RESUMO
Sorghum (Sorghum bicolor L. Moench), characterized by substantial genetic diversity, encompasses some lines rich in health-promoting polyphenols. Laboratory studies have demonstrated anticancer properties of sorghum phenolics; however, their presence may impact nutritional factors, such as digestible starch. The objective of this study was to determine the effects of pH and high-moisture heating on starch digestibility, phenolic profile, and anticancer activity in sorghum. High Phenolic sorghum flour line SC84 was combined with buffer solutions (pH 3, 4, 5, 7, and 8) and heated for 0, 10, 30, 60, or 120 min. Starch digestibility was assessed using the K-DSTRS kit from Megazyme. Changes in phenolic composition were analyzed using total phenolic content (TPC) and condensed tannin content (CTC) assays coupled with reversed phase high performance liquid chromatography (RP-HPLC) analysis. Anticancer potential against human colorectal cancer cells (HCT116 and SW480) was determined though cell viability assay. Results indicated a significant increase in total starch digestibility of sample after heating. Heating samples for 10 min did not significantly reduce TPC of samples. However, CTC was significantly reduced with heating time, while pH exhibited no significant effect on CTC. The measured 3-deoxyanthocyanidins experienced a significant decrease (p < 0.0001), while certain flavonoids increased significantly (p < 0.05) after heating for 30 min or longer. Notably, the 10 min heating duration minimally affected anticancer activity, whereas longer heat times diminished extract efficacy against human colorectal cancer cells. Alkaline pH levels significantly decreased anticancer activity, regardless of heating time. Importantly, heating sorghum for 10 min improved starch digestibility with minimal compromise to potential health benefits. These findings suggest promising implications for the development of high-phenolic sorghum products, and provide valuable insights to guide forthcoming animal and clinical studies. The demonstrated impact of wet-heating on increased starch digestibility, coupled with the preservation of phenolic content and bioactivity, underscores the potential of incorporating high-phenolic sorghum lines in future functional food formulations.
RESUMO
Sorghum is a promising ingredient for new food products due to its high fiber content, slow digestibility, drought resistance, and gluten-free nature. One of the main challenges in sorghum-based products is the unpleasant aroma compounds found in grain sorghum. Therefore, in this study, sorghum flour was treated via supercritical carbon dioxide (SC-CO2) to remove undesired aroma compounds. The resulting SC-CO2-treated flours were used to generate dough for 3D food printing. At the optimized conditions, sorghum cookies were 3D-printed using 60 % water and a nozzle diameter of 1.5 mm. All dough samples produced with untreated and SC-CO2-treated sorghum flours exhibited shear-thinning behavior. Changing the treatment pressure (8-15 MPa) or temperature (40-60 °C) did not significantly affect the viscosity of the dough samples. Moreover, the sorghum cookie doughs had higher G' and Gâ³ values after the SC-CO2 treatments (G' > Gâ³). Doughs generated from flours treated at 15 MPa - 40 °C and 8 MPa - 60 °C showed lower adhesiveness compared to the ones produced from untreated flour, whereas 15 MPa - 60 °C treatment did not affect the adhesiveness. After baking, the 3D-printed cookies from SC-CO2-treated flour exhibited significantly lower redness (a*), but the hardness of the cookies was not affected by SC-CO2 treatment. Overall, the SC-CO2 treatment of sorghum flour did not negatively affect the quality parameters of the 3D-printed cookies while enhancing the aroma of the flour.
Assuntos
Dióxido de Carbono , Farinha , Odorantes , Impressão Tridimensional , Sorghum , Sorghum/química , Farinha/análise , Dióxido de Carbono/análise , Odorantes/análise , Viscosidade , Manipulação de Alimentos/métodos , Culinária/métodos , Temperatura , Reologia , AdesividadeRESUMO
Pancakes prepared with sorghum flour possess a high nutritional value, yet their quality is unstable and prone to degradation during storage. This instability can be attributed to the particle size of coarse cereal powder, which significantly influences the quality of flour products during storage. In this study, changes in the quality of these pancakes, prepared with varying particle sizes of sorghum flour, were meticulously analyzed during cold storage using advanced instruments such as a texture analyzer, nuclear magnetic resonance spectrometer, differential scanning calorimeter, X-ray diffractometer, and Fourier transform infrared spectrometer. Findings revealed that the hardness of leavened pancakes significantly increased over time. After a refrigeration period of 7 days, the hardness of wheat flour leavened pancakes increased by 56.60%. However, with a decrease in the particle size of sorghum flour, the increase in hardness diminished, thereby delaying the aging process of the pancakes. As the storage duration was extended, moisture migration within the pancakes occurred, and the sorghum flour pancakes with a smaller particle size exhibited a reduced moisture change rate, indicating an enhanced water holding capacity. In comparison to their wheat flour counterparts, sorghum flour leavened pancakes exhibited a substantial reduction in retrogradation enthalpy and crystallinity. The inclusion of sorghum flour effectively inhibited amylopectin recrystallization, thus slowing down the aging process of the pancakes. This inhibitory effect was more evident with decreasing sorghum flour particle sizes. Fourier transform infrared data indicated no significant alterations in absorption peaks across various wavelengths during cold storage. Although starch short-range orderliness increased with storage time, the use of sorghum flour with smaller particles reduced the degree of short-range orderliness in starch molecules throughout the cold storage period. Sorghum flour with a smaller particle size can inhibit water migration and amylopectin recrystallization, which subsequently delays pancake aging and enhances its quality stability during storage.
RESUMO
Germination is a natural, simple, and economical process used to improve the quality of nutritional and technological grains. In this study, native and sprouted sorghum flours were characterized regarding their technological properties (particle size distribution, water, and oil absorption capacity, swelling power and solubility, microscopy of starch granules, and pasting and thermal properties). Nutritional and phytochemical characterization profiles, including free sugars, fatty acids, organic acids, tocopherols, and phenolic compounds, were explored through chromatographic methods. The antioxidant, anti-inflammatory, and cytotoxic activities of the respective hydroethanolic extracts were also evaluated. The results showed that the germination process caused significant changes in the flour composition and properties, causing reduced gelatinization temperature and retarded starch retrogradation; an increased content of free sugars and total organic acids; and a decreased content of tocopherols and phenolic compounds. In terms of bioactivity, the sprouted sorghum flour extract showed better lipid-peroxidation-inhibition capacity and none of the extracts revealed hepatotoxicity or nephrotoxicity, which are important results for the validation of the use of the flours for food purposes. Germination is an efficient and alternative method for grain modification that gives improved technological properties without chemical modification or genetic engineering.
RESUMO
This study delved into the impact of two extrusion processing parameters-screw speed (SS at 400, 600, 800 RPM) and material moisture content in the extruder barrel (M at 12, 15, 18%) at constant feed rate (50 kg/h)-on reducing the content of alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), and tentoxin (TEN) in whole-grain red sorghum flour. Ultra-performance liquid chromatography combined with a triple-quadrupole mass spectrometer (UPLC-MS/MS) was employed for the determination of Alternaria toxin levels. The extruder die temperature fluctuated between 136 and 177 °C, with die pressures ranging from 0.16 to 6.23 MPa. The specific mechanical energy spanned from 83.5 to 152.3 kWh/t, the torque varied between 88 and 162.8 Nm, and the average material retention time in the barrel ranged from 5.6 to 13 s. The optimal parameters for reducing the concentration of all Alternaria toxins with a satisfactory quality of the sorghum snacks were: SS = 400 RPM, M = 12%, with a reduction of 61.4, 76.4, 12.1, and 50.8% for AOH, AME, TeA, and TEN, respectively.
RESUMO
In recent years, there has been a growing demand for gluten-free and functional products, driven by consumer preferences for healthier and more diverse food choices. Therefore, there is a need to explore new ingredients that can be used as alternatives to traditional gluten-containing grains. Thus, this work evaluated the physical, chemical, technological, and sensorial properties of extrudates and cookies from composite tannin sorghum (rich in resistant starch) and white cowpea flours. Extrudates and cookies were produced from a composite flour made of sorghum and cowpea, at a sorghum:cowpea flour ratio of 70:30, 50:50, and 30:70. Then, raw flours, cookies, and extrudates were characterized (dietary fiber, resistant starch, proteins, antioxidant capacity, pasting properties, etc.). Results obtained for particle size distribution and bulk density indicated that the particles increased and the color changed with the addition of cowpea flour. The raw tannin sorghum flour had a higher resistant starch concentration (36.3%) and antioxidant capacity (211.2 µmolTE/g), whereas cowpea flour had higher levels of proteins (18.7%) and dietary fiber (20.1%). This difference in the raw flour composition contributed to the nutritional value of the extrudates and cookies, especially the cookies which undergo dry heat and had higher retention of resistant starch and antioxidants. Moreover, sorghum flour presented a higher tendency to retrograde (high setback), which was decreased by the addition of cowpea flour. Overall acceptance and intention to purchase were higher for extrudates with 100% sorghum flour (6.52 and 68.3%, respectively) and cookies with 70% cowpea flour (7.03 and 76.7%, respectively). Therefore, nutritious and functional gluten-free extrudates and cookies, of good acceptability, can be produced from composite tannin sorghum and white cowpea flours.
RESUMO
The roller milling of sorghum and quinoa seeds into flour fractions (coarse, middle, and fine) was investigated, chemically analysed, and applied in the baking of gluten-free sourdough bread. The gap settings were adjusted to 0, 5, 8, and 10 for quinoa, and 3, 5, and 7 for sorghum. The fine fractions reached values of up to about 41% (gap 8) for quinoa and around 20% for sorghum (gap 5). SEM pictographs illustrated the clear separation of each fraction with the chemical analysis showing high contents of protein, TDF (total dietary fibre), and IDF (insoluble dietary fibre) in the coarse fraction. Up to 77% starch content was obtained in the fine fraction with significant amounts of SDF (soluble dietary fibre), which has good health benefits. Increasing the dough moisture up to 90% helped in decreasing the bread crumb firmness, while low Avrami parameters and RVA pasting behaviour indicated a slow bread-staling rate for both sourdough breads.
RESUMO
A Sorghum flour (SF) is a leading and prominent food source for humans in African countries. Recently extensive studies have been conducted on Sorghum bread (SB) or sorghum composite bread (SCB), covering various aspects. However, there are many technical challenges in the formation of SF and sorghum composite flour (SCF) that impact the quality of the bread and fail to meet the consumer's desires and expectations. This review primarily focuses on the characteristics of SF, SCF, SB, and SCB, with discussions encompassing the rheological and morphological properties of the dough, improvement strategies, and bread quality. Moreover, a comprehensive analysis has been conducted to investigate the behavior of SF and SCF along with a discussion of the challenges affecting bread quality and the strategies applied for improvement. The significant demand for nutrients-rich and gluten-free bread indicates that sorghum will become one of the most vital crops worldwide. However, further comprehensive research is highly demanded and necessary for an in-depth understanding of the key features of SF and the resulting bread quality. Such understanding is vital to optimize the utilization of sorghum grain in large-scale bread production.
RESUMO
Pickering emulsion gels have potential application as solid fat substitutes and nutraceutical carriers in foods, but a safe and easily available food-derived particle emulsifier is the bottleneck that limits their practical application. In this study, the function of sorghum flour as a particle emulsifier to stabilize the oil-in-water (O/W) Pickering emulsion gels with medium chain triglycerides (MCT) in the oil phase was introduced. Sorghum flour had suitable size distribution (median diameter, 21.47 µm) and wettability (contact angle, 38°) and could reduce the interfacial tension between MCT and water. The oil phase volume fraction (φ) and the addition amount of sorghum flour (c) had significant effects on the formation of Pickering emulsion gels. When c ≥ 5%, Pickering emulsion gels with φ = 70% could be obtained. Microstructure analysis indicated that sorghum flour not only played an emulsifying role at the O/W interface but also prevented oil droplets from coalescing through its viscous effect in the aqueous phase. With increases in c, the droplet size of the emulsion gel decreased, its mechanical properties gradually strengthened, and its protective effect on ß-carotene against UV irradiation also improved.
RESUMO
In vitro digestibility of starch in sorghum grains differing in endosperm hardness and flour particle size was investigated. The starch digestibility increased as the particle size of flour decreased, but no clear trend was observed in digestibility of starch in sorghum flours milled from grains with different hardness. The protein matrix affected the digestion of starch. The pH value (2.0 vs. 1.3) was a critical factor affecting protein digestion. Optimum pH (pH 2.0 for pepsin) digested more protein, resulting in a greater digestion of starch. Resistant starch (RS) content was 8.5-26.3% in isolated sorghum starch but higher (10.6-29.5%) in sorghum flours. Protein digestibility decreased after cooking while starch digestibility increased compared to native sorghum flours; disulfide bonds formed between protein molecules. RS content of cooked sorghum flour was much higher without pepsin treatment (16.93-23.99%) than that of cooked sorghum flour with pepsin treatment (4.86-12.53%).
Assuntos
Farinha , Sorghum , Digestão , Grão Comestível/metabolismo , Endosperma/metabolismo , Farinha/análise , Dureza , Tamanho da Partícula , Pepsina A/metabolismo , Proteólise , Sorghum/química , Amido/químicaRESUMO
Ultrasonic technology was applied to release the phenolics bound with starch and protein matrix in order to enhance total phenolic content (TPC) and antioxidant activity (AA) of the sorghum flour. Both the continuous flow and batch ultrasonication were implied with independent variables such as flour to water ratio (FWR), ultrasonication intensity (UI), and ultrasonication time (UT) with an additional variable as flow rate (FR) in continuous flow ultrasonication. All the process variables showed a significant effect on the corresponding ultrasonication process. The optimal conditions for the continuous flow ultrasonication were a FWR of 10% w/v, an UI of 20 W/cm2, an UT of 130 s, and 15 ml/s FR which produced a maximum values of 70.9 mg GAE/100 g dry matter (d.m.) for TPC and 143.9 µmol TE/100 g d.m. for AA. Regarding the batch ultrasonication, the maximum values were 65.6 mg GAE/100 g d.m. and 141.0 µmol TE/100 g d.m. for TPC and AA, respectively at optimum conditions of 10% w/v FWR, 30 W/cm2 UI, and 200 s UT. When comparing with the batch ultrasonication, the continuous flow process saved 35% time and 33% of energy consumption to obtain comparatively higher TPC and AA of the sorghum flour. Ultrasonication improved free phenolic acid content by releasing bound phenolics in the sorghum flour. Impact of various process parameters on specific energy was analyzed during both the processes, and influence of energy on TPC and AA of the sorghum flour was also observed for the batch and continuous flow ultrasonication.
Assuntos
Antioxidantes/análise , Farinha/análise , Fenóis/análise , Sonicação , Sorghum/química , Modelos TeóricosRESUMO
Sourdough fermentation of bakery products is a well-established and widespread technique to confer an added value to the resulting food. In recent decades, gluten-free raw materials have gained more attention due to the diffusion of food disorders such as coeliac disease, but, at the same time, they present difficult manipulation and scarce technological properties because of the absence of gluten. For this reason, the present work was aimed at selecting starter cultures for sourdough application that are isolated from fermentation of sorghum flour. Three isolates of Lactobacillus fermentum, Weissella cibaria, and Weissella confusa were selected for the following properties: exopolysaccharide synthesis, acidification, CO2 production, and amylase activity. The investigated phenotypic characteristics were confirmed by genomic analyses, which also highlighted other potentially beneficial features for use in bakery products employment. These strains, together with bakery yeast, were used for bread preparation using sorghum and wheat flour and after 24 h of fermentation the resulting dough was analyzed to assess the improvement of its characteristics. The presence of lactic acid bacteria (LAB) had a great impact on the final dough, and the best preparation, from a rheological point of view, resulted in one made of sorghum and wheat flour with added LAB and bakery yeast, whose resulting characteristics were similar to all wheat flour doughs. The results of this study suggest a potential application of the selected starters in sorghum composite bread and should be validated with data from large-scale pilot tests conducted in industrial bakeries.
RESUMO
This study evaluated the effect of phytase treatment on the bioavailability of iron (Fe), calcium (Ca), zinc (Zn), and myo-inositol phosphate fractions in sorghum flour; and characterized its macronutrients and minerals. The proximate composition and mineral content indicated that, sorghum flour has a nutritional potential superior to wheat and maize. The results obtained in the solubility and dialysis assays indicated that, naturally occurring minerals (without phytase treatment) in sorghum flour, presented considerable bioaccessibility; reaching 32, 47 and 67% of dialyzable Fe, Zn, and Ca respectively. The use of phytase had a positive influence on the reduction of myo-inositol phosphates, mainly the IP6 fraction, present in sorghum flour samples, and an increase in the soluble percentage (Fe 52% for one sample, for Zn higher than 266%) and dialyzed minerals (Fe 7.8-150%; Zn 19.7 for one sample; and Ca 5-205%) for most samples. Therefore, the essential minerals naturally occurring in sorghum have an absorption potential; and the use of phytase reduced the IP6 fraction and improved the availability of the minerals evaluated.
RESUMO
The effect of wet and dry milling on the functional properties of whole sorghum grain flour (SF) and extracted kafirin were assessed. White sorghum landrace was used to prepare two SFs by wet milling (SF1) or dry milling (SF2) and to extract their respective kafirins SK1 and SK2. Protein contents of SK1 and SK2 were 90.07 and 94.23%. Wet milling of SF allowed increasing the oil binding capacity, the least gelling concentration and the instant foam capacity and decreasing the water binding capacity and foam stability. The emulsifying activity index of SF1 and SF2 were in the same range, while emulsion stability was two time higher in SF2. Functional properties of SK1 and SK2 showed an appropriate water binding capacity of 2.20 ± 0.10 and 1.82 ± 0.22 (g water/g dry mater), respectively. Both SK1 and SK2 showed higher oil binding capacity than SF1 and SF2 with no gel and foam formation. The wet milling improved water and oil binding capacities of SK1 by 17 and 5%. The emulsifying activity indexes were approximately similar for SK1 and SK2 with emulsion stability exceeding 60%. Fourier transform infrared spectroscopy of SK1 and SK2 showed that wet milling induced a decrease of α-helical structure and an increase of intermolecular ß-sheet and ß-turns and no change in the anti parallel ß-sheet. This study showed that wet milling could allow extracting kafirin with preserving the most important functional properties of SF and kafirin and could constitute an interesting method for protein recovery and starch isolation.
RESUMO
Two sorghum genotypes termed Wad-Ahmed (high tannin) and Tabat (low tannin) in Sudan were fermented with different starter levels (0%, 25%, 50%, 75%, and 100%) of fermented baobab fruit pulp flour (FBFPF). Chemical composition, antinutrients, extracted minerals, and the microbiological, physicochemical, functional, rheological, and pasting properties from the fermented flours were determined. Fermentation of both genotypes with higher levels of FBFPF starter enhanced protein, fiber, ash, and major mineral contents and extractability (p ≤ 0.05). Total acidity, bulk density, rheological properties, in vitro protein, and starch digestibility of both genotypes increased with FBFPF levels, with a concomitant decrease in pH, phytate and tannin contents, and water and fat absorption capacities (p ≤ 0.05). Microbial loads, especially lactic acid bacteria, increased with increasing FBFPF starter levels in both genotypes. Use of FBFPF as a starter in the fermentation of sorghum flour can improve the nutritional value of sorghum. This could be usefully applied to the food industry for the development of fermented sorghum products.
RESUMO
Sorghum is an underutilized cereal in human food production, despite its flour being a potential gluten-free (GF) source in the development of several foods. Thus, the aim of the present investigation was to evaluate the effects and interactions of different ingredients on cooking quality and texture of GF pasta. Egg albumen (A), egg powder (E), xanthan gum (X), and pregelatinized corn starch (P) were used as ingredients, and Box-Behnken experimental design was applied to study the effects of these ingredients on pasta cooking behavior, color, and texture attributes. Responses were fitted to a second order polynomial equation, and multivariable optimization was performed using maximization of general desirability. Next, optimal formulations were validated, compared with two commercial gluten-free pastas by sensory evaluation, and finally, an industrial assay was carried out. Regression coefficients indicated that A and P improved cooking properties while A and E contributed the most to improving the pasta textural properties. As, X and P effects varied depending on the kind of sorghum flour used, the optimal formulations levels were different, but in both cases these models were satisfactory and capable of predicting responses. The industrial assay was carried out with white sorghum flour because it showed a higher acceptability in the sensory evaluation than brown sorghum flour pasta. This industrially made pasta resulted in slightly better cooking properties than the laboratory produced one, with the formulation adapting well to the conventional wheat pasta industrial process. Gluten-free sorghum pasta was produced, showing good cooking and textural properties and being a suitable option for gluten-sensitive individuals.
Assuntos
Glutens/análise , Sorghum/química , Triticum/química , Cor , Culinária , Dieta Livre de Glúten , Ovos/análise , Farinha/análise , Manipulação de Alimentos , Humanos , Amido/análiseRESUMO
BACKGROUND: Heat-moisture treatment (HMT) has been used to modify properties of sorghum starches. However, information is limited on the effects of HMT on the digestibility of starch and the concurrent changes in protein in sorghum flour. The objectives of this research were to identify heat-moisture conditions to increase the resistant starch (RS) content of sorghum flour and investigate changes in sorghum proteins and starch structure. RESULTS: Sorghum flours with different moisture contents (0, 125, 200, and 300 g kg-1 w.b.) were heated at three temperatures (100, 120 and 140 °C) and times (1, 2 and 4 h). HMT of sorghum flour increased its RS level. The flour treated at 200 g kg-1 moisture and 100 °C for 4 h had a high RS content (221 g kg-1 vs. 56 g kg-1 for the untreated flour). Starch was not gelatinized when sorghum flours heated at moisture content of 200 g kg-1 or below. Sorghum protein digestibility and solubility decreased during HMT. The increase in RS of sorghum flour upon HMT was attributed to enhanced amylose-lipid complexes and heat induced structural changes in its protein fraction. CONCLUSION: HMT can be used to increase RS content in sorghum flour without gelatinizing its starch, thereby providing sorghum flour with unique food applications. © 2017 Society of Chemical Industry.
Assuntos
Proteínas Alimentares/metabolismo , Digestão , Temperatura Alta , Sorghum/química , Amido/metabolismo , Amilose/química , Lipídeos/química , Solubilidade , Água/análiseRESUMO
A protein-rich puffed snack was produced using a twin screw extruder and the effects of varying levels of tapioca starch (11 to 40 parts), rennet casein (6 to 20 parts) and sorghum flour (25 to 75 parts) on physico-chemical properties and sensory attributes of the product studied. An increasing level of sorghum flour resulted in a decreasing whiteness (Hunter L* value) of the snack. Although the starch also generally tended to make the product increasingly darker, both starch and casein showed redness parameter (a* value) was not significantly influenced by the ingredients levels, the yellow hue (b* value) generally declined with the increasing sorghum level. Tapioca starch significantly increased the expansion ratio and decreased the bulk density and hardness value of the snack, whereas the opposite effects seen in case of sorghum flour. While the water solubility index was enhanced by starch, water absorption index was appreciably improved by sorghum. Incorporation of casein (up to 25 %) improved the sensory color and texture scores, and so also the overall acceptability rating of the product. Sorghum flour had an adverse impact on all the sensory attributes whereas starch only on the color score. The casein or starch level had no perceivable effect on the product's flavor score. The response surface data enabled optimization of the snack-base formulation for the desired protein level or desired sensory characteristics.
RESUMO
Commercially milled food-grade sorghum flour was subjected to ozone at the rate of 0.06 L/min for 15, 30, and 45 min. The pH of ozone-treated flour decreased as exposure time increased. The L* (lightness) values of sorghum flour significantly increased (p < 0.05), while the b* (yellowness) values significantly decreased as ozone exposure time increased. Peak viscosity significantly increased as time of ozonation increased from 0 to 45 min. Results showed that gluten-free cake volume significantly increased as ozonation time increased. Additionally, longer ozonation exposure times increased cells per slice area, lightness, and slice brightness values in gluten-free cakes while reducing crumb firmness. Despite improving lightness and slice brightness values, ozonation did not significantly increase the specific volume of gluten-free batter-based bread. While ozonation improved the volume and texture in cakes, it did not have the same positive effects on gluten-free bread. Bread made from ozonated sorghum flour had an open ragged structure with equivalent volume to the control flour. In both applications, the increased brightness and lightness values due to ozone exposure is recommended to increase the acceptability of sorghum products.
Assuntos
Pão/análise , Dieta Livre de Glúten , Manipulação de Alimentos/métodos , Ozônio/farmacologia , Sorghum/química , Culinária/métodos , Concentração de Íons de Hidrogênio , Sorghum/efeitos dos fármacosRESUMO
Cookies were produced from blends of cocoyam, fermented sorghum and germinated pigeon pea flours. The study was carried out to evaluate the effects of varying the proportions of these components on the sensory and protein quality of the cookies. The sensory attributes studied were colour, taste, texture, crispness and general acceptability while the protein quality indices were biological value (BV) and net protein utilization (NPU). Mixture response surface methodology was used to model the sensory and protein quality with single, binary and ternary combinations of germinated pigeon pea, fermented sorghum and cocoyam flours. Results showed that BV and NPU of most of the cookies were above minimum acceptable levels. With the exception of cookies containing high levels of pigeon pea flour, cookies had acceptable sensory scores. Increase in pigeon pea flour resulted in increase in the BV and NPU. Regression equations suggested that the ternary blends produced the highest increase in all the sensory attributes (with the exception of colour).