Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1020944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311088

RESUMO

Drought stress significantly limits soybean [Glycine max (L.) Merr.] yields in Ontario, Canada. Many studies of genetic variation for drought tolerance compare commercial lines with exotic, unadapted germplasm. We hypothesized that even current commercial cultivars adapted to Ontario would differ significantly for traits related to drought tolerance. In a greenhouse experiment, we grew fifteen soybean cultivars in field soil amended with sand in 1-m rooting columns, which allowed for simulation of field-like soil water profiles and rooting depths. Two watering treatments were imposed from the first flower until maturity by daily restoration of soil water to either 100% (control), or 50% (drought stress) of the maximum soil water holding capacity. Throughout the experiment, we measured volumetric soil water content at different depths in the soil profile, but found no evidence at any developmental stage that the cultivars differed for their ability to extract soil water from different depths. Drought stress reduced seed yield by 51% on average. Similar to the effects of drought in the field, pod number was the yield component most affected, with effects on seeds per pod and single-seed weight being comparatively minor. There were significant cultivar × treatment interactions for seed yield, pod number, shoot dry matter, and water use. We identified two drought-sensitive (Saska and OAC Drayton) and three drought-tolerant (OAC Lakeview, OAC Champion, and PRO 2715R) cultivars based on their ratios of seed yield under drought stress to seed yield under control conditions (seed yield ratio, SYR). Regression and principal component analyses revealed that drought-tolerant (high-SYR) cultivars were consistently those that maintained relatively high values for water use, biomass accumulation and pod number under drought stress; high water use efficiency under drought stress was also associated with a high SYR. One of the cultivars, OAC Lakeview, displayed a distinct mode of drought tolerance, maintaining a very high fraction of its control pod number under drought stress. This study helps define the physiological basis of soybean cultivar differences in drought tolerance, and provides direction for soybean breeders to select traits that could improve yield under drought stress.

2.
Front Plant Sci ; 11: 508, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477381

RESUMO

Understanding the temporal and spatial patterns of soil water extraction and their impacts on growth response of winter wheat to deficit subsurface drip irrigation (SDI) conditions is critical for managing water scarcity and stabilizing yield. A field experiment was conducted from 2016 to 2018 involving five SDI amounts: 0.25, 0.4, 0.6, 0.8, and 1.0 ETc, representing 25, 40, 60, 80, and 100% of crop evapotranspiration (ETc), respectively. The results showed that the 0.6 ETc treatment significantly increased soil water extraction from 40-80 and 80-140-cm from jointing to maturity as compared to the 1.0 ETc treatment. Whereas the 0.8 ETc treatment significantly increased soil water extraction from 80-140-cm deep soil from flowering to maturity in the first growing season. The crop was most water-stressed under the 0.25 and 0.4 ETc treatments, thus extracted more soil water from 0-140-cm soil profile. However, both treatments exhibited minimum plant tillers, lowest leaf water content, leaf area index (LAI), photosynthetic rate (P n ), and transpiration rate (T r ) as well as grain yield. All these parameters, except for leaf water content, P n after the flowering stage, and grain productivity, were also reduced in the 0.6 ETc treatment than the 1.0 ETc treatment. The differences between the 0.8 and 1.0 ETc treatments were minor in terms of plant height, LAI, spike number, P n and T r , but infertile tillers were fewer in the 0.8 ETc treatment. We obtained high yield from the 0.8 ETc treatment, and the 0.6ETc treatment resulted in the highest harvest index with improved WUE than other treatments. Integrating deficit irrigation into SDI can save water in winter wheat production in water-limited regions, which can not only enhance soil water extraction from deep soil layers, but also sustained yield by stimulating crop growth. Therefore, a deficit SDI system would be used to conserve water in water-limited regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA