Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.654
Filtrar
1.
Heliyon ; 10(17): e37319, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39296065

RESUMO

The organism's normal physiological function is greatly impacted in a febrile environment, leading to the manifestation of pathological conditions including elevated body temperature, dehydration, gastric bleeding, and spermatogenic dysfunction. Numerous lines of evidence indicate that heat stress significantly impacts the brain's structure and function. Previous studies have demonstrated that both animals and humans experience cognitive impairment as a result of exposure to high temperatures. However, there is a lack of research on the effects of prolonged exposure to high-temperature environments on learning and memory function, as well as the underlying molecular regulatory mechanisms. In this study, we examined the impact of long-term heat stress exposure on spatial memory function in rats and conducted transcriptome sequencing analysis of rat hippocampal tissues to identify the crucial molecular targets affected by prolonged heat stress exposure. It was found that the long-term heat stress impaired rats' spatial memory function due to the pathological damages and apoptosis of hippocampal neurons at the CA3 region, which is accompanied with the decrease of growth hormone level in peripheral blood. RNA sequencing analysis revealed the signaling pathways related to positive regulation of external stimulation response and innate immune response were dramatically affected by heat stress. Among the verified differentially expressed genes, the knockdown of Arhgap36 in neuronal cell line HT22 significantly enhances the cell apoptosis, suggesting the impaired spatial memory induced by long-term heat stress may at least partially be mediated by the dysregulation of Arhgap36 in hippocampal neurons. The uncovered relationship between molecular changes in the hippocampus and behavioral alterations induced by long-term heat stress may offer valuable insights for the development of therapeutic targets and protective drugs to enhance memory function in heat-exposed individuals.

2.
Neurosci Insights ; 19: 26331055241280638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39314637

RESUMO

Background: Alzheimer's disease (AD) is a progressive neurological disorder characterized by a wide range of cognitive and non-cognitive impairments. The present study was designed to investigate the potential effects of cacao on cognitive and non-cognitive performance and to identify the role of oxidative stress in an AD animal model induced by unilateral intracerebroventricular (U-ICV) injection of amyloid beta1-42 (Aß1-42). Methods: Oral administration of cacao (0.5 g/kg/day) was performed for 60 consecutive days. Following 60 days, the open-field (OF) test, elevated plus-maze (EPM) test, novel object recognition (NOR) test, Barnes maze (BM) test, and Morris water maze (MWM) test were used to evaluate locomotor activity, anxiety-like behavior, recognition memory, and spatial memory, respectively. Total oxidant status (TOS) and total antioxidant capacity (TAC) in plasma were also examined. Furthermore, the number of healthy cells in the hippocampus's dentate gyrus (DG), CA1, and CA3 regions were identified using hematoxylin and eosin staining. Results: The results indicated that the injection of Aß1-42 in rats led to recognition memory and spatial memory impairments, as well as increased anxiety. This was accompanied by decreased total antioxidant capacity (TAC), increased total oxidative stress (TOS), and increased neuronal death. Conversely, cacao treatment in AD rats improved memory function, reduced anxiety, modulated oxidative stress balance, and decreased neuronal death. Conclusion: The findings suggest that cacao's ability to improve the balance between oxidants and antioxidants and prevent neuronal loss may be the mechanism underlying its beneficial effect against AD-related cognitive and non-cognitive impairments.

3.
Mem Cognit ; 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256320

RESUMO

Observers can determine whether they have previously seen hundreds of images with more than 80% accuracy. This "massive memory" for WHAT we have seen is accompanied by smaller but still massive memories for WHERE and WHEN the item was seen (spatial & temporal massive memory). Recent studies have shown that certain images are more easily remembered than others (higher "memorability"). Does memorability influence spatial massive memory and temporal massive memory? In two experiments, viewers saw 150 images presented twice in random order. These 300 images were sequentially presented at random locations in a 7 × 7 grid. If an image was categorized as old, observers clicked on the spot in the grid where they thought they had previously seen it. They also noted when they had seen it: Experiment 1-clicking on a timeline; Experiment 2-estimating the trial number when the item first appeared. Replicating prior work, data show that high-memorability images are remembered better than low-memorability images. Interestingly, in both experiments, spatial memory precision was correlated with image memorability, while temporal memory precision did not vary as a function of memorability. Apparently, properties that make images memorable help us remember WHERE but not WHEN those images were presented. The lack of correlation between memorability and temporal memory is, of course, a negative result and should be treated with caution.

4.
Sci Rep ; 14(1): 21566, 2024 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-39294223

RESUMO

The suprachiasmatic nucleus (SCN) contains a population of cell-autonomous circadian oscillators essential for entrainment to daily light-dark (LD) cycles. Synchrony among SCN oscillators is modified by photoperiod and determines functional properties of SCN clock cycling, including its amplitude, phase angle of entrainment, and free running periodicity (τ). For many species, encoding of daylength in SCN output is critical for seasonal regulation of metabolism and reproduction. C57BL/6 mice do not show seasonality in these functions, yet do show photoperiodic modulation of SCN clock output. The significance of this for brain systems and functions downstream from the SCN in these species is largely unexplored. C57BL/6 mice housed in a long-day photoperiod have been reported to perform better on tests of object, spatial and fear memory compared to mice in a standard 12 h photoperiod. We previously reported that encoding of photoperiod in SCN output, evident in τ in constant dark (DD), can be blocked by limiting food access to a 4 h mealtime in the light period. To determine whether this might also block the effect of long days on memory, mice entrained to 18 h:6 h (L18) or 6 h:18 h (L6) LD cycles were tested for 24 h object memory (novel object preference, NOP) and spatial working memory (Y-maze spontaneous alternation, SA), at 4 times of day, first with food available ad libitum and then during weeks 5-8 of daytime restricted feeding. Photoperiod modified τ as expected, but did not affect performance on the NOP and SA tests, either before or during restricted feeding. NOP performance did improve in the restricted feeding condition in both photoperiods, eliminating a weak time of day effect evident with food available ad-libitum. These results highlight benefits of restricted feeding on cognitive function, and suggest a dose-response relationship between photoperiod and memory, with no benefits at daylengths up to 18 h.


Assuntos
Memória , Camundongos Endogâmicos C57BL , Fotoperíodo , Animais , Camundongos , Masculino , Memória/fisiologia , Núcleo Supraquiasmático/fisiologia , Ritmo Circadiano/fisiologia
5.
Int J Biochem Cell Biol ; 176: 106663, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321568

RESUMO

The serotonergic system is involved in various psychiatric and neurological conditions, with serotonergic drugs often used in treatment. These conditions frequently affect spatial memory, which can serve as a model of declarative memory due to well-known cellular components and advanced methods that track neural activity and behavior with high temporal resolution. However, most findings on serotonin's effects on spatial learning and memory come from studies lacking refined analytical techniques and modern approaches needed to uncover the underlying neuronal mechanisms. This In Focus review critically investigates available studies to identify areas for further exploration. It finds that well-established behavioral models could yield more insights with modern tracking and data analysis approaches, while the cellular aspects of spatial memory remain underexplored. The review highlights the complex role of serotonin in spatial memory, which holds the potential for better understanding and treating memory-related disorders.

6.
Front Behav Neurosci ; 18: 1429069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39267984

RESUMO

Introduction: The vestibular system's contribution to spatial learning and memory abilities may be clarified using the virtual Morris Water Maze Task (vMWMT). This is important because of the connections between the vestibular system and the hippocampus area. However, there is ongoing debate over the role of the vestibular system in developing spatial abilities. This study aimed to evaluate the relationship between Dynamic Visual Acuity (DVA) across three planes and spatial abilities. Methods: This cross-sectional study was conducted with 50 healthy adults aged 18 to 55 with normal stress levels and mental health and no neurological, audiological, or vestibular complaints. The Trail-Making Test (TMT) Forms A and B for the assessment of executive functions, the DVA test battery for the evaluation of visual motor functions, and the Virtual Morris Water Maze Test (vMWMT) for the assessment of spatial learning and spatial memory were performed. All participants also underwent the Benton Face Recognition Test (BFRT) and Digit Symbol Substitution Tests (DSST) to assess their relation with spatial memory. Results: DVA values in horizontal (H-DVA), vertical (V-DVA), and sagittal (S-DVA) planes ranged from (-0.26) to 0.36 logMAR, (-0.20) to 0.36 logMAR, and (-0.28) to 0.33 logMAR, respectively. The latency of three planes of DVA was affected by vMWMT (Horizontal, Vertical, and Sagittal; Estimate: 22.733, 18.787, 13.341, respectively p < 0.001). Moreover, a moderately significant correlation was also found, with a value of 0.571 between the Virtual MWM test and BFRT and a value of 0.539 between the DSST (p < 0.001). Conclusion: Spatial abilities in healthy adults were significantly influenced by dynamic visual functions across horizontal, vertical, and sagittal planes. These findings are expected to trigger essential discussions about the mechanisms that connect the vestibular-visual system to the hippocampus. The original vMWMT protocol is likely to serve as a model for future studies utilizing this technology.

7.
Philos Trans R Soc Lond B Biol Sci ; 379(1912): 20240060, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39230458

RESUMO

According to the information centre hypothesis (ICH), colonial species use social information in roosts to locate ephemeral resources. Validating the ICH necessitates showing that uninformed individuals follow informed ones to the new resource. However, following behaviour may not be essential when individuals have a good memory of the resources' locations. For instance, Egyptian fruit bats forage on spatially predictable trees, but some bear fruit at unpredictable times. These circumstances suggest an alternative ICH pathway in which bats learn when fruits emerge from social cues in the roost but then use spatial memory to locate them without following conspecifics. Here, using an unique field manipulation and high-frequency tracking data, we test for this alternative pathway: we introduced bats smeared with the fruit odour of the unpredictably fruiting Ficus sycomorus trees to the roost, when they bore no fruits, and then tracked the movement of conspecifics exposed to the manipulated social cue. As predicted, bats visited the F. sycomorus trees with significantly higher probabilities than during routine foraging trips (of >200 bats). Our results show how the integration of spatial memory and social cues leads to efficient resource tracking and highlight the value of using large movement datasets and field experiments in behavioural ecology. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.


Assuntos
Quirópteros , Sinais (Psicologia) , Ficus , Frutas , Memória Espacial , Animais , Quirópteros/fisiologia , Memória Espacial/fisiologia , Ficus/fisiologia , Comportamento Social , Comportamento Alimentar , Odorantes/análise
8.
Behav Brain Res ; 476: 115250, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277140

RESUMO

Schizophrenia is a disorder with a higher cognitive decline in early adulthood, causing impaired retention of episodic memories. However, the physiological and behavioral functions that underlie cognitive deficits with a potential mechanism to ameliorate and improve cognitive performance are unknown. In this study, we used the MK-801 neurodevelopmental schizophrenia-like model. Rats were divided into two groups: one received MK-801, and the other received saline for five consecutive days (7-11 postnatal days, PND). We evaluated synaptic plasticity late-LTP and spatial memory consolidation in early adolescence and young adulthood using extracellular field recordings in acute hippocampal slices and the Barnes maze task. Next, we examined D1 receptor (D1R) activation as a mechanism to ameliorate cognitive impairments. Our results suggest that MK-801 neonatal treatment induces impairment in late-LTP expression and deficits in spatial memory retrieval in early adolescence that is maintained until young adulthood. Furthermore, we found that activation of dopamine D1R ameliorates the impairments and promotes a robust expression of late-LTP and an improved performance in the Barnes maze task, suggesting a novel and potential therapeutic role in treating cognitive impairments in schizophrenia.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39253840

RESUMO

Introduction: Early life is a sensitive period for brain development. Perinatal exposure to cannabis is increasingly linked to disruption of neurodevelopment; however, research on the effects of cannabidiol (CBD) on the developing brain is scarce. In this study, we aim to study the developmental effects of neonatal CBD exposure on behavior and dendritic architecture in young adult rats. Materials and Methods: Male and female neonatal Sprague Dawley rats were treated with CBD (50 mg/kg) intraperitoneally on postnatal day (PND) 1, 3, and 5 and evaluated for behavioral and neuronal morphological changes during early adulthood. Rats were subjected to a series of behavioral tasks to evaluate long-term effects of neonatal CBD exposure, including the Barnes maze, open field, and elevated plus maze paradigms to assess spatial memory and anxiety-like behavior. Following behavioral evaluation, animals were sacrificed, and neuronal morphology of the cortex and hippocampus was assessed using Golgi-Cox (GC) staining. Results: Rats treated with CBD displayed a sexually dimorphic response in spatial memory, with CBD-treated females developing a deficit but not males. CBD did not elicit alterations in anxiety-like behavior in either sex. Neonatal CBD caused an overall decrease in dendritic length and spine density (apical and basal) in cortical and hippocampal neurons in both sexes. Sholl analysis also revealed a decrease in dendritic intersections in the cortex and hippocampus, indicating reduced dendritic arborization. Conclusions: This study provides evidence that neonatal CBD exposure perturbs normal brain development and leads to lasting alterations in spatial memory and neuronal dendrite morphology in early adulthood, with sex-dependent sensitivity.

10.
Brain Behav ; 14(9): e70000, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39245964

RESUMO

BACKGROUND: Uni- or bilateral peripheralvestibular impairment causes objective spatial orientation deficits, which can be measured using pen-and-paper-tests or sensorimotor tasks (navigation or pointing). For patients' subjective orientation abilities, questionnaires are commonly used (e.g., Santa Barbara sense of direction scale [SBSODS]). However, the relationship between subjective assessment of spatial skills and objective vestibular function has only been scarcely investigated. METHODS: A total of 177 patients (mean age 57.86 ± 17.53 years, 90 females) who presented in our tertiary Center for Vertigo and Balance Disorders underwent neuro-otological examinations, including bithermal water calorics, video head impulse test (vHIT), and testing of the subjective visual vertical (SVV), and filled out the SBSODS (German version). Correlation analyses and linear multiple regression model analyses were performed between vestibular test results and self-assessment scores. Additionally, groupwise vestibular function for patients with low, average, and high self-report scores was analyzed. RESULTS: Forty-two patients fulfilled the diagnostic criteria for bilateral vestibulopathy, 93 for chronic unilateral vestibulopathy (68 unilateral caloric hypofunction and 25 isolated horizontal vestibulo-ocular reflex deficits), and 42 patients had normal vestibular test results. SBSODS scores showed clear sex differences with higher subjective skill levels in males (mean score males: 4.94 ± 0.99, females 4.40 ± 0.94; Student's t-test: t-3.78, p < .001***). No stable correlation between objective vestibular function and subjective sense of spatial orientation was found. A multiple linear regression model could not reliably explain the self-reported variance. The three patient groups with low, average, and high self-assessment-scores showed no significant differences of vestibular function. CONCLUSION: Self-reported assessment of spatial orientation does not robustly correlate with objective peripheral vestibular function. Therefore, other methods of measuring spatial skills in real-world and virtual environments are required to disclose orientation deficits due to vestibular hypofunction.


Assuntos
Autorrelato , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Doenças Vestibulares/fisiopatologia , Doenças Vestibulares/diagnóstico , Orientação Espacial/fisiologia , Testes de Função Vestibular/métodos , Vestibulopatia Bilateral/fisiopatologia , Vestibulopatia Bilateral/diagnóstico , Vertigem/fisiopatologia , Vertigem/diagnóstico , Vestíbulo do Labirinto/fisiopatologia , Vestíbulo do Labirinto/fisiologia
11.
J Gerontol A Biol Sci Med Sci ; 79(11)2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39093820

RESUMO

TIAM Rac1-associated GEF 2 short-form protein (TIAM2S) is abundant in specific brain tissues, especially in the hippocampus, a brain region critical for processing and consolidation of spatial memory. However, how TIAM2S plasticizes the microstructure and circuits of the hippocampus to shape spatial memory as a neuroplastic regulator during aging remains to be determined. In this study, transgenic mice overexpressing human TIAM2S protein (TIAM2S-TG mice) were included, and interdisciplinary approaches, such as spatial memory tests and multiparametric magnetic resonance imaging sequences, were conducted to determine the role and the mechanism of TIAM2S in age-related spatial memory deficits. Despite no changes in their neural and glial markers and neuropathological hallmark expression of the hippocampus, behavioral tests showed that the TIAM2S-TG mice, and not wild-type (WT) mice, developed spatial memory impairment at 18 months old. The T2-weighted and diffusion tensor image analyses were performed to further study the possible role of TIAM2S overexpression in altering the hippocampal structure or neuronal circlets of the mice, increasing their vulnerability to developing spatial memory deficits during aging. The results revealed that the 12-month-old TIAM2S-TG mice had hippocampal dysplasticity, with larger volume, increased fiber numbers, and changed mean fractional anisotropy compared to those in the age-matched WT mice. The fiber tractography analysis exhibited significantly attenuated structural connectivity between the hippocampus and medial prefrontal cortex in the TIAM2S-TG mice. In conclusion, overexpression of TIAM2S, a detrimental factor affecting hippocampus plasticity, causes attenuation of the connectivity within hippocampus-mPFC circuits, leading to age-related spatial memory impairment.


Assuntos
Envelhecimento , Fatores de Troca do Nucleotídeo Guanina , Hipocampo , Transtornos da Memória , Camundongos Transgênicos , Córtex Pré-Frontal , Memória Espacial , Animais , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Transtornos da Memória/metabolismo , Transtornos da Memória/genética , Memória Espacial/fisiologia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Córtex Pré-Frontal/metabolismo , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Envelhecimento/genética , Humanos , Masculino
12.
Biomed Pharmacother ; 179: 117322, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39191029

RESUMO

Oligonol, a low-molecular-weight polyphenol derived from lychee fruit, is well recognized for its antioxidant properties, blood glucose regulation, and fat mass reduction capability. However, its effect on the central nervous system remains unclear. Here, we investigated the effects of oligonol on brain in a high-fat diet (HFD) fed mouse model, and SH-SY5Y neuronal cells and primary cultured cortical neuron under insulin resistance conditions. HFD mice were orally administered oligonol (20 mg/kg) daily, and SH-SY5Y cells and primary cortical neurons were pretreated with 500 ng/mL oligonol under in vitro insulin resistance conditions. Our findings revealed that oligonol administration reduced blood glucose levels and improved spatial memory function in HFD mice. In vitro data demonstrated that oligonol protected neuronal cells and enhanced neural structure against insulin resistance. We confirmed RNA sequencing in the oligonol-pretreated insulin-resistant SH-SY5Y neuronal cells. Our RNA-sequencing data indicated that oligonol contributes to metabolic signaling and neurite outgrowth. In conclusion, our study provides insights into therapeutic potential of oligonol with respect to preventing neuronal cell damage and improving neural structure and cognitive function in HFD mice.


Assuntos
Encéfalo , Catequina , Cognição , Dieta Hiperlipídica , Resistência à Insulina , Camundongos Endogâmicos C57BL , Neurônios , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Catequina/análogos & derivados , Catequina/farmacologia , Humanos , Cognição/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Camundongos , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Linhagem Celular Tumoral , Fenóis/farmacologia , Memória Espacial/efeitos dos fármacos , Litchi/química
13.
Alcohol ; 121: 75-86, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39122134

RESUMO

Moderate prenatal alcohol exposure (mPAE) results in structural alterations to the hippocampus. Previous studies have reported impairments in hippocampal-sensitive tasks, but have not compared performance between male and female animals. In the present study, performance in hippocampal-sensitive spatial memory and anxiety behavior tests were compared across adult male and female saccharin (SACC) control mPAE Long-Evans rat offspring. Two tests of spatial memory were conducted that were aimed at assessing memory for recently acquired spatial information: A delayed spatial alternation task using an M-shaped maze and a delayed match-to-place task in the Morris water task. In both tasks, rats in SACC and mPAE groups showed similar learning and retention of a spatial location even after a 2-h interval between encoding and retention. A separate group of adult male and female SACC and mPAE rat offspring were tested for anxiety-like behaviors in the elevated plus-maze paradigm. In this test, both male and female mPAE rats exhibited a significantly greater amount of time and a greater number of head dips in the open arms, while locomotion and open arm entries did not differ between groups. The results suggest that mPAE produces a reduction in anxiety-like behaviors in both male and female rats in the elevated plus-maze.

14.
Pharmacol Res ; 208: 107357, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159732

RESUMO

Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aß-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aß aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aß burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Astrócitos , Glicólise , Ácido Láctico , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Glicólise/efeitos dos fármacos , Animais , Ácido Láctico/metabolismo , Peptídeos beta-Amiloides/metabolismo , Masculino , Serina-Treonina Quinases TOR/metabolismo , Transtornos da Memória/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Sirolimo/farmacologia , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos
15.
Neuropharmacology ; : 110110, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128584

RESUMO

There is considerable interest in the development of nootropics, pharmacological agents that can improve cognition across a range of both cognitive modalities and cognitive disabilities. One class of cognitive enhancers, the ampakines, has attracted particular attention by virtue of improving cognition associated with animal models of neurodevelopmental, neurodegenerative, and psychiatric conditions, as well as in age-related cognitive impairment. Ampakines elevate CNS levels of BDNF, and it is through this elevation that their beneficial actions are believed to occur. However, what transduces the elevation of BDNF into long-lasting cognitive enhancement is not known. We have previously shown that MSK1, by virtue of its ability to regulate gene transcription, converts the elevation of BDNF associated with environmental enrichment into molecular, synaptic, cognitive and genomic adaptations that underlie enrichment-induced enhanced synaptic plasticity and learning and memory, a property that MSK1 retains across the lifespan. To establish whether MSK1 similarly converts ampakine-induced elevations of BDNF into cognitive enhancement we tested an ampakine (CX929) in male WT mice and in male mice in which the kinase activity of MSK1 was inactivated. We found that MSK1 is required for the ampakine-dependent improvement in spatial reference memory and cognitive flexibility, and for the elevations of BDNF and the plasticity-related protein Arc associated with ampakines and experience. These observations implicate MSK1 as a key enabler of the beneficial effects of ampakines on cognitive function, and furthermore identify MSK1 as a hub for BDNF-elevating nootropic strategies.

16.
Hippocampus ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39143939

RESUMO

Early life, or juvenility, stands out as the most pivotal phase in neurodevelopment due to its profound impact over the long-term cognition. During this period, significant changes are made in the brain's connections both within and between different areas, particularly in tandem with the development of more intricate behaviors. The hippocampus is among the brain regions that undergo significant postnatal remodeling, including dendritic arborization, synaptogenesis, the formation of complex spines and neuron proliferation. Given the crucial role of the hippocampus in spatial memory processing, it has been observed that spatial memory abilities continue to develop as the hippocampus matures, particularly before puberty. The N-methyl-d-aspartate (NMDA) type of glutamate receptor channel is crucial for the induction of activity-dependent synaptic plasticity and spatial memory formation in both rodents and humans. Although extensive evidence shows the role of NMDA receptors (NMDAr) in spatial memory and synaptic plasticity, the studies addressing the role of NMDAr in spatial memory of juveniles are sparse and mostly limited to adult males. In the present study, we, therefore, aimed to investigate the effects of systemic NMDAr blockade by the MK-801 on spatial memory (novel object location memory, OLM) and hippocampal plasticity in the form of long-term potentiation (LTP) of both male and female juvenile rats. Our results show the sex-dimorphic role of NMDAr in spatial memory and plasticity during juvenility, as systemic NMDAr blockade impairs the OLM and LTP in juvenile males without an effect on juvenile females. Taken together, our results demonstrate that spatial memory and hippocampal plasticity are NMDAr-dependent in juvenile males and NMDAr-independent in juvenile females. These sex-specific differences in the mechanisms of spatial memory and plasticity may imply gender-specific treatment for spatial memory disorders even in children.

17.
Eur J Neurosci ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39180282

RESUMO

The detrimental effects of high-intensity noise on the auditory system and emotional status, including the induction of anxiety, are well documented. Preclinical as well as epidemiological and clinical studies have solidly established differential responses between males and females to various stressful stimuli, including high-intensity white noise (HIWN). However, whether chronic exposure to noise affects cognitive functions and whether this effect is sex dependent has not been adequately addressed. In this study, we used two cognitive test paradigms, such as the Morris water maze (MWM) and the multi-branch maze (MBM), to test the effect of chronic HIWN on indices of spatial learning and memory in both male and female Wistar rats. Our findings indicate that daily (1 h) exposure to 100 dB of noise for 30 consecutive days induces different task-dependent responses in male versus female rats. For example, in the acquisition phase of MWM, female rats exposed to noise outperformed their male counterparts at twice the speed. Similarly, in the MBM test, noise-exposed female rats outperformed the male rats in reaching the nest box. It is clear from these studies that noise impairs cognitive functions twice as negatively in male rats as in female rats. Thus, sex-related differences in spatial learning and memory in response to HIWN must be taken into consideration when investigating the neurobiological components and/or treatment modalities.

18.
Adv Sci (Weinh) ; : e2400253, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119847

RESUMO

High-frequency oscillatory activity in cognition-related neural circuits during wakefulness consistently induces the growth of dendritic spines and axonal terminals. Although these structural changes are essential for cognitive functions, it is hypothesized that if these newly expanded structures fail to establish functional connections, they may become superfluous. Sleep is believed to facilitate the reduction of such redundant structures to maintain neural homeostasis. However, the mechanisms underlying this pruning process during sleep remain poorly understood. In this study, that melatonin type 3 receptors (MT3Rs) are selectively expressed in the stellate neurons of the medial entorhinal cortex (MEC) is demonstrated, an area where high melatonin levels are detected during sleep. Activation of MT3Rs during sleep initiates the shrinkage of dendritic spines in stellate neurons by downregulating neural network activity and dephosphorylating synaptic proteins in the MEC. This process is disrupted when MT3R expression is knocked down or when MT3Rs are blocked during sleep. Notably, interference with MT3Rs in the MEC during sleep impairs the acquisition of spatial memory but does not affect object memory acquisition following sleep. These findings reveal novel molecular mechanisms involving melatonin and MT3Rs in the regulation of dendritic spine shrinkage during sleep, which is crucial for the acquisition and consolidation of spatial memory.

19.
Artigo em Inglês | MEDLINE | ID: mdl-39145803

RESUMO

RATIONALE: The accumulation of beta-amyloid peptide (Aß) in the forebrain leads to cognitive dysfunction and neurodegeneration in Alzheimer's disease. Studies have shown that individuals with a consistently cognitively active lifestyle are less vulnerable to Aß toxicity. Recent research has demonstrated that intrahippocampal Aß can impact catecholaminergic release and spatial memory. Interestingly, exposure to novelty stimuli has been found to stimulate the release of catecholamines in the hippocampus. However, it remains uncertain whether repeated enhancing catecholamine activity can effectively alleviate cognitive impairment in individuals with Alzheimer's disease. OBJECTIVES: Our primary aim was to investigate whether repeated exposure to novelty could enable cognitive resilience against Aß. This protection could be achieved by modulating catecholaminergic activity within the hippocampus. METHODS: To investigate this hypothesis, we subjected mice to three different conditions-standard housing (SH), repeated novelty (Nov), or daily social interaction (Soc) for one month. We then infused saline solution (SS) or Aß (Aß1-42) oligomers intrahippocampally and measured spatial memory retrieval in a Morris Water Maze (MWM). Stereological analysis and extracellular baseline dopamine levels using in vivo microdialysis were assessed in independent groups of mice. RESULTS: The mice that received Aß1-42 intrahippocampal infusions and remained in SH or Soc conditions showed impaired spatial memory retrieval. In contrast, animals subjected to the Nov protocol demonstrated remarkable resilience, showing strong spatial memory expression even after Aß1-42 intrahippocampal infusion. The stereological analysis indicated that the Aß1-42 infusion reduced the tyrosine hydroxylase axonal length in SH or Soc mice compared to the Nov group. Accordingly, the hippocampal extracellular dopamine levels increased significantly in the Nov groups. CONCLUSIONS: These compelling results demonstrate the potential for repeated novelty exposure to strengthen the dopaminergic system and mitigate the toxic effects of Aß1-42. They also highlight new and promising therapeutic avenues for treating and preventing AD, especially in its early stages.

20.
J Alzheimers Dis ; 101(1): 259-276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39177594

RESUMO

Background: The hippocampal representation of space, formed by the collective activity of populations of place cells, is considered as a substrate of spatial memory. Alzheimer's disease (AD), a widespread severe neurodegenerative condition of multifactorial origin, typically exhibits spatial memory deficits among its early clinical signs before more severe cognitive impacts develop. Objective: To investigate mechanisms of spatial memory impairment in a double transgenic rat model of AD. Methods: In this study, we utilized 9-12-month-old double-transgenic TgF344-AD rats and age-matched controls to analyze the spatial coding properties of CA1 place cells. We characterized the spatial memory representation, assessed cells' spatial information content and direction-specific activity, and compared their population coding in familiar and novel conditions. Results: Our findings revealed that TgF344-AD animals exhibited lower precision in coding, as evidenced by reduced spatial information and larger receptive zones. This impairment was evident in maps representing novel environments. While controls instantly encoded directional context during their initial exposure to a novel environment, transgenics struggled to incorporate this information into the newly developed hippocampal spatial representation. This resulted in impairment in orthogonalization of stored activity patterns, an important feature directly related to episodic memory encoding capacity. Conclusions: Overall, the results shed light on the nature of impairment at both the single-cell and population levels in the transgenic AD model. In addition to the observed spatial coding inaccuracy, the findings reveal a significantly impaired ability to adaptively modify and refine newly stored hippocampal memory patterns.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Ratos Transgênicos , Animais , Doença de Alzheimer/fisiopatologia , Ratos , Memória Espacial/fisiologia , Ratos Endogâmicos F344 , Masculino , Região CA1 Hipocampal/fisiopatologia , Precursor de Proteína beta-Amiloide/genética , Humanos , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Hipocampo/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA