Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cancer Genomics Proteomics ; 21(4): 327-349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38944427

RESUMO

We have reviewed the literature for circular RNAs (circRNAs) with efficacy in preclinical pancreatic-cancer related in vivo models. The identified circRNAs target chemoresistance mechanisms (n=5), secreted proteins and transmembrane receptors (n=15), transcription factors (n=9), components of the signaling- (n=11), ubiquitination- (n=2), autophagy-system (n=2), and others (n=9). In addition to identifying targets for therapeutic intervention, circRNAs are potential new entities for treatment of pancreatic cancer. Up-regulated circRNAs can be inhibited by antisense oligonucleotides (ASO), small interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or clustered regularly interspaced short-palindromic repeats-CRISPR associated protein (CRISPR-CAS)-based intervention. The function of down-regulated circRNAs can be reconstituted by replacement therapy using plasmids or virus-based vector systems. Target validation experiments and the development of improved delivery systems for corresponding agents were examined.


Assuntos
Neoplasias Pancreáticas , RNA Circular , Humanos , RNA Circular/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Animais , Terapia de Alvo Molecular/métodos
2.
Cell Signal ; 120: 111232, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763183

RESUMO

Aging affects lipid metabolism and can cause obesity as it is closely related to the disorder of many lipogenic regulatory factors. LncRNAs have been recognized as pivotal regulators across diverse biological processes, but their effects on lipogenesis in aging remain to be further studied. In this work, using RNA sequencing (RNA-Seq), we found that the expression of lncRNA AI504432 was significantly upregulated in the eWAT (epididymal white adipose tissue) of aging mice, and the knockdown of AI504432 notably reduced the expression of several adipogenic genes (e.g., Cebp/α, Srebp-1c, Fasn, Acaca, and Scd1) in senescent adipocytes. The bioinformatics investigation revealed that AI504432 possessed a binding site for miR-1a-3p, and the discovery was verified by the luciferase reporter assay. The expression of Fasn was increased upon the inhibition of miR-1a-3p but restored upon the simultaneous silencing of AI504432. Taken together, our results suggested that AI504432 controlled lipogenesis through the miR-1a-3p/Fasn signaling pathway. The findings may inspire new therapeutic approaches to target imbalanced lipid homeostasis due to aging.


Assuntos
Adipócitos , Senescência Celular , Ácido Graxo Sintase Tipo I , Lipogênese , MicroRNAs , RNA Longo não Codificante , Regulação para Cima , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Lipogênese/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Camundongos , Adipócitos/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Regulação para Cima/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Envelhecimento/metabolismo , Envelhecimento/genética
3.
Pathol Res Pract ; 257: 155315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653090

RESUMO

Cervical cancer is a prominent cause of cancer-related mortality among women, with recent attention directed toward exploring the involvement of circular RNAs (circRNAs) in this particular cancer. CircRNAs, characterized by a covalently closed loop structure, belong to a class of single-stranded non-coding RNA (ncRNA) molecules that play crucial roles in cancer development and progression through diverse mechanisms. The abnormal expression of circRNAs in vivo is significantly associated with the development of cervical cancer. Notably, circRNAs actively interact with miRNAs in cervical cancer, leading to the regulation of diverse signaling pathways, and they can contribute to cancer hallmarks such as self-sufficiency in growth signals, insensitivity to antigrowth signals, limitless proliferation, evading apoptosis, tissue invasion and metastasis, and sustained angiogenesis. Moreover, the distinctive biomedical attributes exhibited by circRNAs, including their abundance, conservation, and stability in body fluids, position them as promising biomarkers for various cancers. In this review, we elucidate the tremendous potential of circRNAs as diagnostic markers or therapeutic targets in cervical cancer by expounding upon their biogenesis, characteristics, functions, and databases, highlighting the novel advances in the signaling pathways associated with circRNAs in cervical cancer.


Assuntos
Biomarcadores Tumorais , RNA Circular , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , RNA Circular/genética , RNA Circular/metabolismo , Feminino , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Transdução de Sinais/genética , MicroRNAs/genética , MicroRNAs/metabolismo
4.
J Biomol Struct Dyn ; : 1-21, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411012

RESUMO

Ataxia represents a heterogeneous group of neurodegenerative disorders characterized by a loss of balance and coordination, often resulting from mutations in genes vital for cerebellar function and maintenance. Recent advances in genomics have identified gene fusion events as critical contributors to various cancers and neurodegenerative diseases. However, their role in ataxia pathogenesis remains largely unexplored. Our study Hdelved into this possibility by analyzing RNA sequencing data from 1443 diverse samples, including cell and mouse models, patient samples, and healthy controls. We identified 7067 novel gene fusions, potentially pivotal in disease onset. These fusions, notably in-frame, could produce chimeric proteins, disrupt gene regulation, or introduce new functions. We observed conservation of specific amino acids at fusion breakpoints and identified potential aggregate formations in fusion proteins, known to contribute to ataxia. Through AI-based protein structure prediction, we identified topological changes in three high-confidence fusion proteins-TEN1-ACOX1, PEX14-NMNAT1, and ITPR1-GRID2-which could potentially alter their functions. Subsequent virtual drug screening identified several molecules and peptides with high-affinity binding to fusion sites. Molecular dynamics simulations confirmed the stability of these protein-ligand complexes at fusion breakpoints. Additionally, we explored the role of non-coding RNA fusions as miRNA sponges. One such fusion, RP11-547P4-FLJ33910, showed strong interaction with hsa-miR-504-5p, potentially acting as its sponge. This interaction correlated with the upregulation of hsa-miR-504-5p target genes, some previously linked to ataxia. In conclusion, our study unveils new aspects of gene fusions in ataxia, suggesting their significant role in pathogenesis and opening avenues for targeted therapeutic interventions.Communicated by Ramaswamy H. Sarma.

5.
Cell Mol Neurobiol ; 44(1): 23, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366205

RESUMO

HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.


Assuntos
Doenças do Sistema Nervoso Central , Glioma , MicroRNAs , RNA Longo não Codificante , Humanos , Doenças do Sistema Nervoso Central/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
6.
J Biochem Mol Toxicol ; 38(1): e23551, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983895

RESUMO

Esophageal cancer (EC) is a challenging tumor to treat with radiotherapy, often exhibiting resistance to this treatment modality. To explore the factors influencing radioresistance, we focused on the role of hypoxia-induced factor-1α (HIF-1α), and its interaction with the long noncoding RNA long intergenic nonprotein coding RNA 1116 (LINC01116). We analyzed the LINC01116 expression in EC and EC cell lines/human normal esophageal epithelial cell line (Het-1A). LINC01116 was silenced/overexpressed in EC109/KYSE30 cells under hypoxia, followed by radioresistance assessment. We measured HIF-1α levels in hypoxic EC cells and further validated the binding of HIF-1α with LINC01116, analyzing their interaction in EC cells. We then performed experiments in EC109 cells by transfection them with sh-HIF-1α/oe-LINC01116 to verify the effects. Additonally, we analyzed the localization of LINC01116 and its binding with miR-3612, followed by a combined experiment performed to validate the results. Our findings indicated that LINC01116 was highly expressed in EC and further elevated in hypoxic EC cells. LINC01116 was expressed at a high level in EC, which was further elevated in EC cells under hypoxic conditions. Knockdown of LINC01116 triggered EC cell apoptosis, thus suppressing radioresistance. Further investigation revealed that HIF-1α transcriptionally activated LINC01116 expression under hypoxia, and silencing HIF-1α lowered EC cell radioresistance by downregulating LINC01116. Under hypoxic conditions, LINC01116 could function as a sponge for miR-3612 and inhibit its expression. This interaction between LINC01116 and miR-3612 played a crucial role in mediating radioresistance in EC cells. Briefly, under hypoxic conditions, HIF-1α facilitates radioresistance of EC cells by transcriptionally activating LINC01116 expression and downregulating miR-3612.


Assuntos
Neoplasias Esofágicas , MicroRNAs , Humanos , Hipóxia Celular/genética , Linhagem Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Neoplasias Esofágicas/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , RNA não Traduzido/genética
7.
Biomolecules ; 13(9)2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37759801

RESUMO

The presenilin-1 (PSEN1) gene is crucial in developing Alzheimer's disease (AD), a progressive neurodegenerative disorder and the most common cause of dementia. Circular RNAs (circRNAs) are non-coding RNA generated through back-splicing, resulting in a covalently closed circular molecule. This study aimed to investigate PSEN1-gene-derived circular RNAs (circPSEN1s) and their potential functions in AD. Our in silico analysis indicated that circPSEN1s (hsa_circ_0008521 and chr14:73614502-73614802) act as sponge molecules for eight specific microRNAs. Surprisingly, two of these miRNAs (has-mir-4668-5p and has-mir-5584-5p) exclusively interact with circPSEN1s rather than mRNA-PSEN1. Furthermore, the analysis of pathways revealed that these two miRNAs predominantly target mRNAs associated with the PI3K-Akt signaling pathway. With sponging these microRNAs, circPSEN1s were found to protect mRNAs commonly targeted by these miRNAs, including QSER1, BACE2, RNF157, PTMA, and GJD3. Furthermore, the miRNAs sequestered by circPSEN1s have a notable preference for targeting the TGF-ß and Hippo signaling pathways. We also demonstrated that circPSEN1s potentially interact with FOXA1, ESR1, HNF1B, BRD4, GATA4, EP300, CBX3, PRDM9, and PPARG proteins. These proteins have a prominent preference for targeting the TGF-ß and Notch signaling pathways, where EP300 and FOXA1 have the highest number of protein interactions. Molecular docking analysis also confirms the interaction of these hub proteins and Aß42 with circPSEN1s. Interestingly, circPSEN1s-targeted molecules (miRNAs and proteins) impacted TGF-ß, which served as a shared signaling pathway. Finally, the analysis of microarray data unveiled distinct expression patterns of genes influenced by circPSEN1s (WTIP, TGIF, SMAD4, PPP1CB, and BMPR1A) in the brains of AD patients. In summary, our findings suggested that the interaction of circPSEN1s with microRNAs and proteins could affect the fate of specific mRNAs, interrupt the function of unique proteins, and influence cell signaling pathways, generally TGF-ß. Further research is necessary to validate these findings and gain a deeper understanding of the precise mechanisms and significance of circPSEN1s in the context of AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , RNA Circular/genética , Doença de Alzheimer/genética , Presenilina-1/genética , Fosfatidilinositol 3-Quinases/metabolismo , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro , Epigênese Genética/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Correpressoras/genética
8.
Korean J Physiol Pharmacol ; 27(4): 333-344, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37386831

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent malignant tumor with high fatality. It has yet to be reported whether circ-SNX27 can affect the progression of HCC. This study attempted to analyze circ-SNX27's precise role and underlying mechanisms in HCC. HCC cell lines and tumor specimens from HCC patients were analyzed using quantitative real-time PCR and Western blotting to quantify the expressions of circ-SNX27, miR-375, and ribophorin I (RPN1). Cell invasion and cell counting kit 8 experiments were conducted for the evaluation of HCC cell invasion and proliferation. Caspase-3 Activity Assay Kit was utilized to gauge the caspase-3 activity. Luciferase reporter and RNA immunoprecipitation assays were executed to ascertain the relationships among miR-375, circ-SNX27, and RPN1. To determine how circ-SNX27 knockdown affects the growth of HCC xenografts in vivo, tumor-bearing mouse models were constructed. Elevated expressions of circ-SNX27 and RPN1 as well as a reduced miR-375 expression were observed among HCC cells and HCC patient tumor specimens. Knocking-down circ-SNX27 in HCC cells abated their proliferative and invasive abilities but raised their caspase-3 activity. Moreover, the poor levels of circ-SNX27 inhibited HCC tumor growth among the mice. Circ-SNX27 enhanced RPN1 by competitively binding with miR-375. Silencing miR-375 in HCC cells promoted their malignant phenotypes. Nonetheless, the promotive effect of miR-375 silencing was reversible via the knockdown of circ-SNX27 or RPN1. This research demonstrated that circ-SNX27 accelerated the progression of HCC by modulating the miR-375/RPN1 axis. This is indicative of circ-SNX27's potential as a target for the treatment of HCC.

9.
Cell Signal ; 109: 110786, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37380085

RESUMO

Understanding the exact pathogenesis of cancer is difficult due to heterogenous nature of tumor cells and multiple factors that cause its initiation and development. Treatment of cancer is mainly based on surgical resection, chemotherapy, radiotherapy and their combination, while gene therapy has been emerged as a new kind of therapy for cancer. Post-transcriptional regulation of genes has been of interest in recent years and among various types of epigenetic factors that can modulate gene expression, short non-coding RNAs known as microRNAs (miRNAs) have obtained much attention. The stability of mRNA decreases by miRNAs to repress gene expression. miRNAs can regulate tumor malignancy and biological behavior of cancer cells and understanding their function in tumorigenesis can pave the way towards developing new therapeutics in future. One of the new emerging miRNAs in cancer therapy is miR-218 that increasing evidence highlights its anti-cancer activity, while a few studies demonstrate its oncogenic function. The miR-218 transfection is promising in reducing progression of tumor cells. miR-218 shows interactions with molecular mechanisms including apoptosis, autophagy, glycolysis and EMT, and the interaction is different. miR-218 induces apoptosis, while it suppresses glycolysis, cytoprotective autophagy and EMT. Low expression of miR-218 can result in development of chemoresistance and radio-resistance in tumor cells and direct targeting of miR-218 as a key player is promising in cancer therapy. LncRNAs and circRNAs are nonprotein coding transcripts that can regulate miR-218 expression in human cancers. Moreover, low expression level of miR-218 can be observed in human cancers such as brain, gastrointestinal and urological cancers that mediate poor prognosis and low survival rate.


Assuntos
MicroRNAs , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transformação Celular Neoplásica/genética , Carcinogênese/genética , Apoptose/genética , Regulação Neoplásica da Expressão Gênica
10.
Cancers (Basel) ; 15(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37190145

RESUMO

Cancerous exosomes contain diverse biomolecules that regulate cancer progression. Modulating exosome biogenesis with clinical drugs has become an effective strategy for cancer therapy. Suppressing exosomal processing (assembly and secretion) may block exosomal function to reduce the proliferation of cancer cells. However, the information on natural products that modulate cancer exosomes lacks systemic organization, particularly for exosomal long noncoding RNAs (lncRNAs). There is a gap in the connection between exosomal lncRNAs and exosomal processing. This review introduces the database (LncTarD) to explore the potential of exosomal lncRNAs and their sponging miRNAs. The names of sponging miRNAs were transferred to the database (miRDB) for the target prediction of exosomal processing genes. Moreover, the impacts of lncRNAs, sponging miRNAs, and exosomal processing on the tumor microenvironment (TME) and natural-product-modulating anticancer effects were then retrieved and organized. This review sheds light on the functions of exosomal lncRNAs, sponging miRNAs, and exosomal processing in anticancer processes. It also provides future directions for the application of natural products when regulating cancerous exosomal lncRNAs.

11.
Cancer Genomics Proteomics ; 20(2): 132-153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36870691

RESUMO

Patients with disseminated colorectal cancer have a dismal prognosis with a 5-year survival rate of only 13%. In order to identify new treatment modalities and new targets, we searched the literature for up-regulated circular RNAs in colorectal cancer which induce tumor growth in corresponding preclinical in vivo models. We identified nine circular RNAs that mediate resistance against chemotherapeutic agents, seven that up-regulate transmembrane receptors, five that induce secreted factors, nine that activate signaling components, five which up-regulate enzymes, six which activate actin-related proteins, six which induce transcription factors and two which up-regulate the MUSASHI family of RNA binding proteins. All of the circular RNAs discussed in this paper induce the corresponding targets by sponging microRNAs (miRs) and can be inhibited by RNAi or shRNA in vitro and in xenograft models. We have focused on circular RNAs with demonstrated activity in preclinical in vivo models because the latter is an important milestone in drug development. All circular RNAs with in vitro activity only data are not referenced in this review. The translational impact of inhibition of these circular RNAs and of the identified targets for treatment of colorectal cancer (CRC) are discussed.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Animais , RNA Circular , Modelos Animais de Doenças
12.
Mol Biol Rep ; 50(2): 1727-1741, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36441373

RESUMO

Lung cancer is the most devastating cause of death among all cancers worldwide, and non-small cell lung cancer (NSCLC) accounts for 80% of all the lung cancer cases. Beyond common genetic research and epigenomic studies, the extraordinary investigations of non-coding RNAs have provided insights into the molecular basis of cancer. Existing evidence from various cancer models highlights that the regulation of non-coding RNAs is crucial and that their deregulation may be a common reason for the development and progression of cancer, and competition of cancer therapeutics. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), are increasingly recognized as potential cancer biomarkers for early detection and application of therapeutic strategies. The miRNAs have gained importance as master regulators of target mRNAs by negatively regulating their expression. The lncRNAs function as both tumor suppressors and oncogenes, and also compete with miRNAs that influence the translational inhibition processes. This review addresses the role of lncRNAs in lung cancer development, highlights their mechanisms of action, and provides an overview of the impact of lncRNAs on lung cancer survival and progression via miRNA sponging. The improved understanding of lung cancer mechanisms has opened opportunities to analyze molecular markers and their potential therapeutics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica/genética
13.
Anticancer Agents Med Chem ; 23(3): 360-365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35652400

RESUMO

BACKGROUND: C-KIT is a receptor tyrosine kinase with oncogenic properties overexpressed in PCa cases. Through the use of an alternative promoter, a truncated c-KIT protein (tr-KIT) of 30-50 kDa is generated, lacking the extracellular and transmembrane domain. Tr-KIT promotes the formation of a multi-molecular complex composed of Fyn, Plcγ1, and Sam68. Imatinib blocks the activity of full-length c-KIT but has no effect on tr-KIT. LNCaP is the human PCa cell line that shows tr-KIT overexpression and PC3 does not show tr-KIT overexpression. miR-128/193a- 5p/494 are miRNAs targeting FYN, PLCγ1, and SAM68 combinatorially. The study's question is: can miR-128/193a- 5p/494 be related to imatinib resistance in PCa? METHODS: LNCaP and PC3 cells were treated with imatinib in IC50 doses. Before and after imatinib administration, RNA was isolated and cDNA conversion was performed. By qPCR analysis, expression changes of tr-KIT specific pathway elements and miR-128/193a-5p/494 were analyzed before and after imatinib administration. RESULTS: After imatinib administration, miR-128/193a-5p/494 were significantly overexpressed in LNCaP cells while downregulated significantly in PC3 cells (p<0.05). Also, FYN was upregulated in LNCaP cells (p<0.05) but there was no change in PC3 after imatinib administration. CONCLUSION: Especially upregulation of FYN may sponge miR128/193a-5p/494 and downregulate their transcriptional activity in LNCaP cells having tr-KIT activity. So, miR-128/193a-5p/494 may have a critical role in imatinib resistance via a tr-KIT pathway.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Mesilato de Imatinib/farmacologia , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Regulação para Cima , Regiões Promotoras Genéticas
14.
J Thorac Dis ; 14(11): 4545-4559, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36524088

RESUMO

Background and Objective: Esophageal cancer is one of the most common malignant digestive tract tumors. Despite various treatment methods, the prognosis of patients remains unsatisfactory, largely due to an insufficient understanding of the mechanisms involved in the pathogenesis and progression of esophageal cancer. More than 98% of the nucleotide sequences in the human genome do not encode proteins, and their transcription products are noncoding RNAs (ncRNAs), mainly long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). Experiments have shown that lncRNAs and miRNAs play crucial roles in the occurrence and progression of various human malignancies. These ncRNAs influence the progression of esophageal cancer through an intricate regulatory network. We herein summarized the roles and mechanisms of the lncRNA-miRNA axis in esophageal cancer cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), invasion and metastasis, drug resistance, radiotherapy resistance, and angiogenesis. This review provides a rationale for anticancer therapy that targets the lncRNA-miRNA axis in esophageal cancer. Methods: Related articles published in the PubMed database between 05/30/2008 to 09/10/2022 were identified using the following terms: "lncRNA AND miRNA AND esophageal cancer", "lncRNA AND miRNA AND cell proliferation", "lncRNA AND miRNA AND apoptosis", "lncRNA AND miRNA AND EMT", "lncRNA AND miRNA AND invasion and metastasis", "lncRNA AND miRNA AND drug resistance", and "lncRNA AND miRNA AND radiotherapy resistance". Published articles written in English available to readers were considered. Key Content and Findings: We summarized the roles of the lncRNA-miRNA axis in the progression of esophageal cancer, including cell proliferation, apoptosis, EMT, invasion and metastasis, drug resistance, radio resistance, and other progressions, and determined that the lncRNA-miRNA axis may serve as a potential clinical treatment target for esophageal cancer. Conclusions: The lncRNA-miRNA axis is closely related to the progression of esophageal cancer and may act as a potential biological target for the clinical treatment of patients with esophageal cancer.

15.
J Clin Lab Anal ; 36(10): e24666, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35989496

RESUMO

BACKGROUND: SARS-CoV-2 is one of the most contagious viruses in the Coronaviridae (CoV) family, which has become a pandemic. The aim of this study is to understand more about the role of hsa_circ_0004812 in the SARS-CoV-2 related cytokine storm and its associated molecular mechanisms. MATERIALS AND METHODS: cDNA synthesis was performed after total RNA was extracted from the peripheral blood mononuclear cells (PBMC) of 46 patients with symptomatic COVID-19, 46 patients with asymptomatic COVID-19, and 46 healthy controls. The expression levels of hsa_circ_0004812, hsa-miR-1287-5p, IL6R, and RIG-I were determined using qRT-PCR, and the potential interaction between these molecules was confirmed by bioinformatics tools and correlation analysis. RESULTS: hsa_circ_0004812, IL6R, and RIG-I are expressed higher in the severe symptom group compared with the negative control group. Also, the relative expression of these genes in the asymptomatic group is lower than in the severe symptom group. The expression level of hsa-miR-1287-5p was positively correlated with symptoms in patients. The results of the bioinformatics analysis predicted the sponging effect of hsa_circ_0004812 as a competing endogenous RNA on hsa-miR-1287-5p. Moreover, there was a significant positive correlation between hsa_circ_0004812, RIG-I, and IL-6R expressions, and also a negative expression correlation between hsa_circ_0004812 and hsa-miR-1287-5p and between hsa-miR-1287-5p, RIG-I, and IL-6R. CONCLUSION: The results of this in-vitro and in silico study show that hsa_circ_0004812/hsa-miR-1287-5p/IL6R, RIG-I can play an important role in the outcome of COVID-19.


Assuntos
COVID-19 , MicroRNAs , Receptores de Superfície Celular/metabolismo , COVID-19/genética , Proliferação de Células/fisiologia , Síndrome da Liberação de Citocina , DNA Complementar , Humanos , Leucócitos Mononucleares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , SARS-CoV-2 , Regulação para Cima/genética
16.
Bull Exp Biol Med ; 173(1): 81-86, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35622250

RESUMO

In this paper, LINC00839 expression in gastric cancer (GC) was confirmed by real-time quantitative PCR. The function of LINC00839 in GC was detected by loss of function assays. Luciferase assays was performed to confirm the interaction between LINC00839 and miR-1236-3p. Then we investigated the regulatory effect of LINC00839 on miR-1236-3p. The results confirmed that the expression level of LINC00839 in GC was significantly up-regulated. LINC00839 could promote GC cell proliferation, mobility, and invasion. The detection of luciferase reporter gene confirmed that LINC000839 could bind to the binding site of miR-1236-3p. Our findings suggest that LINC00839 promotes GC progression through sponging miR-1236-3p.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias Gástricas , Linhagem Celular Tumoral , Proliferação de Células/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
17.
J Cachexia Sarcopenia Muscle ; 13(4): 2017-2030, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35592920

RESUMO

BACKGROUND: Dissection of the regulatory pathways that control skeletal muscle development and atrophy is important for the treatment of muscle wasting. Long noncoding RNA (lncRNA) play important roles in various stages of muscle development. We previously reported that Synaptopodin-2 (SYNPO2) intron sense-overlapping lncRNA (SYISL) regulates myogenesis through an interaction with enhancer of zeste homologue 2 (EZH2). However, it remains unclear whether SYISL homologues exist in humans and pigs, and whether the functions and mechanisms of these homologues are conserved among species. METHODS: Bioinformatics, cell fractionation, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used for the identification and molecular characterization of SYISL homologues in humans and pigs. Effects on myogenesis and muscle atrophy were determined via loss-of-function or gain-of-function experiments using C2C12 myoblasts, myogenic progenitor cells, dexamethasone (DEX), and aging-induced muscle atrophy models. RNA pulldown, RNA immunoprecipitation, dual luciferase reporting, and co-transfection experiments were used to explore the mechanisms of SYISL interactions with proteins and miRNAs. RESULTS: We identified SYISL homologues in humans (designated hSYISL) and pigs (designated pSYISL). Functional experiments demonstrated that hSYISL and pSYISL regulate myogenesis through interactions with EZH2. Interestingly, we showed that SYISL functions to regulate muscle atrophy and sarcopenia through comparative analysis. SYISL is significantly up-regulated after muscle atrophy (P < 0.01); it significantly promotes muscle atrophy in DEX-induced muscle atrophy models (P < 0.01). SYISL knockdown or knockout alleviates muscle atrophy and sarcopenia in DEX-induced and aged mice. The tibialis anterior (TA) muscle weight of 3-month-old wild-type (WT) mice decreased by 33.24% after DEX treatment (P < 0.001), while the muscle weight loss of 3-month-old SYISL knockout mice was only 18.20% after DEX treatment (P < 0.001). SYISL knockout in 18-month-old WT mice significantly increased the weights of quadriceps (Qu), gastrocnemius (Gas), and TA muscles by 10.45% (P < 0.05), 13.95% (P < 0.01), and 24.82% (P < 0.05), respectively. Mechanistically, SYISL increases the expression levels of the muscle atrophy genes forkhead box protein O3a (FoxO3a), muscle ring finger 1 (MuRF1), and muscle atrophy-related F-box (Atrogin-1) via sponging of miR-23a-3p/miR-103-3p/miR-205-5p and thus promotes muscle atrophy. Additionally, we verified that human SYISL overexpression in muscles of 18-month-old WT mice significantly decreased the weights of Gas, Qu, and TA muscles by 7.76% (P < 0.01), 12.26% (P < 0.05), and 13.44% (P < 0.01), respectively, and accelerates muscle atrophy through conserved mechanisms. CONCLUSIONS: Our results identify SYISL as a conserved lncRNA that modulates myogenesis in mice, pigs, and humans. We also demonstrated its previously unknown ability to promote muscle atrophy.


Assuntos
MicroRNAs , RNA Longo não Codificante , Sarcopenia , Animais , Humanos , Lactente , Íntrons/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Atrofia Muscular/metabolismo , RNA Longo não Codificante/genética , Sarcopenia/genética , Suínos
18.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35216281

RESUMO

The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Redes Reguladoras de Genes , Mamíferos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética
19.
J Clin Lab Anal ; 36(1): e24021, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34788492

RESUMO

BACKGROUND: Androgenetic alopecia (AGA) is an androgen-dependent polygenic hereditary disease. METHODS: Diseased hair follicles from 5 AGA patients and normal hair follicles from 5 healthy individuals were selected as specimens to carry out whole transcriptome sequencing. Multiple high-expression circular RNAs (circRNAs) were screened from the diseased group. We further verified the presence of the circRNAs in the clinical specimens by real-time fluorescence quantitative PCR (qRT-PCR). RESULTS: In total, 100 circRNAs were significantly upregulated, and 184 circRNAs were significantly downregulated. The top 10 upregulated circRNAs were hsa_circ_0101041, hsa_circ_0001578, hsa_circ_0135062, hsa_circ_0002980, hsa_circ_0005062, hsa_circ_0072688, hsa_circ_0133954, hsa_circ_0001079, hsa_circ_0005974, hsa_circ_0000489. The top 10 downregulated circRNAs were hsa_circ_0001278, hsa_circ_0031482, hsa_circ_0008285, hsa_circ_0003784, hsa_circ_0077096, hsa_circ_0001148, hsa_circ_0006886, hsa_circ_0000638, hsa_circ_0084521, and hsa_circ_0101074. Among top 10 upregulated circRNAs, hsa_circ_0001079 showed significantly high expression via large-sample verification and clinical application potential. Based on a database comparison and base pairing analysis, we found that has-miR-136-5p bound to hsa_circ_0001079 and that hsa-miR-136-5p had potential binding sites with Wnt5A. CONCLUSION: In summary, through high-throughput sequencing and bioinformatic analysis, a potential diagnostic marker for alopecia and a key circRNA that might adsorb microRNA (miRNA) through a sponging mechanism, thus mediating alopecia, were discovered in this study.


Assuntos
Alopecia , MicroRNAs/genética , RNA Circular/genética , Adulto , Alopecia/genética , Alopecia/metabolismo , Alopecia/patologia , Biomarcadores/metabolismo , Biologia Computacional , Folículo Piloso/química , Folículo Piloso/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , MicroRNAs/metabolismo , RNA Circular/análise , RNA Circular/metabolismo , Transcriptoma/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
20.
Curr Drug Targets ; 23(4): 330-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34365919

RESUMO

BACKGROUND: Circular RNAs (circRNAs) have been identified to be involved in a variety of human diseases such as cancers, cardiovascular diseases, and autoimmune diseases. In recent years, the role of circRNAs in the development of kidney diseases in nephrology has been gradually recognized. OBJECTIVE: We updated and described the current status of circRNAs in kidney diseases in nephrology. We particularly focused on the roles and mechanisms of circRNAs in systemic lupus erythematosus and lupus nephritis. METHODS: We summarized recent reports published on PubMed, Web of Science, Scopus, Scielo databases using keywords circRNAs, kidney diseases or renal diseases, or systemic lupus erythematosus. RESULTS: Studies of circRNAs in certain kidney diseases, such as acute kidney injury, focal segmental glomerulosclerosis, idiopathic membranous nephropathy, IgA nephropathy, diabetic nephropathy, hypertensive renal damage, and particular lupus nephritis address the function and pathogenesis of circRNAs. Mechanisms of circRNAs in the above human kidney diseases so far have focused on the role of sponging microRNAs and regulating the expression of target genes. Moreover, circRNAs have been detected in blood, urine, and kidney tissue samples. These results suggest that circRNAs can serve as biomarkers for the diagnosis and monitoring of the progression of kidney diseases. CONCLUSION: CircRNAs play important roles in the pathogenesis, diagnosis, and treatment of kidney diseases emphasizing lupus nephritis in nephrology.


Assuntos
Nefropatias , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Nefrologia , Humanos , Rim , Nefropatias/genética , Lúpus Eritematoso Sistêmico/diagnóstico , Lúpus Eritematoso Sistêmico/genética , Nefrite Lúpica/genética , RNA Circular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA