Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 771, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118023

RESUMO

Prolonged or chronic social isolation has pronounced effects on animals, ranging from altered stress responses, increased anxiety and aggressive behaviour, and even increased mortality. The effects of shorter periods of isolation are much less well researched; however, short periods of isolation are used routinely for testing animal behaviour and physiology. Here, we studied how a 3 h period of isolation from a cagemate affected neural gene expression in three brain regions that contain important components of the social decision-making network, the hypothalamus, the nucleus taeniae of the amygdala, and the bed nucleus of the stria terminalis, using a gregarious bird as a model (zebra finches). We found evidence suggestive of altered neural activity, synaptic transmission, metabolism, and even potentially pain perception, all of which could create cofounding effects on experimental tests that involve isolating animals. We recommend that the effects of short-term social isolation need to be better understood and propose alternatives to isolating animals for testing.


Assuntos
Tomada de Decisões , Tentilhões , Isolamento Social , Animais , Isolamento Social/psicologia , Tentilhões/fisiologia , Masculino , Comportamento Animal , Encéfalo/metabolismo , Encéfalo/fisiologia , Núcleos Septais/metabolismo , Comportamento Social , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/fisiologia , Hipotálamo/metabolismo
2.
J Neurosci ; 44(23)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38658166

RESUMO

Aggression is a crucial behavior that impacts access to limited resources in different environmental contexts. Androgens synthesized by the gonads promote aggression during the breeding season. However, aggression can be expressed during the non-breeding season, despite low androgen synthesis by the gonads. The brain can also synthesize steroids ("neurosteroids"), including androgens, which might promote aggression during the non-breeding season. Male song sparrows, Melospiza melodia, are territorial year-round and allow the study of seasonal changes in the steroid modulation of aggression. Here, we quantified steroids following a simulated territorial intrusion (STI) for 10 min in wild adult male song sparrows during the breeding and non-breeding seasons. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), we examined 11 steroids: pregnenolone, progesterone, corticosterone, dehydroepiandrosterone, androstenedione, testosterone, 5α-dihydrotestosterone, 17ß-estradiol, 17α-estradiol, estriol, and estrone. Steroids were measured in blood and 10 microdissected brain regions that regulate social behavior. In both seasons, STI increased corticosterone in the blood and brain. In the breeding season, STI had no rapid effects on androgens or estrogens. Intriguingly, in the non-breeding season, STI increased testosterone and androstenedione in several behaviorally relevant regions, but not in the blood, where androgens remained non-detectable. Also in the non-breeding season, STI increased progesterone in the blood and specific brain regions. Overall, rapid socially modulated changes in brain steroid levels are more prominent during the non-breeding season. Brain steroid levels vary with season and social context in a region-specific manner and suggest a role for neuroandrogens in aggression during the non-breeding season.


Assuntos
Agressão , Androgênios , Encéfalo , Estações do Ano , Pardais , Territorialidade , Animais , Masculino , Agressão/fisiologia , Androgênios/metabolismo , Encéfalo/metabolismo , Pardais/fisiologia , Pardais/metabolismo , Aves Canoras/metabolismo
3.
Behav Brain Res ; 465: 114965, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38522595

RESUMO

Brain areas important for social perception, social reward, and social behavior - collectively referred to as the social-decision-making network (SDN) - appear to be highly conserved across taxa. These brain areas facilitate a variety of social behaviors such as conspecific approach/avoidance, aggression, mating, parental care, and recognition. Although the SDN has been investigated across taxa, little is known about its functioning in reptiles. Research on the snake SDN may provide important new insights, as snakes have a keen social perceptual system and express a relatively reduced repertoire of social behaviors. Here, we present the results of an experiment in which ball pythons (Python regius) interacted with a same-sex conspecific for one hour and neural activation was investigated through Fos immunoreactivity. Compared to controls, snakes that interacted socially had higher Fos counts in brain areas implicated in social behavior across taxa, such as the medial amygdala, preoptic area, nucleus accumbens, and basolateral amygdala. Additionally, we found differential Fos immunoreactivity in the ventral amygdala, which facilitates communication between social brain areas. In many of these areas, Fos counts differed by sex, which may be due to increased competition between males. Fos counts did not differ in early sensory (i.e., vomeronasal) processing structures. As ball python social systems lack parental care, cooperation, or long-term group living, these results provide valuable insight into the basal functions of the vertebrate social decision-making network.


Assuntos
Encéfalo , Proteínas Proto-Oncogênicas c-fos , Masculino , Animais , Proteínas Proto-Oncogênicas c-fos/metabolismo , Encéfalo/metabolismo , Área Pré-Óptica/metabolismo , Núcleo Accumbens/metabolismo , Serpentes/metabolismo
4.
Trends Ecol Evol ; 39(2): 141-151, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783626

RESUMO

Animals in nature are constantly managing multiple demands, and decisions about how to adjust behavior in response to ecologically relevant demands is critical for fitness. Evidence for behavioral correlations across functional contexts (behavioral syndromes) and growing appreciation for shared proximate substrates of behavior prompts novel questions about the existence of distinct neural, molecular, and genetic mechanisms involved in decision-making. Those proximate mechanisms are likely to be an important target of selection, but little is known about how they evolve, their evolutionary history, or where they harbor genetic variation. Herein I provide a conceptual framework for understanding the evolution of mechanisms for decision-making, highlighting insights on decision-making in humans and model organisms, and sketch an emerging synthesis.


Assuntos
Tomada de Decisões , Animais , Humanos , Tomada de Decisões/fisiologia
5.
J Exp Biol ; 226(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909345

RESUMO

Social defeat is a powerful experience leading to drastic changes in physiology and behavior, many of which are negative. For example, repeated social defeat in vertebrates results in reduced reproductive success, sickness and behavioral abnormalities that threaten individual survival and species persistence. However, little is known about what neural mechanisms are involved in determining whether an individual is resilient or susceptible to repeated social defeat stress. It also remains unknown whether exclusive use of reactive behaviors after repeated social defeat is maintained over time and impacts future behaviors during subsequent contests. We used a resident-intruder experiment in the African cichlid fish Astatotilapia burtoni to investigate the behavior and neural correlates of these two opposing groups. Behavior was quantified by watching fish during defeat trials and used to distinguish resilient and susceptible individuals. Both resilient and susceptible fish started with searching and freezing behaviors, with searching decreasing and freezing increasing after repeated social defeat. After a 4 day break period, resilient fish used both searching and freezing behaviors during a social defeat encounter with a new resident, while susceptible fish almost exclusively used freezing behaviors. By quantifying neural activation using pS6 in socially relevant brain regions, we identified differential neural activation patterns associated with resilient and susceptible fish and found nuclei that co-varied and may represent functional networks. These data provide the first evidence of specific conserved brain networks underlying social stress resilience and susceptibility in fishes.


Assuntos
Ciclídeos , Animais , Derrota Social , Encéfalo , Núcleo Celular , Reprodução
6.
Horm Behav ; 155: 105403, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37678093

RESUMO

Social relationships, affiliative social attachments, are important for many species. The best studied types of relationships are monogamous pair bonds. However, it remains unclear how generalizable models of pair bonding are across types of social attachments. Zebra finches are a fascinating system to explore the neurobiology of social relationships because they form various adult bonds with both same- and opposite-sex partners. To test whether different bonds are supported by a single brain network, we quantified individuals' neuroendocrine state after either 24 h or 2 weeks of co-housing with a novel same- or opposite-sex partner. We defined neuroendocrine state by the expression of 22 genes related to 4 major signaling pathways (dopamine, steroid, nonapeptide, and opioid) in six brain regions associated with affiliation or communication [nucleus accumbens (NAc), nucleus taeniae of the amygdala (TnA), medial preoptic area (POM), and periaqueductal gray (PAG), ventral tegmental area, and auditory cortex]. Overall, we found dissociable effects of social contexts (same- or opposite-sex partnerships) and duration of co-housing. Social bonding impacted the neuroendocrine state of four regions in males (NAc, TnA, POM, and PAG) and three regions in females (NAc, TnA, and POM). Monogamous pair bonding specifically appeared to impact male NAc. However, the patterns of gene expression in zebra finches were different than has previously been reported in mammals. Together, our results support the view that there are numerous mechanisms regulating social relationships and highlight the need to further our understanding of how social interactions shape social bonds.

7.
Affect Sci ; 3(4): 792-798, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36519149

RESUMO

Parental care has attracted attention from both proximate and ultimate perspectives. While understanding the adaptive significance of care has been the focus of work in diverse organisms in behavioral ecology, most of what we know about the proximate mechanisms underlying parental care behavior comes from studies in mammals. Although studies on mammals have greatly improved our understanding of care, viewing parental care solely through a mammalian lens can limit our understanding. Here, we draw upon examples from non-mammalian vertebrate systems to show that in many ways mammals are the exception rather than the rule for caregiving: across vertebrates, maternal care is often not the ancestral or the most common mode of care and fathering is not derivative of mothering. Embracing the diversity of parental care can improve our understanding of both the proximate basis and adaptive significance of parental care and the affective processes involved in caregiving.

8.
Front Behav Neurosci ; 16: 784835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35250500

RESUMO

Although aggression is more prevalent in males, females also express aggressive behaviors and in specific ecological contexts females can be more aggressive than males. The aim of this work is to assess sex differences in aggression and to characterize the patterns of neuronal activation of the social-decision making network (SDMN) in response to intra-sexual aggression in both male and female zebrafish. Adult fish were exposed to social interaction with a same-sex opponent and all behavioral displays, latency, and time of resolution were quantified. After conflict resolution, brains were sampled and sex differences on functional connectivity throughout the SDMN were assessed by immunofluorescence of the neuronal activation marker pS6. Results suggest that both sexes share a similar level of motivation for aggression, but female encounters show shorter conflict resolution and a preferential use of antiparallel displays instead of overt aggression, showing a reduction of putative maladaptive effects. Although there are no sex differences in the neuronal activation in any individual brain area from the SDMN, agonistic interactions increased neuronal activity in most brain areas in both sexes. Functional connectivity was assessed using bootstrapped adjacency matrices that capture the co-activation of the SDMN nodes. Male winners increased the overall excitation and showed no changes in inhibition across the SDMN, whereas female winners and both male and female losers showed a decrease in both excitation and inhibition of the SDMN in comparison to non-interacting control fish. Moreover, network centrality analysis revealed both shared hubs, as well as sex-specific hubs, between the sexes for each social condition in the SDMN. In summary, a distinct neural activation pattern associated with social experience during fights was found for each sex, suggesting a sex-specific differential activation of the social brain as a consequence of social experience. Overall, our study adds insights into sex differences in agonistic behavior and on the neuronal architecture of intrasexual aggression in zebrafish.

9.
Behav Brain Res ; 423: 113745, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35033611

RESUMO

Vocal courtship is vital to the reproductive success of many vertebrates and is therefore a highly-motivated behavioral state. Catecholamines have been shown to play an essential role in the expression and maintenance of motivated vocal behavior, such as the coordination of vocal-motor output in songbirds. However, it is not well-understood if this relationship applies to anamniote vocal species. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially activated in vocally courting (humming) versus non-humming males. Herein, we demonstrate that tyrosine hydroxylase immunoreactive (TH-ir) neuron number in the noradrenergic locus coeruleus (LC) and induction of cFos (an immediate early gene product and proxy for neural activation) in the preoptic area differentiated humming from non-humming males. Furthermore, we found relationships between activation of the LC and SBN nuclei with the total amount of time that males spent humming, further reinforcing a role for these specific brain regions in the production of motivated reproductive-related vocalizations. Finally, we found that patterns of functional connectivity between catecholaminergic nuclei and nodes of the SBN differed between humming and non-humming males, supporting the notion that adaptive behaviors (such as the expression of advertisement hums) emerge from the interactions between various catecholaminergic nuclei and the SBN.


Assuntos
Batracoidiformes/fisiologia , Encéfalo/metabolismo , Catecolaminas/metabolismo , Locus Cerúleo/metabolismo , Rede Nervosa/metabolismo , Comportamento Social , Vocalização Animal/fisiologia , Animais , Masculino , Norepinefrina/metabolismo
10.
J Exp Zool A Ecol Integr Physiol ; 337(1): 35-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34516724

RESUMO

Revealing the mechanisms underlying experience-dependent plasticity is a hallmark of behavioral neuroscience. While the study of social behavior has focused primarily on the neuroendocrine and neural control of social behaviors, the plasticity of these innate behaviors has received relatively less attention. Here, we review studies on mating-dependent changes to social behavior and neural circuitry across mammals, birds, and reptiles. We provide an overview of species similarities and differences in the effects of mating experiences on motivational and performative aspects of sexual behaviors, on sensory processing and preferences, and on the experience-dependent consolidation of sexual behavior. We also discuss recent insights into the neural mechanisms of and developmental influences on mating-dependent changes and outline promising approaches to investigate evolutionary parallels and divergences in experience-dependent plasticity.


Assuntos
Evolução Biológica , Comportamento Social , Animais , Aves , Mamíferos , Répteis
11.
Genes Brain Behav ; 21(3): e12781, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905293

RESUMO

Organisms filter the complexity of natural stimuli through their individual sensory and perceptual systems. Such perceptual filtering is particularly important for social stimuli. A shared "social umwelt" allows individuals to respond appropriately to the expected diversity of cues and signals during social interactions. In this way, the behavioral and neurobiological mechanisms of sociality and social bonding cannot be disentangled from perceptual mechanisms and sensory processing. While a degree of embeddedness between social and sensory processes is clear, our dominant theoretical frameworks favor treating the social and sensory processes as distinct. An integrated social-sensory framework has the potential to greatly expand our understanding of the mechanisms underlying individual variation in social bonding and sociality more broadly. Here we leverage what is known about sensory processing and pair bonding in two common study systems with significant species differences in their umwelt (rodent chemosensation and avian acoustic communication). We primarily highlight that (1) communication is essential for pair bond formation and maintenance, (2) the neural circuits underlying perception, communication and social bonding are integrated, and (3) candidate neuromodulatory mechanisms that regulate pair bonding also impact communication and perception. Finally, we propose approaches and frameworks that more fully integrate sensory processing, communication, and social bonding across levels of analysis: behavioral, neurobiological, and genomic. This perspective raises two key questions: (1) how is social bonding shaped by differences in sensory processing?, and (2) to what extent is sensory processing and the saliency of signals shaped by social interactions and emerging relationships?


Assuntos
Ligação do Par , Comportamento Social , Animais , Proteínas de Ligação a DNA , Percepção , Sensação
12.
Front Neuroendocrinol ; 65: 100973, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34942232

RESUMO

This review explores the role of aromatase in the brain as illuminated by a set of conserved network-level connections identified in several vertebrate taxa. Aromatase-expressing neurons are neurochemically heterogeneous but the brain regions in which they are found are highly-conserved across the vertebrate lineage. During development, aromatase neurons have a prominent role in sexual differentiation of the brain and resultant sex differences in behavior and human brain diseases. Drawing on literature primarily from birds and rodents, we delineate brain regions that express aromatase and that are strongly interconnected, and suggest that, in many species, aromatase expression essentially defines the Social Behavior Network. Moreover, in several cases the inputs to and outputs from this core Social Behavior Network also express aromatase. Recent advances in molecular and genetic tools for neuroscience now enable in-depth and taxonomically diverse studies of the function of aromatase at the neural circuit level.


Assuntos
Aromatase , Encéfalo , Animais , Aromatase/metabolismo , Encéfalo/metabolismo , Feminino , Masculino , Neurônios/metabolismo , Caracteres Sexuais , Comportamento Social
13.
J Neurosci ; 41(42): 8742-8760, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34470805

RESUMO

Hormones regulate behavior either through activational effects that facilitate the acute expression of specific behaviors or through organizational effects that shape the development of the nervous system thereby altering adult behavior. Much research has implicated the neuropeptide oxytocin (OXT) in acute modulation of various aspects of social behaviors across vertebrate species, and OXT signaling is associated with the developmental social deficits observed in autism spectrum disorders (ASDs); however, little is known about the role of OXT in the neurodevelopment of the social brain. We show that perturbation of OXT neurons during early zebrafish development led to a loss of dopaminergic neurons, associated with visual processing and reward, and blunted the neuronal response to social stimuli in the adult brain. Ultimately, adult fish whose OXT neurons were ablated in early life, displayed altered functional connectivity within social decision-making brain nuclei both in naive state and in response to social stimulus and became less social. We propose that OXT neurons have an organizational role, namely, to shape forebrain neuroarchitecture during development and to acquire an affiliative response toward conspecifics.SIGNIFICANCE STATEMENT Social behavior is developed over the lifetime of an organism and the neuropeptide oxytocin (OXT) modulates social behaviors across vertebrate species, and is associated with neuro-developmental social deficits such as autism. However, whether OXT plays a role in the developmental maturation of neural systems that are necessary for social behavior remains poorly explored. We show that proper behavioral and neural response to social stimuli depends on a developmental process orchestrated by OXT neurons. Animals whose OXT system is ablated in early life show blunted neuronal and behavioral responses to social stimuli as well as wide ranging disruptions in the functional connectivity of the social brain. We provide a window into the mechanisms underlying OXT-dependent developmental processes that implement adult sociality.


Assuntos
Neurônios/metabolismo , Ocitocina/antagonistas & inibidores , Ocitocina/metabolismo , Comportamento Social , Animais , Animais Geneticamente Modificados , Feminino , Masculino , Metronidazol/toxicidade , Neurônios/efeitos dos fármacos , Ocitocina/genética , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Peixe-Zebra
14.
Mol Ecol ; 30(16): 4118-4132, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133783

RESUMO

The early social environment an animal experiences may have pervasive effects on its behaviour. The social decision-making network (SDMN), consisting of interconnected brain nuclei from the forebrain and midbrain, is involved in the regulation of behaviours during social interactions. In species with advanced sociality such as cooperative breeders, offspring are exposed to a large number and a great diversity of social interactions every day of their early life. This diverse social environment may have life-long consequences on the development of several neurophysiological systems within the SDMN, although these effects are largely unknown. We studied these life-long effects in a cooperatively breeding fish, Neolamprologus pulcher, focusing on the expression of genes involved in the monoaminergic and stress response systems in the SDMN. N. pulcher fry were raised until an age of 2 months either with their parents, subordinate helpers and same-clutch siblings (+F), or with same-clutch siblings only (-F). Analysis of the expression of glucocorticoid receptor, mineralocorticoid receptor, corticotropin releasing factor, dopamine receptors 1 and 2, serotonin transporter and DNA methyltransferase 1 genes showed that early social experiences altered the neurogenomic profile of the preoptic area. Moreover, the dopamine receptor 1 gene was up-regulated in the preoptic area of -F fish compared to +F fish. -F fish also showed up-regulation of GR1 expression in the dorsal medial telencephalon (functional equivalent to the basolateral amygdala), and in the dorsolateral telencephalon (functional equivalent to the hippocampus). Our results suggest that early social environment has life-long effects on the development of several neurophysiological systems within the SDMN.


Assuntos
Ciclídeos , Animais , Receptores de Glucocorticoides/genética , Comportamento Social , Meio Social
15.
Environ Health ; 20(1): 72, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34187479

RESUMO

BACKGROUND: There is a growing literature from both epidemiologic and experimental animal studies suggesting that exposure to air pollution can lead to neurodevelopmental and neuropsychiatric disorders. Here, we suggest that effects of air pollutant exposure on the brain may be even broader, with the potential to affect social decision-making in general. METHODS: We discuss how the neurobiological substrates of social behavior are vulnerable to air pollution, then briefly present studies that examine the effects of air pollutant exposure on social behavior-related outcomes. RESULTS: Few experimental studies have investigated the effects of air pollution on social behavior and those that have focus on standard laboratory tests in rodent model systems. Nonetheless, there is sufficient evidence to support a critical need for more research. CONCLUSION: For future research, we suggest a comparative approach that utilizes diverse model systems to probe the effects of air pollution on a wider range of social behaviors, brain regions, and neurochemical pathways.


Assuntos
Poluição do Ar/efeitos adversos , Comportamento Social , Poluentes Atmosféricos/efeitos adversos , Animais , Encéfalo/efeitos dos fármacos , Humanos , Pesquisa
16.
Front Behav Neurosci ; 15: 818782, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35221943

RESUMO

Social behaviors such as mating, parenting, fighting, and avoiding are essential functions as a communication tool in social animals, and are critical for the survival of individuals and species. Social behaviors are controlled by a complex circuitry that comprises several key social brain regions, which is called the social behavior network (SBN). The SBN further integrates social information with external and internal factors to select appropriate behavioral responses to social circumstances, called social decision-making. The social decision-making network (SDMN) and SBN are structurally, neurochemically and functionally conserved in vertebrates. The social decision-making process is also closely influenced by emotional assessment. The habenula has recently been recognized as a crucial center for emotion-associated adaptation behaviors. Here we review the potential role of the habenula in social function with a special emphasis on fish studies. Further, based on evolutional, molecular, morphological, and behavioral perspectives, we discuss the crucial role of the habenula in the vertebrate SDMN.

17.
Neurosci Biobehav Rev ; 108: 231-245, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743724

RESUMO

Social behavior is pervasive across the animal kingdom, and elucidating how the brain enables animals to respond to social contexts is of great interest and profound importance. Our understanding of 'the social brain' has been fractured as it has matured. Two drastically different conceptualizations of the social brain have emerged with relatively little awareness of each other. In this review, we briefly recount the history behind the two dominant definitions of a social brain. The divide that has emerged between these visions can, in part, be attributed to differential attention to cortical or sub-cortical regions in the brain, and differences in methodology, comparative perspectives, and emphasis on functional specificity or generality. We discuss how these factors contribute to a lack of communication between research efforts, and propose ways in which each version of the social brain can benefit from the perspectives, tools, and approaches of the other. Interface between the two characterizations of social brain networks is sure to provide essential insight into what the social brain encompasses.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Rede Nervosa/fisiologia , Comportamento Social , Cognição Social , Teoria da Mente/fisiologia , Animais , Humanos
18.
Front Behav Neurosci ; 13: 229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616264

RESUMO

Social living animals have to adjust their behavior to rapid changes in the social environment. It has been hypothesized that the expression of social behavior is better explained by the activity pattern of a diffuse social decision-making network (SDMN) in the brain than by the activity of a single brain region. In this study, we tested the hypothesis that it is the assessment that individuals make of the outcome of the fights, rather than the expression of aggressive behavior per se, that triggers changes in the pattern of activation of the SDMN which are reflected in socially driven behavioral profiles (e.g., dominant vs. subordinate specific behaviors). For this purpose, we manipulated the perception of the outcome of an agonistic interaction in an African cichlid fish (Oreochromis mossambicus) and assessed if either the perception of outcome or fighting by itself was sufficient to trigger rapid changes in the activity of the SDMN. We have used the expression of immediate early genes (c-fos and egr-1) as a proxy to measure the neuronal activity in the brain. Fish fought their own image on a mirror for 15 min after which they were allocated to one of three conditions for the two last minutes of the trial: (1) they remained fighting the mirror image (no outcome treatment); (2) the mirror was lifted and a dominant male that had just won a fight was presented behind a transparent partition (perception of defeat treatment); and (3) the mirror was lifted and a subordinate male that had just lost a fight was presented behind a transparent partition (perception of victory treatment). Results show that these short-term social interactions elicit distinct patterns in the SDMN and that the perception of the outcome was not a necessary condition to trigger a SDMN response as evidenced in the second treatment (perception of defeat treatment). We suggest that the mutual assessment of relative fighting behavior drives these acute changes in the state of the SDMN.

19.
Neurosci Lett ; 706: 30-35, 2019 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-31051224

RESUMO

Aggressive interactions usually reveal individual differences in the competitive ability of contest participants. Individuals with higher competitive ability often gain priority access to resources such as food, territory, and/or mates. Individuals with lower competitive ability usually have reduced access to these resources and limited mating opportunities. Despite the importance of contest performance to the reproductive success of individuals, the neuroendocrine factors associated with individual differences in competitive ability have not been fully elucidated. Here, we investigate the relationship between dopamine (DA)-related gene expression and competitive ability during mate competition in male zebra finches. Males demonstrating high competitive ability (HCA) had higher tyrosine hydroxylase mRNA levels in the ventral tegmental area and higher D1 receptor (D1-R) mRNA levels in the preoptic area than low competitive ability (LCA) males. Additionally, HCA males had lower levels of D1-R mRNA in the anterior hypothalamus relative to LCA males. These data suggest that there are dynamic and region-specific changes in DA function that relate to variation in competitive ability during mate competition.


Assuntos
Tomada de Decisões/fisiologia , Tentilhões/fisiologia , Preferência de Acasalamento Animal/fisiologia , Receptores de Dopamina D1/genética , Tirosina 3-Mono-Oxigenase/genética , Animais , Núcleo Hipotalâmico Anterior/metabolismo , Feminino , Masculino , Área Pré-Óptica/metabolismo , Receptores de Dopamina D1/metabolismo , Comportamento Social , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/metabolismo
20.
Brain Res ; 1711: 156-172, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30684457

RESUMO

Social plasticity, defined as the ability to adaptively change the expression of social behavior according to previous experience and to social context, is a key ecological performance trait that should be viewed as crucial for Darwinian fitness. The neural mechanisms for social plasticity are poorly understood, in part due to skewed reliance on rodent models. Fish model organisms are relevant in the field of social plasticity for at least two reasons: first, the diversity of social organization among fish species is staggering, increasing the breadth of evolutionary relevant questions that can be asked. Second, that diversity also suggests translational relevance, since it is more likely that "core" mechanisms of social plasticity are discovered by analyzing a wider variety of social arrangements than relying on a single species. We analyze examples of social plasticity across fish species with different social organizations, concluding that a "core" mechanism is the initiation of behavioral shifts through the modulation of a conserved "social decision-making network", along with other relevant brain regions, by monoamines, neuropeptides, and steroid hormones. The consolidation of these shifts may be mediated via neurogenomic adjustments and regulation of the expression of plasticity-related molecules (transcription factors, cell cycle regulators, and plasticity products).


Assuntos
Adaptação Fisiológica/fisiologia , Comportamento Animal/fisiologia , Animais , Evolução Biológica , Encéfalo/metabolismo , Peixes , Plasticidade Neuronal/fisiologia , Fenótipo , Comportamento Social , Meio Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA