Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884736

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lymphoma, including various clinical manifestations, such as mycosis fungoides (MF) and Sézary syndrome (SS). CTCL mostly develops from CD4 T cells with the skin-tropic memory phenotype. Malignant T cells in MF lesions show the phenotype of skin resident memory T cells (TRM), which reside in the peripheral tissues for long periods and do not recirculate. On the other hand, malignant T cells in SS represent the phenotype of central memory T cells (TCM), which are characterized by recirculation to and from the blood and lymphoid tissues. The kinetics and the functional characteristics of malignant cells in CTCL are still unclear due, in part, to the fact that both the malignant cells and the T cells exerting anti-tumor activity possess the same characteristics as T cells. Capturing the features of both the malignant and the benign T cells is necessary for understanding the pathogenesis of CTCL and would lead to new therapeutic strategies specifically targeting the skin malignant T cells or benign T cells.


Assuntos
Linfoma Cutâneo de Células T/imunologia , Células T de Memória/patologia , Pele/imunologia , Animais , Humanos , Pele/patologia , Microambiente Tumoral
2.
J Clin Med ; 10(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34501272

RESUMO

Tissue-resident memory T cells (TRM) stay in the peripheral tissues for long periods of time, do not recirculate, and provide the first line of adaptive immune response in the residing tissues. Although TRM originate from circulating T cells, TRM are physiologically distinct from circulating T cells with the expression of tissue-residency markers, such as CD69 and CD103, and the characteristic profile of transcription factors. Besides defense against pathogens, the functional skew of skin TRM is indicated in chronic skin inflammatory diseases. In psoriasis, IL-17A-producing CD8+ TRM are regarded as one of the pathogenic populations in skin. Although no licensed drugs that directly and specifically inhibit the activity of skin TRM are available to date, psoriatic skin TRM are affected in the current treatments of psoriasis. Targeting skin TRM or using TRM as a potential index for disease severity can be an attractive strategy in psoriasis.

3.
Front Immunol ; 11: 601504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154758

RESUMO

Ticks are blood-sucking arthropods of great importance in the medical and veterinary fields worldwide. They are considered second only to mosquitos as vectors of pathogenic microorganisms that can cause serious infectious disorders, such as Lyme borreliosis and tick-borne encephalitis. Hard (Ixodid) ticks feed on host animals for several days and inject saliva together with pathogens to hosts during blood feeding. Some animal species can acquire resistance to blood-feeding by ticks after a single or repeated tick infestation, resulting in decreased weights and numbers of engorged ticks or the death of ticks in subsequent infestations. Importantly, this acquired tick resistance (ATR) can reduce the risk of pathogen transmission from pathogen-infected ticks to hosts. This is the basis for the development of tick antigen-targeted vaccines to forestall tick infestation and tick-borne diseases. Accumulation of basophils is detected in the tick re-infested skin lesion of animals showing ATR, and the ablation of basophils abolishes ATR in mice and guinea pigs, illustrating the critical role for basophils in the expression of ATR. In this review article, we provide a comprehensive overview of recent advances in our understanding of the cellular and molecular mechanisms responsible for the development and manifestation of ATR, with a particular focus on the role of basophils.


Assuntos
Basófilos/imunologia , Memória Imunológica , Mordeduras e Picadas de Insetos/imunologia , Saliva/imunologia , Pele/imunologia , Doenças Transmitidas por Carrapatos/prevenção & controle , Carrapatos/imunologia , Animais , Basófilos/microbiologia , Basófilos/parasitologia , Basófilos/virologia , Histamina/imunologia , Liberação de Histamina , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina E/imunologia , Mordeduras e Picadas de Insetos/microbiologia , Mordeduras e Picadas de Insetos/parasitologia , Mordeduras e Picadas de Insetos/virologia , Saliva/microbiologia , Saliva/parasitologia , Saliva/virologia , Pele/microbiologia , Pele/parasitologia , Pele/virologia , Doenças Transmitidas por Carrapatos/etiologia , Doenças Transmitidas por Carrapatos/imunologia , Doenças Transmitidas por Carrapatos/transmissão , Carrapatos/microbiologia , Carrapatos/parasitologia , Carrapatos/virologia , Vacinação , Vacinas/uso terapêutico
4.
Front Med (Lausanne) ; 5: 166, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900173

RESUMO

The human skin is known to be inhabited by diverse microbes, including bacteria, fungi, viruses, archaea, and mites. This microbiome exerts a protective role against infections by promoting immune development and inhibiting pathogenic microbes to colonize skin. One of the factors having an intense effect on the skin and its resident microbes is ultraviolet-radiation (UV-R). UV-R can promote or inhibit the growth of microbes on the skin and modulate the immune system which can be either favorable or harmful. Among potential UV-R targets, skin resident memory T cells (TRM) stand as well positioned immune cells at the forefront within the skin. Both CD4+ or CD8+ αß TRM cells residing permanently in peripheral tissues have been shown to play prominent roles in providing accelerated and long-lived specific immunity, tissue homeostasis, wound repair. Nevertheless, their response upon UV-R exposure or signals from microbiome are poorly understood compared to resident TCRγδ cells. Skin TRM survive for long periods of time and are exposed to innumerable antigens during lifetime. The interplay of TRM with skin residing microbes may be crucial in pathophysiology of various diseases including psoriasis, atopic dermatitis and polymorphic light eruption. In this article, we share our perspective about how UV-R may directly shape the persistence, phenotype, specificity, and function of skin TRM; and moreover, whether UV-R alters barrier function, leading to microbial-specific skin TRM, disrupting the healthy balance between skin microbiome and skin immune cells, and resulting in chronic inflammation and diseased skin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA