Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(1): e14349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178545

RESUMO

The emergence of billions of periodical cicadas affects plant and animal communities profoundly, yet little is known about cicada impacts on soil carbon fluxes. We investigated the effects of Brood X cicadas (Magicicada septendecim, M. cassinii and M. septendeculain) on soil CO2 fluxes (RS ) in three Indiana forests. We hypothesized RS would be sensitive to emergence hole density, with the greatest effects occurring in soils with the lowest ambient fluxes. In support of our hypothesis, RS increased with increasing hole density and greater effects were observed near AM-associating trees (which expressed lower ambient fluxes) than near EcM-associating trees. Additionally, RS from emergence holes increased the temperature sensitivity (Q10 ) of RS by 13%, elevating the Q10 of ecosystem respiration. Brood X cicadas increased annual RS by ca. 2.5%, translating to an additional 717 Gg of CO2 across forested areas. As such, periodical cicadas can have substantial effects on soil processes and biogeochemistry.


Assuntos
Hemípteros , Micorrizas , Animais , Árvores , Ecossistema , Solo , Dióxido de Carbono , Florestas
2.
Sensors (Basel) ; 23(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005470

RESUMO

Collaborations between ecosystem ecologists and engineers have led to impressive progress in developing complex models of biogeochemical fluxes in response to global climate change. Ecology and engineering iteratively inform and transform each other in these efforts. Nested data streams from local sources, adjacent networks, and remote sensing sources together magnify the capacity of ecosystem ecologists to observe systems in near real-time and address questions at temporal and spatial scales that were previously unobtainable. We describe our research experiences working in a Costa Rican rainforest ecosystem with the challenges presented by constant high humidity, 4300 mm of annual rainfall, flooding, small invertebrates entering the tiniest openings, stinging insects, and venomous snakes. Over the past two decades, we faced multiple challenges and learned from our mistakes to develop a broad program of ecosystem research at multiple levels of integration. This program involved integrated networks of diverse sensors on a series of canopy towers linked to multiple belowground soil sensor arrays that could transport sensor data streams from the forest directly to an off-site location via a fiber optic cable. In our commentary, we highlight three components of our work: (1) the eddy flux measurements using canopy towers; (2) the soil sensor arrays for measuring the spatial and temporal patterns of CO2 and O2 fluxes at the soil-atmosphere interface; and (3) focused investigations of the ecosystem impact of leaf-cutter ants as "ecosystem engineers" on carbon fluxes.


Assuntos
Ecossistema , Floresta Úmida , Florestas , Ecologia , Solo/química , Dióxido de Carbono
3.
Sci Total Environ ; 809: 151723, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34801507

RESUMO

The carbon (C) budgets of riparian forests are sensitive to climatic variability. Therefore, riparian forests are hot spots of C cycling in landscapes. Only a limited number of studies on continuous measurements of methane (CH4) fluxes from riparian forests is available. Here, we report continuous high-frequency soil and ecosystem (eddy-covariance; EC) measurements of CH4 fluxes with a quantum cascade laser absorption spectrometer for a 2.5-year period and measurements of CH4 fluxes from tree stems using manual chambers for a 1.5 year period from a temperate riparian Alnus incana forest. The results demonstrate that the riparian forest is a minor net annual sink of CH4 consuming 0.24 kg CH4-C ha-1 y-1. Soil water content is the most important determinant of soil, stem, and EC fluxes, followed by soil temperature. There were significant differences in CH4 fluxes between the wet and dry periods. During the wet period, 83% of CH4 was emitted from the tree stems while the ecosystem-level emission was equal to the sum of soil and stem emissions. During the dry period, CH4 was substantially consumed in the soil whereas stem emissions were very low. A significant difference between the EC fluxes and the sum of soil and stem fluxes during the dry period is most likely caused by emission from the canopy whereas at the ecosystem level the forest was a clear CH4 sink. Our results together with past measurements of CH4 fluxes in other riparian forests suggest that temperate riparian forests can be long-term CH4 sinks.


Assuntos
Ecossistema , Árvores , Dióxido de Carbono/análise , Florestas , Metano , Solo
4.
Sci Total Environ ; 650(Pt 1): 1019-1028, 2019 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308791

RESUMO

Seasonal variations of CO2 and CH4 fluxes were investigated in a Rhizophora mangrove forest that develops under a semi-arid climate, in New Caledonia. Fluxes were measured using closed incubation chambers connected to a CRDS analyzer. They were performed during low tide at light, in the dark, and in the dark after having removed the top 1-2 mm of soil, which may contain biofilm. CO2 and CH4 fluxes ranged from 31.34 to 187.48 mmol m-2 day-1 and from 39.36 to 428.09 µmol m-2 day-1, respectively. Both CO2 and CH4 emissions showed a strong seasonal variability with higher fluxes measured during the warm season, due to an enhanced production of these two gases within the soil. Furthermore, CO2 fluxes were higher in the dark than at light, evidencing photosynthetic processes at the soil surface and thus the role of biofilm in the regulation of greenhouse gas emissions from mangrove soils. The mean δ13C-CO2 value of the CO2 fluxes measured was -19.76 ±â€¯1.19‰, which was depleted compared to the one emitted by root respiration (-22.32 ±â€¯1.06‰), leaf litter decomposition (-21.43 ±â€¯1.89‰) and organic matter degradation (-22.33 ±â€¯1.82‰). This result confirmed the use of the CO2 produced within the soil by the biofilm developing at its surface. After removing the top 1-2 mm of soil, both CO2 and CH4 fluxes increased. Enhancement of CH4 fluxes suggests that biofilm may act as a physical barrier to the transfer of GHG from the soil to the atmosphere. However, the δ13C-CO2 became more enriched, evidencing that the biofilm was not integrally removed, and that its partial removal resulted in physical disturbance that stimulated CO2 production. Therefore, this study provides useful information to understand the global implication of mangroves in climate change mitigation.


Assuntos
Poluentes Atmosféricos/análise , Biofilmes , Dióxido de Carbono/análise , Metano/análise , Rhizophoraceae/fisiologia , Temperatura , Áreas Alagadas , Mudança Climática , Monitoramento Ambiental , Nova Caledônia , Estações do Ano , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA