Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 92(1): 374-388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38380719

RESUMO

PURPOSE: Single-sided portable NMR (pNMR) has previously been demonstrated to be suitable for quantification of mammographic density (MD) in excised breast tissue samples. Here we investigate the precision and accuracy of pNMR measurements of MD ex vivo as compared with the gold standards. METHODS: Forty-five breast-tissue explants from 9 prophylactic mastectomy patients were measured. The relative tissue water content was taken as the MD-equivalent quantity. In each sample, the water content was measured using some combination of three pNMR techniques (apparent T2, diffusion, and T1 measurements) and two gold-standard techniques (computed microtomography [µCT] and hematoxylin and eosin [H&E] histology). Pairwise correlation plots and Bland-Altman analysis were used to quantify the degree of agreement between pNMR techniques and the gold standards. RESULTS: Relative water content measured from both apparent T2 relaxation spectra, and diffusion decays exhibited strong correlation with the H&E and µCT results. Bland-Altman analysis yielded average bias values of -0.4, -2.6, 2.6, and 2.8 water percentage points (pp) and 95% confidence intervals of 13.1, 7.5, 11.2, and 11.8 pp for the H&E - T2, µCT - T2, H&E - diffusion, and µCT - diffusion comparison pairs, respectively. T1-based measurements were found to be less reliable, with the Bland-Altman confidence intervals of 27.7 and 33.0 pp when compared with H&E and µCT, respectively. CONCLUSION: Apparent T2-based and diffusion-based pNMR measurements enable quantification of MD in breast-tissue explants with the precision of approximately 10 pp and accuracy of approximately 3 pp or better, making pNMR a promising measurement modality for radiation-free quantification of MD.


Assuntos
Densidade da Mama , Espectroscopia de Ressonância Magnética , Humanos , Feminino , Espectroscopia de Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Pessoa de Meia-Idade , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Adulto , Mamografia/métodos
2.
Magn Reson Imaging ; 92: 212-223, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35843446

RESUMO

Mammographic Density (MD) is the degree of radio-opacity of the breast in an X-ray mammogram. It is determined by the Fibroglandular: Adipose tissue ratio. MD has major implications in breast cancer risk and breast cancer chemoprevention. This study aimed to investigate the feasibility of accurate, low-cost quantification of MD in vivo without ionising radiation. We used single-sided portable nuclear magnetic resonance ("Portable NMR") due to its low cost and the absence of radiation-related safety concerns. Fifteen (N = 15) healthy female volunteers were selected for the study and underwent an imaging routine consisting of 2D X-ray mammography, quantitative breast 3T MRI (Dixon and T1-based 3D compositional breast imaging), and 1D compositional depth profiling of the right breast using Portable NMR. For each participant, all the measurements were made within 3-4 h of each other. MRI-determined tissue water content was used as the MD-equivalent quantity. Portable NMR depth profiles of tissue water were compared with the equivalent depth profiles reconstructed from Dixon and T1-based MR images, which were used as the MD-equivalent reference standard. The agreement between the depth profiles acquired using Portable NMR and the reconstructed reference-standard profiles was variable but overall encouraging. The agreement was somewhat inferior to that seen in breast tissue explant measurements conducted in vitro, where quantitative micro-CT was used as the reference standard. The lower agreement in vivo can be attributed to an uncertainty in the positioning of the Portable NMR sensor on the breast surface and breast compression in Portable NMR measurements. The degree of agreement between Portable NMR and quantitative MRI is encouraging. While the results call for further development of quantitative Portable NMR, they demonstrate the in-principle feasibility of Portable NMR-based quantitative compositional imaging in vivo and show promise for the development of safe and low-cost protocols for quantification of MD suitable for clinical applications.


Assuntos
Densidade da Mama , Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Mamografia , Água
3.
Magn Reson Med ; 85(6): 3353-3369, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33349979

RESUMO

PURPOSE: Single-sided 1 H-NMR is proposed for the estimation of morphological parameters of trabecular bone, and potentially the detection of pathophysiological alterations of bone structure. In this study, a new methodology was used to estimate such parameters without using an external reference signal, and to study intratrabecular and intertrabecular porosities, with a view to eventually scanning patients. METHODS: Animal trabecular bone samples were analyzed by a single-sided device. The Carr-Purcell-Meiboom-Gill sequence of 1 H nuclei of fluids, including marrow, confined inside the bone, was analyzed by quasi-continuous T2 distributions and separated into two 1 H pools: short and long T2 components. The NMR parameters were estimated using models of trabecular bone structure, and compared with the corresponding micro-CT. RESULTS: Without any further assumptions, the internal reference parameter (short T2 signal intensity fraction) enabled prediction of the micro-CT parameters BV/TV (volume of the trabeculae/total sample volume) and BS/TV (external surface of the trabeculae/total sample volume) with linear correlation coefficient >0.80. The assignment of the two pools to intratrabecular and intertrabecular components yielded an estimate of average intratrabecular porosity (33 ± 5)%. Using the proposed models, the NMR-estimated BV/TV and BS/TV were found to be linearly related to the corresponding micro-CT values with high correlation (>0.90 for BV/TV; >0.80 for BS/TV) and agreement coefficients. CONCLUSION: Low-field, low-cost portable devices that rely on intrinsic magnetic field gradients and do not use ionizing radiation are viable tools for in vitro preclinical studies of pathophysiological structural alterations of trabecular bone.


Assuntos
Osso e Ossos , Osso Esponjoso , Animais , Osso e Ossos/diagnóstico por imagem , Osso Esponjoso/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Porosidade , Microtomografia por Raio-X
4.
Magn Reson Imaging ; 62: 111-120, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31176808

RESUMO

Mammographic density (MD) is a strong independent risk factor for breast cancer. Traditional screening for MD using X-ray mammography involves ionising radiation, which is not suitable for young women, those with previous radiation exposure, or those having undergone a partial mastectomy. Therefore, alternative approaches for MD screening that do not involve ionising radiation will be important as the clinical use of MD increases, and as more frequent MD testing becomes desirable for research purposes. We have previously demonstrated the potential utility of spin relaxation-based, single-sided portable-NMR measurements for the purpose of MD quantification. We present here a more refined analysis by quantifying breast tissue density in excised samples on a continuous scale (0% to 100% fibroglandular tissue content) using micro-CT (µCT), and comparing the results to spin-relaxation and diffusion portable-NMR measurements of the same samples. µCT analysis of mammary tissues containing high- and low-MD (HMD and LMD, respectively) regions had Hounsfield Unit (HU) histograms with a bimodal pattern, with HMD regions exhibiting significantly higher HU values than LMD regions. Quantitative MD (%HMD) values obtained using µCT exhibited an excellent correlation with portable-NMR results, namely longitudinal spin-relaxation time constants (T1) and the relative tissue water content obtained from portable-NMR diffusion measurements (R2 = 0.92, p < 0.0001 and R2 = 0.96, p < 0.0001, respectively). These findings are consistent with our previous results demonstrating relatively high water content in HMD breast tissue, consistent with the high proportion of fibroglandular tissue, FGT, which in turn contains more abundant water-carrying HSPG proteins. We observed an excellent correlation between the T1 values and diffusion NMR-measured relative tissue water content (R2 = 0.94, p < 0.0001). These findings demonstrate, for the first time, the ability of single-sided portable NMR to accurately quantify MD in vitro on a continuous scale. The results also indicate that portable-NMR analysis can assist in the identification of features underpinning MD, namely FGT and adipose tissue content. Future work will involve application of portable NMR to quantifying MD in vivo.


Assuntos
Densidade da Mama , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Microtomografia por Raio-X , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Análise dos Mínimos Quadrados , Imageamento por Ressonância Magnética , Mamografia , Mastectomia , Pessoa de Meia-Idade
5.
Magn Reson Med ; 82(3): 1199-1213, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31034648

RESUMO

PURPOSE: Elevated mammographic density (MD) is an independent risk factor for breast cancer (BC) as well as a source of masking in X-ray mammography. High-frequency longitudinal monitoring of MD could also be beneficial in hormonal BC prevention, where early MD changes herald the treatment's success. We present a novel approach to quantification of MD in breast tissue using single-sided portable NMR. Its development was motivated by the low cost of portable-NMR instrumentation, the suitability for measurements in vivo, and the absence of ionizing radiation. METHODS: Five breast slices were obtained from three patients undergoing prophylactic mastectomy or breast reduction surgery. Carr-Purcell-Meiboom-Gill (CPMG) relaxation curves were measured from (1) regions of high and low MD (HMD and LMD, respectively) in the full breast slices; (2) the same regions excised from the full slices; and (3) excised samples after H2 O-D2 O replacement. T2 distributions were reconstructed from the CPMG decays using inverse Laplace transform. RESULTS: Two major peaks, identified as fat and water, were consistently observed in the T2 distributions of HMD regions. The LMD T2 distributions were dominated by the fat peak. The relative areas of the two peaks exhibited statistically significant (P < .005) differences between HMD and LMD regions, enabling their classification as HMD or LMD. The relative-area distributions exhibited no statistically significant differences between full slices and excised samples. CONCLUSION: T2 -based portable-NMR analysis is a novel approach to MD quantification. The ability to quantify tissue composition, combined with the low cost of instrumentation, make this approach promising for clinical applications.


Assuntos
Densidade da Mama/fisiologia , Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Mama/fisiologia , Mama/fisiopatologia , Neoplasias da Mama/fisiopatologia , Feminino , Humanos , Mamografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA