Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(9): 805, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126537

RESUMO

Soil contamination by heavy metals (HM) from pesticides poses a serious environmental threat, affecting sustainability and agricultural productivity. Soil enzymes are essential for biochemical reactions such as organic matter decomposition and nutrient cycling and are vital for maintaining soil health. However, the effects of HM on soil enzyme activity are not yet well understood. This study examined the impact of HM contamination on enzymatic stoichiometry in regions with intensive pesticide use. We selected flower cultivation areas with 5 years (CA1) and 10 years (CA2) of pesticide exposure and a native forest area (NFA) as a reference during the dry and rainy seasons. We measured Cd, Cu, Mn, Pb, and Zn levels and employed ecological risk indices to assess contamination levels. We also analyzed enzyme activities (arylsulfatase, ß-glucosidase, acid phosphatase, urease) and enzymatic stoichiometry. CA2 exhibited the highest concentrations of Cd, Cu, and Mn in both periods, while Zn was highest in both CA1 and CA2. CA2 had higher values for all indices, indicating significant contamination. Compared with NFA, arylsulfatase activity was lower in cultivated areas during both periods, suggesting decreased soil quality. We found negative correlations between Cu, Mn, Zn, and arylsulfatase, as well as a reduction in urease with Cd; these elements also increased microbial C limitation. Our findings show that continuous pesticide input increases HM levels and that enzyme activity and stoichiometry are effective bioindicator of soil contamination. This study underscores the urgent need for guidelines to protect soils from prolonged HM buildup.


Assuntos
Agricultura , Monitoramento Ambiental , Metais Pesados , Praguicidas , Poluentes do Solo , Solo , Poluentes do Solo/análise , Praguicidas/análise , Metais Pesados/análise , Solo/química
2.
J Environ Manage ; 367: 121752, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067341

RESUMO

Sustainable management of the Amazon rainforest is fundamental for supporting life on earth because of its crucial role in sequestering carbon. One of the species grown in the forest is açaí (Euterpe oleracea), which is an important food and income source for its inhabitant. The acai seed, resulting from the processing of the fruit, is a solid organic residue, which has been an agent of undesirable environmental impacts such as natural landscape modifications, clogging sewers and water courses, eutrophication of surface waters. In this research, we evaluated the use of wood chips as a source of energy in a rustic oven to produce acai biochar so that family farmers carry out sustainable management of the residue and use biochar to improve soil quality and produce seedlings of native plants to regenerate degraded forests. The experiment was conducted in Pará, Brazil, Amazon region, using a randomized complete block design. A factorial treatment structure was implemented consisting of four biochar particle sizes (3, 5, 7, and 12 mm), 4 application rates (4, 8, 16, and 32 t ha-1), and a biochar-free control, with 5 replications. The results showed that the methodology for biochar production was easy to apply and low cost, allowing its use by family farmers. The combination of biochar rate and particle size affected soil properties and the development of black pepper seedlings in different ways. The soil properties affected were water retention capacity, moisture, fluorescein diacetate hydrolysis and arylsulphatase activity. The growth parameters of the affected black pepper seedlings were height and root system development.


Assuntos
Carvão Vegetal , Plântula , Sementes , Solo , Solo/química , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Brasil , Piper nigrum
3.
Data Brief ; 54: 110521, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783964

RESUMO

The dynamic soil properties for soil health (DSP4SH) is a Science of Soil Health Initiative that was designed to collect, process, and publicize scientifically rigorous datasets that inform sound indicators and interpretations. The Soil and Plant Science Division of the United States Department of Agriculture - Natural Resources Conservation Service (USDA-NRCS) and university cooperators collected a suite of standardized soil health metrics across eight states (Oregon, Washington, Kansas, Minnesota, Illinois, Connecticut, North Carolina, and Texas) within five soil survey regions (Northwest, North Central, Northeast, Southeast, and South Central). The DSP4SH database provides a substantial dataset of soil health metrics assessed. The dataset is composed of dynamic soil properties (DSP) data collected from each management system or ecological state represented by one to three independent plot replicates. Each plot has a minimum of three pedons. Nine groups from the DSP4SH monitoring network provided datasets used in developing the database. The submitted data includes 37 laboratory measured parameters, 60 variables of layer/horizon descriptions, 41 variables for laboratory analysis conducted at the Kellogg Soil Survey laboratory, and 12 variables for the management systems. An additional 31 variables were developed for site or plot description. Additional variables were developed to normalize the dataset. In preparation for DSP assessment, all tables (except for dataset from KSSL lab) were categorized by management system or ecological state. The categories were business as usual (BAU), the reference condition (Ref) and the soil health management (SHM). The overarching goal of DSP4SH phase 1 and 2 dataset publication is to promote increased accessibility, further analysis of the data, and overall understanding of the benefits of surveying dynamic soil properties for soil health.

4.
Sci Rep ; 14(1): 11139, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750151

RESUMO

Fertilizers application are widely used to get a higher yield in agricultural fields. Nutrient management can be improved by cultivating leguminous species in order to obtain a better understanding of the mechanisms that increase the amount of available phosphorus (P) and potassium (K) through fertilizer treatments. A pot experiment was conducted to identify the leguminous species (i.e., chickpea and pea) under various fertilizer treatments. Experimental design is as follows: T0 (control: no fertilizer was applied), T1: P applied at the level of (90 kg ha-1), T2: (K applied at the level of 90 kg ha-1), and T3: (PK applied both at 90 kg ha-1). All fertilizer treatments significantly (p < 0.05) improved the nutrient accumulation abilities and enzymes activities. The T3 treatment showed highest N uptake in chickpea was 37.0%, compared to T0. While T3 developed greater N uptake in pea by 151.4% than the control. However, T3 treatment also increased microbial biomass phosphorus in both species i.e., 95.7% and 81.5% in chickpeas and peas, respectively, compared to T0 treatment. In chickpeas, T1 treatment stimulated NAGase activities by 52.4%, and T2 developed URase activities by 50.1% higher than control. In contrast, T3 treatment enhanced both BGase and Phase enzyme activities, i.e., 55.8% and 33.9%, respectively, compared to the T0 treatment. Only the T3 treatment improved the activities of enzymes in the pea species (i.e., BGase was 149.7%, URase was 111.9%, Phase was 81.1%, and NAGase was 70.0%) compared to the control. Therefore, adding combined P and K fertilizer applications to the soil can increase the activity of enzymes in both legume species, and changes in microbial biomass P and soil nutrient availability make it easier for plants to uptake the nutrients.


Assuntos
Biomassa , Cicer , Fertilizantes , Fósforo , Microbiologia do Solo , Solo , Fósforo/metabolismo , Solo/química , Cicer/metabolismo , Cicer/crescimento & desenvolvimento , Fabaceae/metabolismo , Fabaceae/crescimento & desenvolvimento , Potássio/metabolismo , Pisum sativum/metabolismo , Pisum sativum/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nutrientes/metabolismo
5.
Int J Phytoremediation ; 26(10): 1683-1690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38712857

RESUMO

The studies showed the effectiveness of green-synthesized SiO2NPs in mitigating the toxicity of Arsenic. Density Functional Theory (DFT) is a computational method used to determine electronic structure, energy gap, and toxicity prediction. Experimentally, silicon nanoparticles of 0 (S0) and 100% v/v (S100) were applied to the surface of the soil. 150 mL of Arsenic trioxide was applied twice at a rate of 0 (As0) and 3.2 g/mL (As3.2) at an interval of three weeks. Green synthesized SiO2NPs possessed a higher chemical potential (µ) and electrophilicity index; consequently, charges could be transferred and easily polarized. The highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the green synthesized SiO2NPs enable them to donate electrons and complex with arsenic, reducing their bioavailability and toxicity. Evidence from the studies further showed that SiO2NPs had buffered the soil acidity and electric conductivity, posing a high binding site and reactivity with exchangeable cations and micronutrients due to their smaller energy gap. Furthermore, the catalytic activities of the soil enzymes dehydrogenase (DHA) and peroxidase (POD) were greatly increased, which enhanced the electrostatic interaction between the SiO2NPs and As.


Assuntos
Arsênio , Nanopartículas , Dióxido de Silício , Poluentes do Solo , Poluentes do Solo/metabolismo , Dióxido de Silício/química , Arsênio/metabolismo , Solo/química , Química Verde , Trióxido de Arsênio , Recuperação e Remediação Ambiental/métodos
6.
Plants (Basel) ; 13(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38794362

RESUMO

Aviation mutagenesis is a breeding method for the rapid selection of superior plant varieties. In this study, rhizosphere soil chemical indexes, soil enzyme activities, and soil metabolites were measured in Dahongpao tea trees with aviation mutagenesis (TM) and without aviation mutagenesis (CK). The main soil metabolites distinguishing TM and CK and their relationships with soil chemical indexes and soil enzyme activities were analyzed and obtained. The results showed that there was no significant change in the rhizosphere soils' pH of TM tea trees compared to CK (p = 0.91), while all other chemical indexes of TM were significantly higher than CK (p < 0.05). In addition, the activities of enzymes related to soil nutrient cycling such as urease, protease, sucrase, acid phosphatase and cellulase, and enzymes related to soil antioxidants such as superoxide dismutase, catalase, peroxidase, and polyphenol oxidase were significantly increased (p < 0.05) in the rhizosphere soils of TM tea trees compared to CK. Soil metabolite analysis showed that the main soil metabolites distinguishing CK from TM were carbohydrates, nitrogen compounds, and amines. Of these, carbohydrates and nitrogen compounds were significantly positively correlated with soil chemical indexes and soil enzymes, whereas amine was significantly negatively correlated with soil chemical indexes such as organic matter, total nitrogen, total potassium, available nitrogen, available phosphorus; amine showed significant negative correlation with soil enzymes such as catalase, peroxidase, polyphenol oxidase, and urease. It can be seen that aviation mutagenesis is conducive to improving the ability of tea tree rhizosphere aggregation and transformation of soil nutrients, increasing the total amount of soil nutrients and the content of available nutrients, which is more conducive to promoting the uptake of nutrients by the tea tree, and thus promoting the growth of the tea tree.

7.
Plants (Basel) ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38794384

RESUMO

OBJECTIVES: To slow down the chemical fixation of phosphate fertilizer, reduce the risk of active phosphorus leaching, stimulate the inherent phosphorus resource activity of soil, and improve phosphorus supply capacity. METHODS: This study utilized a combination of field experiments and indoor chemical analysis. Six types of exogenous organic matter (fulvic acid, biochar, compound microbial fertilizer, high-energy microbial inoculum, pig manure-vermicompost, cow manure-vermicompost) were added based on conventional fertilization. The experiment was conducted under the wheat-maize rotation system in the Huang-Huai-Hai region. RESULTS: Compared with control (CK) without exogenous organic matter (EOM), all the other treatments with EOM had an enhancing effect on the available phosphorus of the cultivated soil. During the maize harvest, the combined application of biochar, pig manure-vermicompost and cow manure-vermicompost treatment significantly increased the content of available phosphorus in 0-20 cm soil by 45.87-56.59% compared with CK. The combined application of fulvic acid, biochar, pig manure-vermicompost and cow manure-vermicompost treatment significantly increased the content of Ca2-P in 0-20 cm soil by 34.04-65.14%. The content of Ca10-P in each treatment with EOM exhibited a lower level compared to CK. EOM could slow down the fixation of phosphorus to some degree. Correlation analysis revealed significant associations between Ca2-P, Ca8-P, Al-P, Fe-P, neutral phosphatase activity, acid phosphatase activity, and the available phosphorus content in the soil. The combined application of fulvic acid, biochar, and cow manure-vermicompost could enhance the activity of neutral and acid phosphatase in topsoil to a certain extent, thereby facilitating the conversion of phosphorus into highly available Ca2-P. EOM could enhance the soil phosphorus availability and decelerate the conversion of soil phosphorus into O-P and Ca10-P forms with low availability. Among all treatments, biochar exhibited the most pronounced efficiency in mitigating phosphorus leaching downward. CONCLUSIONS: All the EOMs had the potential to enhance the conversion of phosphorus into soluble phosphorus (Ca2-P), thereby mitigating the chemical fixation of soil phosphorus and ameliorating non-point source pollution caused by phosphorus. EOM enhanced the activity of neutral and acid phosphatase, which was beneficial to the conversion of organic phosphorus to inorganic phosphorus and increasing the content of available phosphorus. All EOMs had good effects on the retention of soil effective phosphorus, among which biochar had the best effect on retaining effective phosphorus in the tillage layer and blocking phosphorus leaching downward.

8.
Heliyon ; 10(10): e31157, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813145

RESUMO

Despite the polluting potential olive mill wastewater (OMW) can be a useful source of nutrients and organic compounds to improve soil properties. The aim of this paper was to verify if biochar-based treatment of OMW could be an efficient method to contrast the richness in phenolic compounds and phytotoxicity of OMW making it more suitable. for soil amendment. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). In soil amendment BP-treated OMW induced an increase of organic carbon by approximately 15 % and notably BP10 treated OMW enhanced available phosphorous by 25 % after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass and enzymatic activities were significantly enhanced after 30 and 90 days, with no effect on cress seed germination. Therefore, biochar based-treatment could be cost-effective and able to facilitate the long-term management of OMW in terms of storage and disposal.

9.
Plants (Basel) ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38674552

RESUMO

Plants are often exposed to multiple stresses, including heavy metals (HM) and drought, which limit the plant growth and productivity. Though biochar or plant growth-promoting rhizobacteria (PGPR) have been widely used for alleviating HM or drought stress in plants, the study of the effects of combined treatment with biochar and PGPR under simultaneous HM and drought stress is limited. This study investigated individual and combined effects of groundnut shell biochar (GS-BC) and PGPR Bacillus pseudomycoides strain ARN7 on Zea mays growth, physiology, and HM accumulation, along with their impact on soil enzymes under HM (Ni and Zn), drought, or HM+drought stress. It was observed that even under HM+drought stress, Z. mays growth, total chlorophyll, proteins, phenolics, and relative water contents were increased in response to combined GS-BC and ARN7 treatment. Furthermore, the combined treatment positively influenced plant superoxide dismutase, ascorbate peroxidase, and catalase activities, while reducing electrolyte leakage and phenolics, malondialdehyde, and proline under HM, drought, or HM+drought stress. Interestingly, the combined GS-BC and ARN7 treatment decreased HM accumulation and the bioaccumulation factor in Z. mays, highlighting that the combined treatment is suitable for improving HM phytostabilization. Additionally, GS-BC increased soil enzymatic activities and ARN7 colonization irrespective of HM and drought stress. As far as we know, this study is the first to illustrate that combined biochar and PGPR treatment could lessen the adverse effects of both HM and drought, suggesting that such treatment can be used in water-deficient HM-contaminated areas to improve plant growth and reduce HM accumulation in plants.

10.
Sci Rep ; 14(1): 9758, 2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684820

RESUMO

Our investigation revealed that alterations in sulphur (S) pools are predominantly governed by soil organic carbon (SOC), soil nitrogen (N), microbial biomass, and soil enzyme activities in sandy clay loam (Vertic Ustropept) soil. We employed ten sets of nutrient management techniques, ranging from suboptimal (50% RDF) to super-optimal doses (150% RDF), including NPK + Zn, NP, N alone, S-free NPK fertilizers, NPK + FYM, and control treatments, to examine the interrelation of S with SOC characteristics. Fourier-transform infrared (FT-IR) spectroscopy was utilized to analyze the functional groups present in SOC characterization across four treatments: 100% NPK, 150% NPK, NPK + FYM, and absolute control plots. Principal component analysis (PCA) was then applied to assess 29 minimal datasets, aiming to pinpoint specific soil characteristics influencing S transformation. In an Inceptisol, the application of fertilizers (100% RDF) in conjunction with 10 t ha-1 of FYM resulted in an increase of S pools from the surface to the subsurface stratum (OS > HSS > SO42--S > WSS), along with an increase in soil N and SOC. FT-IR spectroscopy identified cellulose and thiocyanate functional groups in all four plots, with a pronounced presence of carbohydrate-protein polyphenol, sulfoxide (S=O), and nitrate groups specifically observed in the INM plot. The PCA findings indicated that the primary factors influencing soil quality and crop productivity (r2 of 0.69) are SOC, SMBC, SMBN, SMBS, and the enzyme activity of URE, DHA, and AS. According to the study, the combined application of fertilizer and FYM (10 t ha-1) together exert a positive impact on sulphur transformation, SOC accumulation, and maize yield in sandy clay loam soil.


Assuntos
Carbono , Fertilizantes , Nitrogênio , Solo , Enxofre , Zea mays , Fertilizantes/análise , Enxofre/metabolismo , Enxofre/análise , Solo/química , Carbono/metabolismo , Carbono/análise , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Nitrogênio/metabolismo , Nitrogênio/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Milhetes/metabolismo , Biomassa , Agricultura/métodos , Microbiologia do Solo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo
11.
PeerJ ; 12: e16733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515457

RESUMO

Background: Biochar amendments enhance crop productivity and improve agricultural quality. To date, studies on the correlation between different amounts of biochar in pakchoi (Brassica campestris L.) quality and rhizosphere soil microorganisms are limited, especially in weakly alkaline soils. The experiment was set up to explore the effect of different concentrations of biochar on vegetable quality and the correlation between the index of quality and soil bacterial community structure changes. Methods: The soil was treated in the following ways via pot culture: the blank control (CK) without biochar added and with biochar at different concentrations of 1% (T1), 3% (T2), 5% (T3), and 7% (T4). Here, we investigatedthe synergistic effect of biochar on the growth and quality of pakchoi, soil enzymatic activities, and soil nutrients. Microbial communities from pakchoi rhizosphere soil were analyzed by Illumina MiSeq. Results: The results revealed that adding 3% biochar significantly increased plant height, root length, and dry weight of pakchoi and increased the contents of soluble sugars, soluble proteins, Vitamin C (VC), cellulose, and reduced nitrate content in pakchoi leaves. Meanwhile, soil enzyme activities and available nutrient content in rhizosphere soil increased. This study demonstrated that the the microbial community structure of bacteria in pakchoi rhizosphere soil was changed by applying more than 3% biochar. Among the relatively abundant dominant phyla, Gemmatimonadetes, Anaerolineae, Deltaproteobacteria and Verrucomicrobiae were reduced, and Alphaproteobacteria, Gammaproteobacteria, Bacteroidia, and Acidimicrobiia relative abundance increased. Furthermore, adding 3% biochar reduced the relative abundance of Gemmatimonas and increased the relative abundances of Ilumatobacter, Luteolibacter, Lysobacter, Arthrobacter, and Mesorhizobium. The nitrate content was positively correlated with the abundance of Gemmatimonadetes, and the nitrate content was significantly negatively correlated with the relative abundance of Ilumatobacter. Carbohydrate transport and metabolism in the rhizosphere soil of pakchoi decreased, and lipid transport and metabolism increased after biochar application. Conclusion: Overall, our results indicated that applying biochar improved soil physicochemical states and plant nutrient absorption, and affected the abundance of dominant bacterial groups (e.g., Gemmatimonadetes and Ilumatobacter), these were the main factors to increase pakchoi growth and promote quality of pakchoi. Therefore, considering the growth, quality of pakchoi, and soil environment, the effect of using 3% biochar is better.


Assuntos
Carvão Vegetal , Microbiota , Solo , Solo/química , Rizosfera , Nitratos , Microbiologia do Solo , Bactérias , Plantas
12.
J Environ Manage ; 356: 120673, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508003

RESUMO

Microplastics (MPs) accumulation in terrestrial ecosystems can affect greenhouse gases (GHGs) production by altering microbial and soil structure. Presently, research on the MPs effect on plants is not consistent, and underlying molecular mechanisms associated with GHGs are yet unknown. For the first time, we conducted a microcosm study to explore the impact of MPs addition (Raw vs. aged) and Trichoderma longibrachiatum and Bacillus subtilis inoculation (Sole vs. combination) on GHGs emission, soil community structure, physiochemical properties, and enzyme activities. Our results indicated that the addition of aged MPs considerably enhanced the GHGs emissions (N2O (+16%) and CO2 (+21%), respectively), C and N cycling gene expression, microbial biomass carbon, and soil physiochemical properties than raw MPs. However, the soil microbial community structure and enzyme activities were enhanced in raw MPs added treatments, irrespective of the MPs type added to soil. However, microbial inoculation significantly reduced GHGs emission by altering the expression of C and N cycling genes in both types of MPs added treatments. The soil microbial community structure, enzymes activities, physiochemical properties and microbial biomass carbon were enhanced in the presence of microbial inoculation in both type of MPs. Among sole and combined inoculation of Trichoderma and Bacillus subtilis, the co-applied Trichoderma and Bacillus subtilis considerably reduced the GHGs emission (N2O (-64%) and CO2 (-61%), respectively) by altering the expression of C and N cycling genes regardless of MPs type used. The combined inoculation also enhanced soil enzyme activities, microbial community structure, physiochemical properties and microbial biomass carbon in both types of MPs treatment. Our findings provide evidence that polyethylene MPs likely pose a high risk of GHGs emission while combined application of Trichoderma and Bacillus subtilis significantly reduced GHGs emission by altering C and N cycling gene expression, soil microbial community structure, and enzyme activities under MPs pollution in a terrestrial ecosystem.


Assuntos
Gases de Efeito Estufa , Microbiota , Gases de Efeito Estufa/análise , Solo/química , Microplásticos , Plásticos , Dióxido de Carbono/análise , Carbono , Bactérias , Óxido Nitroso/análise
13.
Sci Total Environ ; 926: 171827, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38513860

RESUMO

The incorporation of green manure into cropping systems is a potential strategy for sequestering soil carbon (C), especially in saline-alkali soil. Yet, there are still unknown about the substitution impacts of green manure on nitrogen (N) fertilizer in wheat-green manure multiple cropping system. Herein, a five-year field experiment was performed to determine the impact of three levels of N fertilizer inputs [i.e., N fertilizer reduced by 0 % (100N), 10 % (90 N), and 20 % (80 N)] with aboveground biomass of green manure removal (0GM) and return (100GM) on soil organic carbon (SOC) storage and its primary determinants. The results demonstrated that no significant interaction on SOC storage was detected between green manure and N fertilizer management. 80 N enhanced SOC storage in bulk soil by 7.4 and 13.2 % in 0-20 cm soil depth relative to 100 N and 90 N (p < 0.05). Regardless of N fertilizer levels, compared with 100GM, 0GM increased SOC storage in bulk soil by 14.2-34.6 % in 0-40 cm soil depth (p < 0.05). This was explained by an increase in soil macro-aggregates (>2 and 0.25-2 mm) proportion contributing to SOC physical protection. Meanwhile, the improvement of SOC storage under 0GM was due to the decrease of soil C- and N-acquisition enzyme activities, and microbial resource limitation. Alternatively, the variation partitioning analyses (VPA) results further suggested that C- and N-acquisition enzyme activities, as well as microbial resource limitation were the most important factors for SOC storage. The findings highlighted those biological factors played a dominant role in SOC accumulation compared to physical factors. The aboveground biomass of green manure removal with N fertilizer reduced by 20 % is a viable option to enhance SOC storage in a wheat-green manure multiple cropping system.

14.
J Hazard Mater ; 469: 134052, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38493625

RESUMO

Globally extensive research into how silver nanoparticles (AgNPs) affect enzyme activity in soils with differing properties has been limited by cost-prohibitive sampling. In this study, customized machine learning (ML) was used to extract data patterns from complex research, with a hit rate of Random Forest > Multiple Imputation by Chained Equations > Decision Tree > K-Nearest Neighbors. Results showed that soil properties played a pivotal role in determining AgNPs' effect on soil enzymes, with the order being pH > organic matter (OM) > soil texture ≈ cation exchange capacity (CEC). Notably, soil enzyme activity was more sensitive to AgNPs in acidic soil (pH < 5.5), while elevated OM content (>1.9 %) attenuated AgNPs toxicity. Compared to soil acidification, reducing soil OM content is more detrimental in exacerbating AgNPs' toxicity and it emerged that clay particles were deemed effective in curbing their toxicity. Meanwhile sand particles played a very different role, and a sandy soil sample at > 40 % of the water holding capacity (WHC), amplified the toxicity of AgNPs. Perturbation mapping of how soil texture alters enzyme activity under AgNPs exposure was generated, where soils with sand (45-65 %), silt (< 22 %), and clay (35-55 %) exhibited even higher probability of positive effects of AgNPs. The average calculation results indicate the sandy clay loam (75.6 %), clay (74.8 %), silt clay (65.8 %), and sandy clay (55.9 %) texture soil demonstrate less AgNPs inhibition effect. The results herein advance the prediction of the effect of AgNPs on soil enzymes globally and determine the soil types that are more sensitive to AgNPs worldwide.


Assuntos
Nanopartículas Metálicas , Solo , Solo/química , Prata/toxicidade , Prata/química , Argila , Areia , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
15.
Environ Geochem Health ; 46(3): 73, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367076

RESUMO

The full behaviour of natural clay minerals in soil organic carbon (SOC) stabilization in the presence of oxides and external C inputs is yet unknown. Thus, an incubation experiment was conducted in a sand-clay mixture with different soil clay fractions (SCFs) obtained from Alfisol, Inceptisol, Mollisol, and Vertisol in the presence of wheat residues to compare their C stabilization capacity. The C mineralization rates were higher in 1:1 type dominated SCFs (Alfisol and Inceptisol) compared to 2:1 interstratified mineral dominated SCFs (Vertisol). Wheat residues as C source altered SCFs' abilities to stabilize SOC at only moderate dosages of application (3-12 g kg-1). C mineralization and microbial biomass carbon (MBC) fell by 40% and 30%, respectively, as the amount of clay increased from 7.5 to 40%. However, removing sesquioxides from the SCFs boosted C mineralization and MBC by 22% and 16-32%, respectively, which matched with higher enzymatic activities in the sand-clay mixture. The increased C stabilization capacity of Vertisol-SCF may be attributed to its greater specific surface area (SSA) (506 m2 g-1) and cation exchange capacity (CEC) [meq/100 g]. Regression analysis revealed that SSA, CEC, and enzymatic activity explained approximately 86% of total variations in C mineralization. This study highlighted the critical role of 2:1 expanding clay minerals and sesquioxides in greater stabilization of external C input compared to its 1:1 counterpart. It also implied that the role of mineralogy or texture and sesquioxides levels in different soils (Vertisol, Mollisol, Inceptisol, Alfisol) should be prioritized while adding crop residues to reduce C footprint and enhance sequestration.


Assuntos
Carbono , Solo , Solo/química , Argila , Carbono/análise , Areia , Minerais , Microbiologia do Solo
16.
Plants (Basel) ; 13(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38337898

RESUMO

Edaphoclimatic conditions influence nitrous oxide (N2O) emissions from agricultural systems where soil biochemical properties play a key role. This study addressed cumulative N2O emissions and their relations with soil biochemical properties in a long-term experiment (26 years) with integrated crop-livestock farming systems fertilized with two P and K rates. The farming systems consisted of continuous crops fertilized with half of the recommended P and K rates (CCF1), continuous crops at the recommended P and K rates (CCF2), an integrated crop-livestock system with half of the recommended P and K rates (ICLF1), and an integrated crop-livestock at the recommended P and K rates (ICLF2). The ICLF2 may have promoted the greatest entry of carbon into the soil and positively influenced the soil's biochemical properties. Total carbon (TC) was highest in ICLF2 in both growing seasons. The particulate and mineral-associated fractions in 2016 and 2017, respectively, and the microbial biomass fraction in the two growing seasons were also very high. Acid phosphatase and arylsulfatase in ICLF1 and ICLF2 were highest in 2016. The soil properties correlated with cumulative N2O emissions were TC, total nitrogen (TN), particulate nitrogen (PN), available nitrogen (AN), mineral-associated organic carbon (MAC), and microbial biomass carbon (MBC). The results indicated that ICLF2 induces an accumulation of more stable organic matter (OM) fractions that are unavailable to the microbiota in the short term and result in lower N2O emissions.

17.
Sci Total Environ ; 917: 170497, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38301775

RESUMO

Climate change is leading to the upward migration of treelines in mountainous regions, resulting in changes to the carbon and nitrogen inputs in soils. The impact of these alterations on the microbial mineralization of the existing soil organic carbon (SOC) pool remains uncertain, making it challenging to anticipate their effects on the carbon balance. To enhance our prediction and understanding of native SOC mineralization in Himalayan regions resulting from treeline shifts, a study was conducted to quantify soil priming effects (PEs) at high elevations above the treeline ecosystem. In laboratory incubation, soils were treated with a combination of 13C-glucose and varying nitrogen rates, along with carbon-only treatments and control groups without any amendments. The addition of carbon with varying nitrogen addition rates exhibited diverse PEs on native SOC. A highly positive PE was observed under low nitrogen input due to a high carbon/nitrogen imbalance and increased L-leucine aminopeptidase (LAP) activity, coupled with low nitrogen availability and carbon use efficiency (CUE). In contrast, a positive PE declined following high nitrogen input due to a low carbon/nitrogen imbalance and LAP activity, coupled with high nitrogen availability and CUE. These findings support the concept that multiple mechanisms (i.e., microbial nitrogen mining and microbial metabolic efficiency) exist that regulate SOC mineralization under the addition of carbon with varying nitrogen rates. Thus, an increase in nitrogen availability fulfils microbial nitrogen demand, reduces the microbial carbon/nitrogen imbalance, decreases enzyme activity that requires nitrogen and enhances microbial metabolic efficiency. Consequently, this mechanism reduces the positive PE, thereby serving as a potential tool for stabilizing native SOC in above-treeline ecosystems.


Assuntos
Carbono , Ecossistema , Solo , Nitrogênio/análise , Microbiologia do Solo
18.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38139174

RESUMO

A pot experiment was undertaken to investigate the effect of Cd, Pb and Zn multi-contamination on the physiological and metabolic response of carrot (Daucus carota L.) after 98 days of growth under greenhouse conditions. Multi-contamination had a higher negative influence on leaves (the highest Cd and Zn accumulation) compared to the roots, which showed no visible change in terms of anatomy and morphology. The results showed the following: (i) significantly higher accumulation of Cd, Zn, and Pb in the multi-contaminated variant (Multi) compared to the control; (ii) significant metabolic responses-an increase in the malondialdehyde content of the Multi variant compared to the control in the roots (by 20%), as well as in the leaves (by 53%); carotenoid content in roots decreased by 31% in the Multi variant compared with the control; and changes in free amino acids, especially those related to plant stress responses. The determination of hydroxyproline and sarcosine may reflect the higher sensitivity of carrot leaves to multi-contamination in comparison to roots. A similar trend was observed for the content of free methionine (significant increase of 31% only in leaves); (iii) physiological responses (significant decreases in biomass, changes in gas-exchange parameters and chlorophyll a); and (iv) significant changes in enzymatic activities (chitinase, alanine aminopeptidase, acid phosphatase) in the root zone.


Assuntos
Cádmio , Daucus carota , Cádmio/metabolismo , Daucus carota/metabolismo , Clorofila A/metabolismo , Chumbo/metabolismo , Solo
19.
Trop Life Sci Res ; 34(2): 21-37, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38144379

RESUMO

Associated gas flaring has several consequences on the environment. This study was aimed at assessing the impact of gas flaring on soil enzymes and plant antioxidant activities from gas flare-bearing communities in Nigeria. Soil and plant samples were obtained from farmlands in Ukwa West and Izombe gas flaring sites, as well as unpolluted site from Olokoro (used as control). The level of activities of soil urease, dehydrogenase, phosphatases, plant antioxidant enzymes and lactate dehydrogenase (LDH) of selected plants (Gnetum africanum [GA], Piper guineense [PG], Gongronema latifolium [GL], Pterocarpus mildbraedii [PM]) were evaluated using standard methods. The results showed that the activities of urease were significantly higher (P < 0.05) in soil from Ukwa site than Izombe and the control soil. Dehydrogenase (DHA) and phosphatases recorded higher activities (P < 0.05) for Izombe soil than in Ukwa compared with the control. For plants, superoxide dismutase (SOD), glutathione S-transferase (GST) and glutathione peroxidase (GPx) recorded a significant (P < 0.05) higher activities in all the plants assayed from Ukwa site than Izombe and the control site. The activities of GPx from GA and PG plants at Izombe site were not significant (P > 0.05) when compared with the control, except for PM and GL which recorded a significant decrease (P < 0.05) in GPX and SOD activities, respectively. The activities of catalase enzyme also decreased significantly (P < 0.05) in all plants grown at Ukwa, while an increase was seen for GA and PM grown at Izombe compared with control. The overall variability in enzymes activities is an indication that soil ecosystem and plants are altered significantly by the stress load from the gas flaring pollutants which could serve as bio-indicators for assessing ecological risks and bioremediation.

20.
Heliyon ; 9(12): e22894, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125515

RESUMO

Olive mill wastewater (OMW) is the effluent derived from the oil extraction processes from olives. Despite the polluting potential OMW can be a useful source of nutrients and organic compounds to improve soil properties. OMW could negatively affect soil and water quality as this waste is rich in phenolic compounds and has high COD and BOD5. Biochar-based treatment could be an efficient method to remediate OMW. In this study poplar biochar (BP) was more effective than conifer biochar (BC) in terms of adsorbing phenols and reducing phytotoxicity at different biochar rates (5 and 10 %). BP-treated OMW was used in soil amendment and induced an increase in chemical properties, especially in organic carbon after 30 days of incubation. In soil amended with 10 % BP-treated OMW microbial biomass, enzymatic activities, and cress seed germination were significantly enhanced after 30 and 90 days.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA