Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 557
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2407852, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225353

RESUMO

Advanced aqueous batteries are promising solutions for grid energy storage. Compared with their organic counterparts, water-based electrolytes enable fast transport kinetics, high safety, low cost, and enhanced environmental sustainability. However, the presence of protons in the electrolyte, generated by the spontaneous ionization of water, may compete with the main charge-storage mechanism, trigger unwanted side reactions, and accelerate the deterioration of the cell performance. Therefore, it is of pivotal importance to understand and master the proton activities in aqueous batteries. This Perspective comments on the following scientific questions: Why are proton activities relevant? What are proton activities? What do we know about proton activities in aqueous batteries? How do we better understand, control, and utilize proton activities?

2.
Angew Chem Int Ed Engl ; : e202317016, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240135

RESUMO

Regulating the composition of solid-electrolyte-interphase (SEI) is the key to construct high-energy density lithium metal batteries. Here we report a selective catalysis anionic decomposition strategy to achieve a lithium fluoride (LiF)-rich SEI for stable lithium metal batteries. To accomplish this, the tris(4-aminophenyl) amine-pyromeletic dianhydride covalent organic frameworks (TP-COF) was adopted as an interlayer on lithium metal anode. The strong donor-acceptor unit structure of TP-COF induces local charge separation, resulting in electron depletion and thus boosting its affinity to FSI-. The strong interaction between TP-COF and FSI- lowers the lowest unoccupied molecular orbital (LUMO) energy level of FSI-, accelerating the decomposition of FSI- and generating a stable LiF-rich SEI. This feature facilitates rapid Li+ transfer and suppresses dendritic Li growth. Notably, we demonstrate a 6.5 Ah LiNi0.8Co0.1Mn0.1O2|TP-COF@Li pouch cell with high energy density (473.4 Wh kg-1) and excellent cycling stability (97.4 %, 95 cycles) under lean electrolyte 1.39 g Ah-1, high areal capacity 5.7 mAh cm-2, and high current density 2.7 mA cm-2. Our selective catalysis strategy opens a promising avenue toward the practical applications of high energy-density rechargeable batteries.

3.
Adv Mater ; : e2407128, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129345

RESUMO

Compared to lithium (Li) anode, the alloy/Li-alloy anodes show more compatible with sulfide solid electrolytes (SSEs), and are promising candidates for practical SSE-based all-solid-state Li batteries (ASSLBs). In this work, a porous Li-Al alloy (LiAl-p) anode is crafted using a straightforward mechanical pressing method. Various characterizations confirm the porous nature of such anode, as well as rich oxygen species on its surface. To the best knowledge, such LiAl-p anode demonstrates the best room temperature cell performance in comparison with reported Li and alloy/Li-alloy anodes in SSE-based ASSLBs. For example, the LiAl-p symmetric cells deliver a record critical current density of 6.0 mA cm-2 and an ultralong cycling of 5000 h; the LiAl-p|LiNi0.8Co0.1Mn0.1O2 full cells achieve a high areal capacity of 11.9 mAh cm-2 and excellent durability of 1800 cycles. Further in situ and ex situ experiments reveal that the porous structure can accommodate volume changes of LiAl-p and ensure its integrity during cycling; and moreover, a robust Li inorganics-rich solid electrolyte interphase can be formed originated from the reaction between SSE and surface oxygen species of LiAl-p. This study offers inspiration for designing high-performance alloy anodes by focusing on designing special architecture to alleviate volume change and constructing stable interphase.

4.
Heliyon ; 10(15): e34806, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170484

RESUMO

The development of efficient and high-performance electric vehicle (EV) batteries relies on improving various components, such as the anode and cathode electrodes, separators, and electrolytes. This review paper offers an elaborate overview of different materials for these components, emphasizing their respective contributions to the improvement of EV battery performance. Carbon-based materials, metal composites, and polymer nanocomposites are explored for the anode, offering high energy density and capacity. However, they are noted to be susceptible to Li plating. Unique structures, such as Titanium niobium oxide (TiNb2O7), offer high theoretical capacity, quick Li+ intercalation, and an extended lifecycle. Meanwhile, molybdenum disulfide (MoS2), with 2D and 3D structures, exhibits high reversible specific capacity, outstanding rate performance, and cyclic stability, showing promising properties as anode material. For cathodes, lithium-iron phosphate (LFP), lithium-cobalt oxide (LCO), lithium-nickel-cobalt-aluminum oxide (NCA), lithium-nickel-manganese-cobalt oxide (NMC), and cobalt-free lithium-nickel-manganese oxide (NMO) are considered, offering specific energy and capacity advantages. For instance, LFP cathode electrodes show good thermal stability, good electrochemical performance, and long lifespan, while NMC exhibits high specific energy, relatively high capacity, and cost savings. NCA has a high specific energy, decent specific power, large capacity, and a long lifecycle. NMO shows excellent rate capability, cyclic stability, and cost-effectiveness but with limited cycle performance. Separator innovations, including polyolefin materials, nanofiber separators, graphene-based composites, and ceramic-polymer composites, are analyzed for use as separators, considering mechanical strength, porosity, wettability with the electrolyte, electrolytic absorption, cycling efficiency, and ionic conductivity. The electrolyte comprises lithium salts such as lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), and other salts dissolved in carbonate solvents. This improves energy density, capacity, and cycling stability and provides high ion mobility and resistance to decomposition. By examining the existing literature, this review also explores research on the solid electrolyte interface (SEI) and lithium plating, providing valuable insights into understanding and mitigating these critical issues. Despite the progress, limitations such as practical implementation challenges, potential cost implications, and the need for further research on scale-up feasibility and long-term durability are acknowledged. These efforts to enhance the electrochemical characteristics of key battery parameters-positive and negative electrodes, separators, and electrolytes-aim to improve capacity, specific energy density, and overall energy density. These continuous endeavours strive for faster charging of EV batteries and longer travel ranges, contributing to the ongoing evolution of EV energy storage systems. Thus, this review paper not only explores remarkable strides in EV battery technology but also underscores the imperative of addressing challenges and propelling future research for sustainable and high-performance electric vehicle energy storage systems.

5.
Angew Chem Int Ed Engl ; : e202412222, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106271

RESUMO

In recent years, sodium-ion batteries (SIBs) have attracted a lot of attention and are considered an ideal alternative to lithium-ion batteries (LIBs). The hard carbon (HC) anode in SIBs presents a unique challenge for studying the formation process of the solid electrolyte interphase (SEI) during initial cycling, owing to its distinctive porous structure. This study employs a combination of ultrasonic scanning techniques and differential electrochemical mass spectrometry to conduct an in-depth analysis of the two-dimensional distribution and composition of gases during the formation process. The findings reveal distinct gas evolution behaviors in SIBs compared to LIBs during formation. Notably, significant gas evolution is observed during the discharge phase of the formation cycle in SIBs, with higher discharge rates leading to increased gas evolution rates. This phenomenon is likely attributed to the adsorption of CO2 gas by the abundant pores in HC, followed by desorption during discharge. Furthermore, the study demonstrates that the addition of 5A molecular sieves, which competitively adsorb gases, effectively reduces gas adsorption on the anode during formation, thereby significantly enhancing battery performance. This research elucidates the gas adsorption and desorption behavior at the battery interface, providing new insights into the SEI formation process in SIBs.

6.
ACS Nano ; 18(35): 24128-24138, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163544

RESUMO

Both uncontrolled Li dendrite growth and corrosion are major obstacles to the practical application of Li-metal batteries. Despite numerous attempts to address these challenges, effective solutions for dendrite-free reversible Li electrodeposition have remained elusive. Here, we demonstrate the horizontal Li electrodeposition on top of atomically polarized monolayer hexagonal boron nitride (hBN). Theoretical investigations revealed that the hexagonal lattice configuration and polarity of the monolayer hBN, devoid of dangling bonds, reduced the energy barrier for the surface diffusion of Li, thus facilitating reversible in-plane Li growth. Moreover, the single-atom-thick hBN deposited on a Cu current collector (monolayer hBN/Cu) facilitated the formation of an inorganic-rich, homogeneous solid electrolyte interphase layer, which enabled the uniform Li+ flux and suppressed Li corrosion. Consequently, Li-metal and anode-free full cells containing the monolayer hBN/Cu exhibited improved rate performance and cycle life. This study suggests that the monolayer hBN is a promising class of underlying seed layers to enable dendrite- and corrosion-free, horizontal Li electrodeposition for sustainable Li-metal anodes in next-generation batteries.

7.
Adv Sci (Weinh) ; 11(32): e2404245, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39189438

RESUMO

The realization of lithium-metal (Li) batteries faces challenges due to dendritic Li deposition causing internal short-circuit and low Coulombic efficiency. In this regard, the Li-deposition stability largely depends on the electrolyte, which reacts with Li to form a solid electrolyte interphase (SEI) with diverse physico-chemical properties, and dictates the interphasial kinetics. Therefore, optimizing the electrolyte for stability and performance remains pivotal. Hereof, glyme ethers are an emerging class of electrolytes, showing improved compatibility with metallic Li and enhanced stability in Li─Air and Li─Sulfur batteries. Yet, the criteria for selecting glyme solvents, particularly concerning Li deposition and dissolution processes, remain unclear. The SEI characteristics and Li deposition/dissolution processes are investigated in glyme-ether-based electrolytes with varying chain lengths, using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium nitrate (LiNO3) salts under high capacity and limited electrolyte conditions. Longer glymes led to more homogeneous SEI, particularly pronounced with LiNO3, minimizing surface roughness during stripping, and promoting compact Li deposits. Higher reductive stability, resulting in homogeneous interphasial properties, and slower kinetics due to high desolvation barrier and viscosity, underline stable Li growth in longer glymes. This study clarifies factors guiding the selection of glyme ether-based electrolytes in Li metal batteries, offering insights for next-generation energy storage systems.

8.
Artigo em Inglês | MEDLINE | ID: mdl-39213653

RESUMO

The practical application of lithium metal anodes is significantly impeded by poor interfacial stability and uncontrolled dendrite growth. Herein, we introduce methyl trifluoroacetate (MTFA), a low-melting-point small molecule, as an electrolyte additive in an ether-based electrolyte. This additive facilitates the formation of an in situ composite solid electrolyte interphase (SEI) layer that is rich in LiF and features an ester-based flexible matrix. The resulting composite layer exhibits high ionic conductivity and mechanical stability, effectively regulating the lithium deposition behavior over a broad temperature range and inhibiting dendrite formation. Based on MTFA, the Li||Li symmetrical cell achieves a lifespan exceeding 5000 h at room temperature and 800 h at -20 °C, both with ultralow overpotential and exceptional cycling stability. In Li||LiFePO4 full cells with a high-area loading (10.52 mg cm-2) and an N/P ratio of 1.68, an average capacity decay of merely 0.096% per cycle is observed over 200 cycles. Even at -20 °C, the Li||LiFePO4 cell shows a CE of over 99% and maintains stable cycling performance. This work provides an innovative approach for optimizing lithium metal anode interfaces and enhancing low-temperature operation capabilities through the use of electrolyte additives.

9.
Adv Mater ; : e2411197, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39149771

RESUMO

Lithium-sulfur (Li-S) batteries are widely regarded as one of the most promising next-generation high-energy-density energy storage devices. However, soluble lithium polysulfides (LiPSs) corrode Li metal and deteriorate the cycling stability of Li-S batteries. Understanding the reaction mechanism between LiPSs and Li metal anode is imperative. Herein, the reaction rate and products of LiPSs with Li metal anode, the composition and structure of the as-generated solid electrolyte interphase (SEI), and the mechanism of lithium nitrate (LiNO3) additives for inhibiting the corrosion reactions are systematically unveiled. Concretely, LiPSs react with Li metal anode more rapidly than Li salt and generate a Li2S-rich SEI. The Li2S-rich SEI is highly reactive with LiPSs, which exacerbates the formation of dendritic Li and the continuous corrosion of active Li. LiNO3 functions dominantly by modulating the solvation structure of LiPSs and inherently reducing the reactivity of LiPSs, rather than the conventional understanding of LiNO3 participating in the formation of SEI. This work reveals the reaction mechanism between LiPSs and Li metal anode and inspires rational regulating of the solvation structure of LiPSs for stabilizing Li metal anode in Li-S batteries.

10.
Angew Chem Int Ed Engl ; : e202410422, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039835

RESUMO

Zinc ion batteries (ZIBs) encounter interface issues stemming from the water-rich electrical double layer (EDL) and unstable solid-electrolyte interphase (SEI). Herein, we propose the dynamic EDL and self-repairing hybrid SEI for practical ZIBs via incorporating the horizontally-oriented dual-site additive. The rearrangement of distribution and molecular configuration of additive constructs the robust dynamic EDL under different interface charges. And, a self-repairing organic-inorganic hybrid SEI is constructed via the electrochemical decomposition of additive. The dynamic EDL and self-repairing SEI accelerate interfacial kinetics, regulate deposition and suppress side reactions in the both stripping and plating during long-term cycles, which affords high reversibility for 500 h at 42.7% depth of discharge or 50 mA·cm-1. Remarkably, Zn//NVO full cells deliver the impressive cycling stability for 10000 cycles with 100% capacity retention at 3 A·g-1 and for over 3000 cycles even at lean electrolyte (7.5 µL·mAh-1) and high loading (15.26 mg·cm-2). Moreover, effectiveness of this strategy is further demonstrated in the low-temperature full cell (-30 oC).

11.
Adv Sci (Weinh) ; : e2404887, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39076123

RESUMO

Sodium (Na) metal batteries have attracted recent attention due to their low cost and high abundance of Na. However, the advancement of Na metal batteries is impeded due to key challenges such as dendrite growth, solid electrolyte interphase (SEI) fracture, and low Coulombic efficiency. This study examines the coupled electro-chemo-mechanical interactions governing the electrodeposition stability and morphological evolution at the Na/electrolyte interface. The SEI heterogeneities influence transport and reaction kinetics leading to the formation of current and stress hotspots during Na plating. Further, it is demonstrated that the heterogeneity-induced Na metal evolution and its influence on the stress distribution critically affect the mechanical overpotential, contributing to a faster SEI failure. The analysis reveals three distinct failure mechanisms-mechanical, transport, and kinetic-that govern the onset of instabilities at the interface. Finally, a comprehensive comparative study of SEI failure in Na and lithium (Li) metal anodes illustrates that the electrochemical and mechanical characteristics of the SEI are crucial in tailoring the anode morphology and interface stability. This work delineates mechanistic stability regimes cognizant of the SEI attributes and underlying failure modes and offers important guidelines for the design of artificial SEI layers for stable Na metal electrodes.

12.
ACS Appl Mater Interfaces ; 16(30): 39341-39348, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39016522

RESUMO

Lithium metal is regarded as the "holy grail" of lithium-ion battery anodes due to its exceptionally high theoretical capacity (3800 mAh g-1) and lowest possible electrochemical potential (-3.04 V vs Li/Li+); however, lithium suffers from the dendritic formation that leads to parasitic reactions and cell failure. In this work, we stabilize fast-charging lithium metal plating/stripping with dual-function alloying M-nitrate additives (M: Ag, Bi, Ga, In, and Zn). First, lithium metal reduces M, forming lithiophilic alloys for dense Li nucleation. Additionally, nitrates form ionically conductive and mechanically stable Li3N and LiNxOy, enhancing Li-ion diffusion through the passivation layer. Notably, Zn-protected cells demonstrate electrochemically stable Li||Li cycling for 750+ cycles (2.0 mA cm-2) and 140 cycles (10.0 mA cm-2). Moreover, Zn-protected Li||Lithium Iron Phosphate full-cells achieve 134 mAh g-1 (89.2% capacity retention) after 400 cycles (C/2). This work investigates a promising solution to stabilize lithium metal plating/stripping for fast-charging lithium metal batteries.

13.
ACS Appl Mater Interfaces ; 16(30): 39418-39426, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39020510

RESUMO

Artificial solid electrolyte interphase (SEI) layers have been widely regarded as an effective protection for lithium (Li) metal anodes. In this work, an artificial SEI film consisting of dense Li6.4La3Zr1.4Ta0.6O12 (LLZTO) nanoparticles and polymerized styrene butadiene rubber is designed, which has good mechanical and chemical stability to effectively prevent Li anode corrosion by the electrolyte. The LLZTO-based SEI film can not only guide Li to uniformly deposit at the interface but also accelerate the electrochemical reaction kinetics due to its high Li+ conductivity. In particular, the high Young's modulus of the LLZTO-based SEI will regulate e- distribution in the continuous Li plating/stripping process and achieve uniform deposition of Li. As a consequence, the Li anode with LLZTO-based SEI (Li@LLZTO) enables symmetric cells to demonstrate a stable overpotential of 25 mV for 600 h at a current density of 1 mA cm-2 for 1 mA h cm-2. The Li@LLZTO||LFP (LiFePO4) full cell exhibits a capacity of 106 mA h g-1 after 800 cycles at 5 C with retention as high as 90%. Our strategy here suggests that the artificial SEI with high Young's modulus effectively inhibits the formation of Li dendrites and provides some guidance for the design of higher performance Li metal batteries.

14.
ACS Appl Mater Interfaces ; 16(30): 39277-39286, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39024540

RESUMO

An unstable solid electrolyte interphase (SEI) has been recognized as one of the biggest challenges to commercializing silicon (Si) anodes for high-energy-density batteries. This work thoroughly investigates a binary cation matrix of Mg2++Li+ electrolyte and its role in SEI development, suppression, and evolution of a Si anode. Findings demonstrate that introducing Mg ions dramatically reduces the SEI growth before lithiation occurs, primarily due to the suppression of solvent reduction, particularly ethylene carbonate (EC) reduction. The Mg2+ alters the Li+ cation solvation environment as EC preferably participates in the oxophyllic Mg2+ solvation sheath, thereby altering the solvent reduction process, resulting in a distinct SEI formation mechanism. The initial SEI formation before lithiation is reduced by 70% in the electrolyte with the presence of Mg2+ cations. While the SEI continues to develop in the postlithiation, the inclusion of Mg ions results in an approximately 80% reduction in the postlithiation SEI growth. Continuous electrochemical cycling reveals that Mg2+ plays a crucial role in stabilizing the deep-lithiated Si phases, which effectively mitigates side reactions, resulting in controlled SEI growth and stable interphase while eliminating complex LixSiy formation. Mg ions promote the development of a notably more rigid and homogeneous SEI, characterized by a reduced dissipation (ΔD) in the Mg2++Li+ ion matrix compared to the solely Li+ system. This report reveals how the Mg2++Li+ ion matrix affects the SEI evolution, viscoelastic properties, and electrochemical behavior at the Si interface in real time, laying the groundwork for devising strategies to enhance the performance and longevity of Si-based next-generation battery systems.

15.
ACS Appl Mater Interfaces ; 16(30): 39427-39436, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39028895

RESUMO

Li metal, with a high theoretical capacity, is considered the most promising anode for next-generation high-energy-density batteries. However, the commercialization of the Li metal anode is limited owing to its high reactivity, significant volume expansion, continuous solid electrolyte interphase (SEI) layer degradation caused by undesirable Li deposition, and uncontrollable dendrite growth. This study demonstrates the in situ construction of a Li2C2O4-enriched SEI layer from NiC2O4 nanowires on three-dimensional Ni foam. The lithiophilic Li2C2O4-enriched SEI layer provides a uniform distribution of the electrical field and sufficient nucleation and deposition sites for Li without dendrite formation. Consequently, the stable Li2C2O4-enriched SEI layer successfully inhibits the formation of lithium dendrites, resulting in reversible Li stripping/plating behavior, maintained over an extended period of 5000 h with a deposition capacity of 1 mAh cm-2 at 1 mA cm-2. Additionally, a high cycling stability is observed in the full cell test with ∼70% capacity retention after 1300 cycles at 3 C. This approach offers a large-scale and facile synthesis process via the in situ precipitation growth of NiC2O4 followed by lithiation to form Li2C2O4. Furthermore, the significant stability of the Li2C2O4-enriched SEI layer aids the design of in situ-constructed SEI layers for highly stable Li metal batteries.

16.
ACS Appl Mater Interfaces ; 16(30): 39460-39469, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39037088

RESUMO

All-solid-state lithium batteries (ASSLBs) with sulfide-based solid electrolytes have attracted significant attention as promising energy storage devices, owing to their high energy density and enhanced safety. However, the combination of a lithium metal anode and a sulfide solid electrolyte results in performance degradation, owing to lithium dendrite growth and the side reactions of lithium metal with the solid electrolyte. To address these issues, a Ag-based Li alloy with a favorable solid electrolyte interphase (SEI) was prepared using electrodeposition and applied to the ASSLB as an anode. The electrochemically formed SEI layer on the Li-Ag alloy primarily comprised LiF and Li2O with high mechanical strength and Li3N with high ionic conductivity, which suppressed the formation of lithium dendrites and short-circuiting of the cell. The symmetric cell with the Li-Ag alloy achieved a critical current density of 1.6 mA cm-2 and maintained stable cycling for over 2000 h at a current density of 0.6 mA cm-2. Consequently, the all-solid-state lithium cell assembled with the Li-Ag alloy anode with SEI, Li6PS5Cl solid electrolyte, and LiNi0.78Co0.10Mn0.12O2 cathode delivered a high discharge capacity of 185 mAh g-1 and exhibited good cycling performance in terms of cycling stability and rate capability at 25 °C.

17.
Angew Chem Int Ed Engl ; : e202411029, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38955769

RESUMO

Graphite (Gr)-based lithium-ion batteries with admirable electrochemical performance below -20 °C are desired but are hindered by sluggish interfacial charge transport and desolvation process. Li salt dissociation via Li+-solvent interaction enables mobile Li+ liberation and contributes to bulk ion transport, while is contradictory to fast interfacial desolvation. Designing kinetically-stable solid electrolyte interphase (SEI) without compromising strong Li+-solvent interaction is expected to compatibly improve interfacial charge transport and desolvation kinetics. However, the relationship between physicochemical features and temperature-dependent kinetics properties of SEI remains vague. Herein, we propose four key thermodynamics parameters of SEI potentially influencing low-temperature electrochemistry, including electron work function, Li+ transfer barrier, surface energy, and desolvation energy. Based on the above parameters, we further define a novel descriptor, separation factor of SEI (SSEI), to quantitatively depict charge (Li+/e-) transport and solvent deprivation processes at Gr/electrolyte interface. A Li3PO4-based, inorganics-enriched SEI derived by Li difluorophosphate (LiDFP) additive exhibits the highest SSEI (4.89×103) to enable efficient Li+ conduction, e- blocking and rapid desolvation, and as a result, much suppressed Li-metal precipitation, electrolyte decomposition and Gr sheets exfoliation, thus improving low-temperature battery performances. Overall, our work originally provides visualized guides to improve low-temperature reaction kinetics/thermodynamics by constructing desirable SEI chemistry.

18.
J Colloid Interface Sci ; 675: 806-814, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39002231

RESUMO

Metal-organic compounds have attracted significant attention for lithium-ion battery (LIB) anodes. However, their practical application is severely hindered by the poor structural stability and sluggish Li+ reaction kinetics. Herein, we proposed a new type of metal-organic compound, metal alkoxides, for high-performance LIBs. A series of metal-alkoxide/graphene composites with different transition metal centers and alkoxide anions are prepared to investigate the structural stability, Li-storage ability, and Li+ diffusion kinetics. The results reveal that the metal centers and alkoxide anions have significant influence on the structural stability, molar mass, and electronic structures, which are highly related to the Li-storage performance. Among them, Co-EG/rGO (EG represents the ethylene glycol anion) delivers the best performance involving high specific capacity (975 mAh g-1 at 0.2 A g-1), excellent rate capability (400.8 mAh g-1 at 10 A g-1), and stable cycling performance (86.8 % capacity retention after 600 cycles) due to its stable structure, smaller molar mass, and favorable electronic structure. Moreover, the Li-storage mechanism and solid electrolyte interphase (SEI) evolution of the Co-EG/rGO electrode are studied in detail through multiple ex-situ/in-situ characterizations. This work provides a new type of metal alkoxide anode material for high-rate and long-life LIBs toward practical energy applications.

19.
Adv Mater ; : e2404271, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39072813

RESUMO

Acetonitrile (AN) is a compelling electrolyte solvent for high-voltage and fast-charging batteries, but its reductive instability makes it incompatible with lithium metal anodes (LMAs). Herein, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) is used as the diluent to build an AN-based local high-concentration electrolyte (LHCE) to realize dense, dendrite-free, and stable LMAs. Such LHCE exhibits an exceptional electrochemical stability window close to 6 V (vs Li+/Li), excellent wettability, and promising flame retardancy. Compared to a baseline carbonate-based electrolyte, its electrochemical performance is prominent: the overpotential of lithium nucleation is minimal (only 24 mV), the average half-cell coulombic efficiency (CE) reaches 99.5% at 0.5 mA cm-2, and its practicality in full cells with LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) cathodes is also demonstrated. Compounding factors are identified to decipher the superiority of the AN-based LHCE. From the respect of solvation structures, both the elimination of free AN molecule and the diluent separation would contribute to prevention of anodic AN decomposition. Based on cryogenic electron microscopy (Cryo-EM) characterization and theoretical simulations results, the produced solid-electrolyte interphase (SEI) layer is uniform and compact. Thus, this work demonstrates a successful application of AN-based electrolytes in LMAs-traditionally deemed impractical-via the combined regulation of solvation and SEI structures.

20.
Angew Chem Int Ed Engl ; : e202409642, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037894

RESUMO

Aqueous zinc-ion batteries (ZIBs) hold immense promise for large-scale energy storage, but their practical application is hindered by zinc anode limitations. We introduce diethylenetriamine pentaacetate sodium salt (DTPA-Na) as a novel electrolyte additive to address these challenges. DTPA-Na's unique dual functionality enables the formation of robust, multi-layered solid electrolyte interphases (SEI) on the zinc anode and stable cathode electrolyte interphases (CEI) on the MnOOH cathode. This synergistic SEI/CEI engineering approach effectively suppresses interfacial side reactions, promotes uniform zinc deposition, and inhibits dendrite growth, leading to exceptional cycling stability and self-discharge inhibition. Asymmetrical cells employing DTPA-Na achieve an unprecedented 32,000 cycles at a high charging rate of 50 mA/cm2, while symmetric cells demonstrate a lifespan of 160 hours with 95% zinc utilization. Full Zn||MnOOH cells exhibit remarkable stability, maintaining 98.61% capacity retention after 720 hours of self-discharge and negligible capacity decay over 5000 cycles. Our work highlights the transformative potential of DTPA-Na as a dual-functional electrolyte additive, paving the way for high-performance ZIBs for practical energy storage applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA