RESUMO
Chiral microlasers hold great promise for optoelectronics from integrated photonic devices to high-density quantum information processing. Despite significant progress in lead-halide perovskite emitters, chiral lasing with high dissymmetry factors (glum) has not yet been realized. Here, we demonstrate chiral single-mode microlasers with exceptional stability and tunable emission across the visible range by combining CsPbClxBr3-x perovskite microrods (MRs) with a cholesteric liquid crystal (CLC) layer. The MRs lase via a whispering gallery mode (WGM) microcavity and confer chirality through the encapsulated CLC layer, thus exhibiting circularly polarized lasing with dissymmetry factors reaching 1.62. Importantly, we demonstrate wavelength-tunable high dissymmetry chiral lasers in a broad spectral range by tuning the halide composition and using CLC layers with the desired photonic bandgap (PBG). This facile approach to generate chiral lasing not only is applicable to semiconductor nano- and microcrystals but also paves the way for potential integration into nanoscale photonic devices.
RESUMO
A blood glucose concentration and temperature sensor with a balloon-shaped single-mode fiber (SMF) based on a core-offset structure is proposed and experimentally demonstrated. The balloon-shaped SMF is created by offset-fusing a straight-line SMF between two other SMFs, thereby forming a Mach-Zehnder interferometer (MZI). The core-offset structure can effectively excite higher-order cladding modes. The experimental results showed that the maximum sensitivity of blood glucose concentration was 0.331 nm/(mmol/l) and the maximum sensitivity of temperature was 0.216 nm/°C when the offset distance was 10 µm. Dual-parameter measurement was achieved through a dual-parameter matrix. In addition, the sensor has characteristics such as simple structure, low cost, good stability, and electromagnetic interference resistance, making it potentially valuable for diagnosing high blood glucose and related conditions.
Assuntos
Glicemia , Interferometria , Temperatura , Glicemia/análise , Interferometria/métodos , Interferometria/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Tecnologia de Fibra Óptica/métodos , Tecnologia de Fibra Óptica/instrumentação , Fibras Ópticas , Desenho de EquipamentoRESUMO
The synthesis of 2D MoWS2 nanosheets involved the liquid-phase exfoliation technique was explored in this paper. The nonlinear optical response of MoWS2 was characterized in the 1 µm wavelength range, and its suitability as a saturable absorber (SA) was confirmed. Experimental demonstrations were conducted by using MoWS2 as an SA in an idler-resonant intracavity KTA optical parametric oscillator (OPO) driven by a dual-loss-modulated Q-switched and mode-locked (QML) YVO4/Nd:YVO4 laser with an acousto-optic modulator (AOM). By appropriately tuning the pump power and the AOM repetition rate, the Q-switched envelope pulse widths for the signal and idler waves could be significantly reduced to be shorter than the cavity round-trip transit time, i.e., the interval between two neighboring mode-locking pulses. Consequently, this enabled the generation of sub-nanosecond single mode-locking pulses with a low repetition rate, high pulse energy, and remarkable stability. With a repetition rate of 1 kHz and maximal pulse energies of 318 µJ and 169 µJ, respectively, sub-nanosecond single mode-locking pulses of the signal and idler waves were generated. The theoretical model was established using coupled rate equations with a Gaussian spatial distribution approximation. The numerical simulation results for generating sub-nanosecond single mode-locking pulses for the signal and idler waves within their respective Q-switched envelopes aligned fundamentally with the experimental results, proving that MoWS2 can be a potential nanomaterial for further optoelectronic applications.
RESUMO
Introduction: Optical coherence tomography (OCT) is a pivotal imaging modality in ophthalmology for real-time, in vivo visualization of retinal structures. To enhance the capability and safety of OCT, this study focuses on the development of a micro intraocular OCT probe. The demand for minimal invasiveness and precise imaging drives the need for advanced probe designs that can access tight and sensitive areas, such as the ocular sclera. Methods: A novel OCT probe was engineered using a piezoelectric tube with quartered electrodes to drive Lissajous scanning movements at the end of a single-mode fiber. This design allows the probe to enter the eyeball through a scleral opening. Structural innovation enables the outer diameter of the endoscopic OCT probe to be adjusted from 13G (2.41 mm) to 25G (0.51 mm), accommodating various imaging field sizes and ensuring compatibility with different scleral incisions. Results: The fabricated micro intraocular OCT probe successfully performed preliminary imaging experiments on in vivo fingers. The Lissajous scanning facilitated comprehensive coverage of the target area, enhancing the imaging capabilities. Discussion: The integration of a piezoelectric tube with quartered outside electrodes into the OCT probe design proved effective for achieving precise control over scanning movements and adaptability to different surgical needs. The design characteristics and practical applications demonstrated the probe's potential in clinical settings.
RESUMO
Dissolved gases in the aquatic environment are critical to understanding the population of aquatic organisms and the ocean. Currently, laser absorption techniques based on membrane separation technology have made great strides in dissolved gas detection. However, the prolonged water-gas separation time of permeable membranes remains a key obstacle to the efficiency of dissolved gas analysis. To mitigate these limitations, we demonstrated direct measurement of dissolved gas using the evanescent-wave absorption spectroscopy of a tapered silica micro-fiber. It enhanced the analysis efficiency of dissolved gases without water-gas separation or sample preparation. The feasibility of this sensor for direct measurement of dissolved gases was verified by taking the detection of dissolved ammonia as an example. With a sensing length of 5 mm and a consumption of ~50 µL, this sensor achieves a system response time of ~11 min and a minimum detection limit (MDL) of 0.015%. Possible strategies are discussed for further performance improvement in in-situ applications requiring fast and highly sensitive dissolved gas sensing.
RESUMO
An external cavity wavelength-fiber ring laser (ECWTFL) based on a semiconductor optical amplifier and a combined wavelength scanning filter in the Littrow configuration is proposed and experimentally demonstrated. With the benefit of the combination of an external cavity wavelength filter and a Lyot filter, the laser achieves a single-mode narrow linewidth output with a linewidth of 1.75 kHz. The wavelength tuning range reaches 133 nm, covering the entire S + C band. The proposed ECWTFL is used for demodulation of a fiber EFPI sensor; the result shows that the proposed ECWTFL has the ability to demodulate the small cavity-length FPI sensor.
RESUMO
PCF denotes photonic crystal fiber which is utilized for terahertz (THz) waveguides and cladding in the shape of a hexagon with two elliptical air apertures (AHs), which are discussed. Such differentiation is made: When the frequency is 1 THz, effective material loss (EML) to a minimum of 0.028 cm-1 has been achieved. Making use of the heptagonal photonic crystal fiber (He-PCF) architecture, every simulation result utilizing COMSOL Multiphysics software implements the perfectly match layer (PML) and finite element method (FEM) boundary conditions. The He-PCF fiber demonstrates an effective mode loss (EML) of 0.028 cm-1 that is negligible, a substantial effective area (EA) measuring 7.31 × 10-8 m2 and an 80 % power concentration encompassing the central area at 1 THz frequency. Furthermore, regarding crucial optical guiding aspects like confinement loss, dispersion, and modality, a small study with respect to power fraction along with effective mode area (EMA) has again been conducted. Here, He-PCF THz waveguide is anticipated to provide a notable improvement in the current design for the communication field. Moreover, our suggested the PCF demonstrates perception by a solitary mode, as indicated through the utilization of the V-parameter, across a range in frequency spanning among 0.80 and 3 THz. Thus, it is anticipated that the layout of He-PCF fibers will facilitate efficient transmission of terahertz (THz) signals in a variety of communication applications.
RESUMO
We investigated the parity of polaritons, particularly the parity of topological polariton states resulting from light fields, in a molecular aggregate with uniform and alternating excitation transfer interaction coupled to a single-mode cavity. We find that all polariton states are with even parity, in terms of parity conservation, and the even-parity edge states of the Su-Schrieffer-Heeger model with alternating excitation transfer interaction induce even-parity topological polariton states. Thus, the odd-parity edge states are almost unaffected. The original odd-parity edge state is then affected with respect to the parity non-conservation case, i.e. the occupation number of the edge states shifts from one edge to another. This result entails the preparation of edge states from the photonic excited states through an adiabatic process.
RESUMO
In laser science and industry, considerable effort is directed toward designing fibers for fiber laser and fiber amplifier applications, each of which offers a particular advantage over the others. Evanescently coupled multicore fibers, however, have been studied less extensively due to the relatively small mode area in the single-mode regime. Here, by proposing a new structure with stress-applying parts in a 37-core fiber and optimizing this structure through a comprehensive framework, we present 21 solutions characterized by large-mode-area and high beam quality in the single-mode, single-polarization regime. Different fiber designs are optimal for different output parameters. In one design, the mode area can significantly increase to above 880 µm2, which is comparable with that of photonic-crystal fibers. Moreover, besides the single-mode operation, the beam quality factor (M2 factor) of the fundamental mode is considered an output parameter in the bent state and is improved up to 1.05 in another design. A comprehensive tolerance analysis is then performed to assess the performance of the designs under deviations from normal conditions. Moreover, in spite of the shifts in the loss of modes, the proposed high beam quality LMA fibers maintain single-polarization, single-mode operation across a wide range of core pitches, bending orientation angles, and bending radius deviations. Our results highlight the potential of multicore fibers for the efficient operation of fiber lasers and amplifiers.
RESUMO
An optical fiber sensor for the simultaneous measurement of microdisplacement and temperature based on balloon-shaped single-mode fibers cascaded with a fiber Bragg grating with two core-offset joints is proposed. The interference between the core mode and cladding mode is caused by the stimulation of the cladding mode by the core-offset joints' structure. The cladding of the core has a distinct refractive index, which causes optical path differences and interference. The balloon-shaped structure realizes mode selection by bending. As the displacement increases, the radius of the balloon-shaped interferometer changes, resulting in a change in the interference fringes of the interferometer, while the Bragg wavelength of the fiber grating remains unchanged. Temperature changes will cause the interference fringes of the interferometer and the Bragg wavelength of the fiber grating to shift. The proposed optical fiber sensor allows for the simultaneous measurement of microdisplacement and temperature. The results of the experiment indicate that the sensitivity of the interferometer to microdisplacement is 0.306 nm/µm in the sensing range of 0 to 200 µm and that the temperature sensitivity is 0.165 nm/°C, respectively. The proposed curvature sensor has the advantages of a compact structure, extensive spectrum of dynamic measurement, high sensitivity, and simple preparation, and has a wide range of potential applications in the fields of structural safety monitoring, aviation industry, and resource exploration.
RESUMO
Weighing particles above the megadalton mass range has been a persistent challenge in commercial mass spectrometry. Recently, nanoelectromechanical systems-based mass spectrometry (NEMS-MS) has shown remarkable performance in this mass range, especially with the advance of performing mass spectrometry under entirely atmospheric conditions. This advance reduces the overall complexity and cost while increasing the limit of detection. However, this technique required the tracking of two mechanical modes and the accurate knowledge of mode shapes that may deviate from their ideal values, especially due to air damping. Here, we used a NEMS architecture with a central platform, which enables the calculation of mass by single-mode measurements. Experiments were conducted using polystyrene and gold nanoparticles to demonstrate the successful acquisition of mass spectra using a single mode with an improved areal capture efficiency. This advance represents a step forward in NEMS-MS, bringing it closer to becoming a practical application for the mass sensing of nanoparticles.
RESUMO
Symmetry plays an essential role in the fundamental properties of a physical system. In this work, we report on the realization of tunable single-mode polariton lasing from highly excited Rydberg states via symmetry engineering. By breaking the symmetry of the polaritonic wave function through potential wells and controlling the spatial overlap between the gain region and the eigen mode, we are able to generate single-mode polariton lasing, reversibly and dynamically, from quantized polariton states. Increasing the asymmetry of the potential well, single-mode lasing can be achieved even for the highly excited Rydberg state with a principle quantum number of N = 14. Moreover, as a result of the excellent reservoir-eigen mode overlap and efficient spatial confinement, the threshold of lasing can be reduced up to 6 orders of magnitude, compared with those conventional pumping schemes. Our results present a new strategy toward the realization of thresholdless polariton lasing with dynamical tunability.
RESUMO
The paper presents theoretical analyses and experimental investigations of broadband differential interference in planar gradient waveguides made via K+-Na+ ion exchange in BK-7 glass. This technology, due to its large polarimetric dispersion, is especially useful for applications in differential interferometry. We discuss the influence of technological parameters on the operation characteristics of the structure in terms of sensor applications. The refractive index variation in the measured external surroundings affects the modal properties of TE and TM modes and the spectral distribution at the output of the differential interferometer. The optical system described in this work has been designed specifically for use in biological systems where variations in the index of refraction need to be measured.
Assuntos
Dispositivos Ópticos , Refratometria , Troca Iônica , Análise Espectral , InterferometriaRESUMO
In this work, we demonstrate optically pumped lasing in highly Zn-doped GaAs nanowires (NWs) lying on an iron film. The conically shaped NWs are first covered with an 8 nm thick Al2O3film to prevent atmospheric oxidation and mitigate band-bending effects. Multimode and single-mode lasing have been observed for NWs with a length greater or smaller than 2µm, respectively. Finite difference time domain calculations reveal a weak electric field enhancement in the Al2O3layer at the NW/iron film interface for the lasing modes. The high Zn acceptor concentration in the NWs provides enhanced radiative efficiency and enables lasing on the iron film despite plasmonic losses. Our results open avenues for integrating NW lasers on ferromagnetic substrates to achieve new functionalities, such as magnetic field-induced modulation.
RESUMO
The safety of railway transportation is crucial to social and economic development. Therefore, real-time monitoring of the rail is particularly necessary. The current track circuit structure is complex and costly, posing challenges to monitoring broken tracks using alternative methods. As a non-contact detection technology with a lower environmental impact, electromagnetic ultrasonic transducers (EMATs) have become a concern. However, traditional EMATs have problems such as low conversion efficiency and complex modes, which can limit their effectiveness for long-distance monitoring. Therefore, this study introduces a novel dual-magnet phase-stacked EMAT (DMPS-EMAT) design comprising two magnets and a dual-layer winding coil arrangement. The magnets are positioned at a distance equal to the wavelength of the A0 wave from each other, while the center distance between the two sets of coils beneath the transducer is also equal to the wavelength. After analyzing the dispersion curves of the rail waist, it was determined that the optimal frequency for long-distance rail monitoring is 35 kHz. At this frequency, adjusting the relative positions of the two magnets and the coil directly underneath to be one A0 wavelength can effectively excite a constructive interference A0 wave in the rail waist. The simulation and experimental results show that DMPS-EMAT excited a single-mode A0 wave, resulting in a 1.35-times increase in amplitude.
Assuntos
Imãs , Tecnologia , Simulação por Computador , Transdutores , Meios de TransporteRESUMO
Taking non-contact temperature measurements in narrow areas or confined spaces of non-uniform surfaces requires high spatial resolution and independence of emissivity uncertainties that conventional cameras can hardly provide. Two-color optical fiber (OF) pyrometers based on standard single-mode (SMF) and multi-mode optical fibers (MMF) with a small core diameter and low numerical aperture in combination with associated commercially available components can provide a spatial resolution in the micrometer range, independent of the material's emissivity. Our experiment involved using a patterned microheater to generate temperatures of approximately 340 °C on objects with a diameter of 0.25 mm. We measured these temperatures using two-color optical fiber pyrometers at a 1 kHz sampling rate, which were linearized in the range of 250 to 500 °C. We compared the results with those obtained using an industrial infrared camera. The tests show the potential of our technique for quickly measuring temperature gradients in small areas, independent of emissivity, such as in microthermography. We also report simulations and experiments, showing that the optical power gathered via each channel of the SMF and MMF pyrometers from hot objects of 250 µm is independent of distance until the OF light spot becomes larger than the diameter of the object at 0.9 mm and 0.4 mm, respectively.
RESUMO
A novel miniature radial-torsional hollow ultrasonic motor is proposed in this work, which is mainly composed of a base, a hollow rotor, a stator. One piece of piezoelectric wafer bonded on the bottom face of the stator is used to excite the radial in-plane vibration mode of the outer ring, which is converted into the revolved motion of the inner ring through the connection beams. The revolved motion of the inner ring can drive the rotor pressed on the inner ring to rotate through friction. The finite-element method was performed to verify the working principle of the motor and optimize the key dimensions of the motor. One prototype motor with the appearance size of Φ35 mm × 12 mm and weight of 20.1 g is fabricated and characterized. In addition, Si3N4 thin film is coated on the contact interface of the stator by the magnetron sputtering coating machine to improve the output performance of the ultrasonic motor. The experiment results show that the locked-rotor torque of the motor with coated stator can reach 0.42 mN m, which is 55.56 % higher than that of the uncoated motor.
RESUMO
Fungicide use is integral to reduce yield loss from Sclerotinia sclerotiorum on dry bean and soybean. Increasing fungicide use against this fungus may lead to resistance to the most common fungicides. Resistance has been reported in Brazil (Glycine max) and China (Brassica napus subsp. napus), however, few studies have investigated fungicide sensitivity of S. sclerotiorum in the United States. This work was conducted to determine if there was a difference in fungicide sensitivity of S. sclerotiorum isolates in the United States from: (i) dry bean versus soybean and (ii) fields with different frequencies of fungicide application. We further hypothesized that isolates with fungicide applications of a single active ingredient from tropical Brazil and subtropical Mexico were less sensitive than temperate U.S. isolates due to different management practices and climates. The EC50(D) fungicide sensitivity of 512 S. sclerotiorum isolates from the United States (443), Brazil (36), and Mexico (33) was determined using a discriminatory concentration (DC) previously identified for tetraconazole (2.0 ppm; EC50(D) range of 0.197 to 2.27 ppm), boscalid (0.2; 0.042 to 0.222), picoxystrobin (0.01; 0.006 to 0.027), and thiophanate-methyl, which had a qualitative DC of 10 ppm. Among the 10 least sensitive isolates to boscalid and picoxystrobin, 2 presented mutations known to confer resistance in the SdhB (qualitative) and SdhC (quantitative) genes; however, no strong resistance was found. This study established novel DCs that can be used for further resistance monitoring and baseline sensitivity of S. sclerotiorum to tetraconazole worldwide plus baseline sensitivity to boscalid in the United States.
Assuntos
Ascomicetos , Fungicidas Industriais , Estados Unidos , Fungicidas Industriais/farmacologia , Glycine max , Ascomicetos/genéticaRESUMO
Lamb wave excitation at high-frequency-thickness products offers a potential solution for high-resolution guided wave testing. The method is attractive for crack imaging and corrosion mapping, especially in hidden locations where direct access is limited. However, multiple modes may propagate, complicating signal interpretation, which is undesirable. In this work, a systematic approach is presented, in an effort to determine the influence of the key parameters related to single higher order Lamb wave mode excitation using a conventional linear array transducer. Specifically, a linear time delay law is used to enhance the targeted mode, while the array's length, pitch and apodisation profile remain to be optimally selected. First, an analytical solution is derived based on modal analysis. This provides a natural decomposition of the amplitude of a guided wave mode into the product of the response of a single element and the excitation spectrum. Then, a key observation is made, associating the excitation spectrum to the directivity function for bulk wave phased array steering. This allows the application of well-established phased array analysis tools to guided wave phased array excitation. In light of this fact, minimisation of the spectrum's bandwidth, elimination of the grating lobes and derivation of an apodisation profile are performed, to enhance the purity of the targeted mode. Finally, experiments conducted on an aluminium plate verify the above theoretical results. The Full Matrix is acquired, and all signals are reconstructed synthetically.
RESUMO
According to the single-mode approximation applied to two different mo des, each associated with different uniformly accelerating reference frames, we present analytical expression of the Minkowski states for both the ground and first excited states. Applying such an approximation, we study the entanglement property of Bell and Greenberger-Horne-Zeilinger (GHZ) states formed by such states. The corresponding entanglement properties are described by studying negativity and von Neumann entropy. The degree of entanglement will be degraded when the acceleration parameters increase. We find that the greater the number of particles in the entangled system, the more stable the system that is studied by the von Neumann entropy. The present results will be reduced to those in the case of the uniformly accelerating reference frame.