up to 4807 h-1. This exceptional performance can be attributed to the tandem catalysis between TiO2 support and single-atom Pd. The TiO2 efficiently catalyzes the conversion of PA with ammonia to form phthalimide (PAM), subsequently transformed into IIO over TiO2 through the reaction of PAM with NH3 and the spillover hydrogen species derived from single-atom Pd. Notably, NH3 functions not only as a reactant but also as a promoter to accelerate the reduction of amides combined with the Pd/TiO2 catalyst. This tandem catalysis of a single-atom Pd/TiO2 catalyst provides a promising strategy for the synthesis of the crucial IIO platform molecules.

18.
Angew Chem Int Ed Engl ; : e202415975, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264141

RESUMO

Electrocatalytic nitrate reduction to ammonia (NO3RR) is very attractive for nitrate removal and ammonia production in industrial processes. However, the nitrate reduction reaction is characterized by intense hydrogen competition at strong reduction potentials, which greatly limits the Faraday efficiency at strong reduction potentials. Herein, we reported an AuxCu single-atom alloy aerogels (AuxCu SAAs) with three-dimensional network structure with significant nitrate reduction performance of Faraday efficiency (FE) higher than 90% over a wide potential range (0 ~ -1 VRHE). The FE of the catalyst was close to 100% at a high reduction potential of -0.8 VRHE, accompanying with NH3 yield reaching 6.21 mmol h-1 cm-2. More importantly, the catalyst maintained a long-term operation over 400 h at 400 mA cm-2 for the NO3RR using a continuous flow system in a H-cell. Experimental and theoretical analysis demonstrate that the catalyst can lower the energy barrier for the hydrogenation reaction of *NO2, leading to a rapid consumption of the generated *H, facilitate the hydrogenation process of NO3RR, and inhibit the competitive HER at high overpotentials, which efficiently promotes the nitrate reduction reaction, especially in industrial applications.

19.
Angew Chem Int Ed Engl ; : e202414314, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264257

RESUMO

Exploring NO reduction reaction (NORR) electrocatalysts with high activity and selectivity toward NH3 is essential for both NO removal and NH3 synthesis. Due to their superior electrocatalytic activities, single-atom alloy (SAA) catalysts have attracted considerable attention. However, the exploration of SAAs is hindered by a lack of fast yet reliable prediction of catalytic performance. To address this problem, we comprehensively screened a series of transition-metal atom doped Ag-based SAAs. This screening process involves regression machine learning (ML) algorithms and a compressed-sensing data-analytics approach parameterized with density-functional inputs. The results demonstrate that Cu/Ag and Zn/Ag can efficiently activate and hydrogenate NO with small Φmax(η), a grand-canonical adaptation of the Gmax(η) descriptor, and exhibit higher affinity to NO over H adatoms to suppress the competing hydrogen evolution reaction. The NH3 selectivity is mainly determined by the s orbitals of the doped single-atom near the Fermi level. The catalytic activity of SAAs is highly correlated with the local environment of the active site. We further quantified the relationship between the intrinsic features of these active sites and Φmax(η). Our work clarifies the mechanism of NORR to NH3 and offers a design principle to guide the screen of highly active SAA catalysts.

20.
Small ; : e2405624, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252646

RESUMO

Single-atom-catalysts (SACs) with atomically dispersed sites on carbon substrates have attained great advancements in electrocatalysis regarding maximum atomic utilization, unique chemical properties, and high catalytic performance. Precisely regulating the electronic structure of single-atom sites offers a rational strategy to optimize reaction processes associated with the activation of reactive intermediates with enhanced electrocatalytic activities of SACs. Although several approaches are proposed in terms of charge transfer, band structure, orbital occupancy, and the spin state, the principles for how electronic structure controls the intrinsic electrocatalytic activity of SACs have not been sufficiently investigated. Herein, strategies for regulating the electronic structure of carbon-based SACs are first summarized, including nonmetal heteroatom doping, coordination number regulating, defect engineering, strain designing, and dual-metal-sites scheming. Second, the impacts of electronic structure on the activation behaviors of reactive intermediates and the electrocatalytic activities of water splitting, oxygen reduction reaction, and CO2/N2 electroreduction reactions are thoroughly discussed. The electronic structure-performance relationships are meticulously understood by combining key characterization techniques with density functional theory (DFT) calculations. Finally, a conclusion of this paper and insights into the challenges and future prospects in this field are proposed. This review highlights the understanding of electronic structure-correlated electrocatalytic activity for SACs and guides their progress in electrochemical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA