Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
J Headache Pain ; 25(1): 162, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39354357

RESUMO

BACKGROUND: Patients with migraine are typically advised to avoid passive smoking because it may aggravate headaches and other health conditions. However, there is insufficient high-quality evidence on the association between passive smoking and migraine, which warrants further investigation using animal models. Therefore, using a mouse model, we examined the effect of passive smoking on susceptibility to cortical spreading depolarization (CSD), the biological basis of migraine with aura. FINDINGS: Fifty C57BL/6 mice (25 males and 25 females) were exposed for one hour to cigarette smoke or room air. Subsequently, potassium chloride (KCl) was administered under isoflurane anesthesia to induce CSD, and the CSD threshold, frequency of induction, and propagation velocity were determined. The threshold to induce CSD (median [interquartile range (IQR)]) was significantly lower in female mice (adjusted p = 0.01) in the smoking group (0.05 [0.05, 0.088]) than in the sham group (0.125 [0.1, 0.15]); however, there was no significant difference in the male mice (adjusted p = 0.77). CSD frequency or propagation velocity did not differ significantly between the two groups for either sex. CONCLUSIONS: Female mice in the smoking group showed lower CSD threshold compared to the sham group, suggesting a potential sex-specific difference in the effect of smoking on the pathogenesis of CSD and migraine with aura. This finding may contribute to the understanding of migraine pathophysiology in association with passive smoking and sex difference.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Camundongos Endogâmicos C57BL , Poluição por Fumaça de Tabaco , Animais , Feminino , Masculino , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Camundongos , Modelos Animais de Doenças , Caracteres Sexuais , Fatores Sexuais , Enxaqueca com Aura/fisiopatologia
2.
Trends Neurosci ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39304416

RESUMO

Migraine is a highly prevalent and disabling pain disorder that affects >1 billion people worldwide. One central hypothesis points to the cranial meninges as a key site underlying migraine headache genesis through complex interplay between meningeal sensory nerves, blood vessels, and adjacent immune cells. How these interactions might generate migraine headaches remains incompletely understood and a subject of much debate. In this review we discuss clinical and preclinical evidence supporting the concept that meningeal sterile inflammation, involving neurovascular and neuroimmune interactions, underlies migraine headache genesis. We examine downstream signaling pathways implicated in the development of migraine pain in response to exogenous events such as infusing migraine-triggering chemical substances. We further discuss cortex-to-meninges signaling pathways that could underlie migraine pain in response to endogenous events, such as cortical spreading depolarization (CSD), and explore future directions for the field.

3.
J Headache Pain ; 25(1): 152, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39289629

RESUMO

BACKGROUND: Migraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior. METHODS: We induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments. RESULTS: Opto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p < 0.001, p = 0.018, respectively). A subpopulation of fos-positive neurons also stained positive for oxytocin. Opto-SD evoked periorbital mechanical allodynia 1 h after SD (p = 0.001 vs. sham), which recovered quickly within 2 h (p = 0.638). OXT receptor antagonist L-368,899 dose-dependently prolonged SD-induced periorbital allodynia (p < 0.001). L-368,899 did not affect mechanical thresholds in the absence of opto-SD. CONCLUSIONS: These data support an SD-induced activation of PVN neurons and a role for endogenous OXT in alleviating acute SD-induced trigeminal allodynia by shortening its duration.


Assuntos
Hiperalgesia , Camundongos Transgênicos , Ocitocina , Animais , Ocitocina/metabolismo , Masculino , Feminino , Camundongos , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Receptores de Ocitocina/metabolismo , Núcleo Supraóptico/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Modelos Animais de Doenças , Canfanos , Piperazinas
4.
J Cereb Blood Flow Metab ; : 271678X241270480, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225037

RESUMO

Futile reperfusion is a phenomenon of inadequate perfusion despite successful recanalization after acute ischemic stroke (AIS). It is associated with poor patient outcomes and has received increasing interest due to its clinical diagnosis becoming more common. However, the underlying mechanisms remain elusive, and experimental studies are focused on the pathological background of futile reperfusion. Our recent study has confirmed that poor primary collateralization plays a crucial role in the insufficiency of reperfusion after AIS in mice. Specifically, the absence of primary collaterals in the circle of Willis (CoW) promoted the development of spreading depolarizations (SDs) during AIS. In our experimental stroke model, the occurrence of SDs during ischemia always predicted futile reperfusion. Conversely, in mice with a complete CoW, no SDs were observed, and reperfusion was complete. Importantly, the human CoW displays variation in the primary collaterals in approximately 50% of the population. Therefore, futile reperfusion may result from SD evolution in AIS patients. Our purpose here is to emphasize the crucial role of SD in the development of futile reperfusion. We propose that adequate collateral recruitment can prevent SD occurrence, leading to improved reperfusion and AIS outcomes.

5.
eNeuro ; 11(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39197950

RESUMO

Much of what has been discovered concerning neurophysiological mechanisms can be credited to ex vivo biomedical experiments. Beyond these discoveries, ex vivo research techniques have enhanced the global understanding of human physiology and pathology in almost every biomedical specialty. Naturally, ex vivo experiments are among the most desired methods of research, particularly in the field of neuroscience. Ex vivo experiment platforms may be purchased commercially. However, their substantial cost and sometimes limited availability can render them inaccessible to many research labs. Moreover, these manufactured systems are often rigid in function with no possibility of customization, severely narrowing their capabilities. However, developing essential components for ex vivo laboratory systems with a fused deposition modeling printer provides a practical solution to each of these obstacles. Here, we provide the designs and construction process for an easily accessible, highly adaptable recording stage with modifiable submersion chambers using a 3D printer for a total cost under $15.00. With the versatility afforded by the exchangeable custom chambers, the system may be used to conduct research on a variety of ex vivo tissue preparations, paving the way for novel research.


Assuntos
Impressão Tridimensional , Impressão Tridimensional/instrumentação , Animais , Desenho de Equipamento/métodos , Humanos
6.
Neurocrit Care ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192101

RESUMO

BACKGROUND: Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH); however, there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events. METHODS: Study participants with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 s moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In study participants with subdural electrocorticography (ECoG) monitoring, SD was also scored. Associations between clinical outcomes using the modified Rankin scale and occurrence of either isolated or clustered SD were assessed. RESULTS: A total of 320 study participants were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors, such as modified Fisher scale score and World Federation of Neurosurgical Societies scale grade, were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern, with a linear increase in probability below MAP of ~ 100 mm Hg. Multiple autoregulation indices were available for review based on moving correlations between mean arterial pressure (MAP) and various surrogates of cerebral blood flow (CBF). We calculated the pressure reactivity (PRx) using two different sources for intracranial pressure (ICP). We calculated the oxygen reactivity (ORx) using the partial pressure of brain tissue oxygen (PbtO2) from the Licox probe. We calculated the cerebral blood flow reactivity (CBFRx) using perfusion measurements from the Bowman perfusion probe. Finally, we calculated the cerebral oxygen saturation reactivity (OSRx) using regional cerebral oxygen saturation measured by near-infrared spectroscopy from the INVOS sensors. Only worse ORx and OSRx were associated with worse clinical outcomes. Both ORx and OSRx also were found to increase in the hour prior to SD for both sporadic and clustered SD. CONCLUSIONS: Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.

7.
J Cereb Blood Flow Metab ; : 271678X241257887, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39053498

RESUMO

Mitochondrial function is tightly linked to morphology, and fragmentation of dendritic mitochondria during noxious conditions suggests loss of function. In the normoxic cortex, spreading depolarization (SD) is a phenomenon underlying migraine aura. It is unknown whether mitochondria structure is affected by normoxic SD. In vivo two-photon imaging followed by quantitative serial section electron microscopy (ssEM) was used to monitor dendritic mitochondria in the normoxic cortex of urethane-anesthetized mature male and female mice during and after SD initiated by focal KCl microinjection. Structural dynamics of dendrites and their mitochondria were visualized by transfecting excitatory, glutamatergic neurons of the somatosensory cortex with bicistronic AAV, which induced tdTomoto labeling in neuronal cytoplasm and mitochondria labeling with roGFP. Normoxic SD triggered rapidly reversible fragmentation of dendritic mitochondria alongside dendritic beading; however, mitochondria took significantly longer to recover. Several rounds of SD resulted in transient mitochondrial fragmentation and dendritic beading without accumulating injury, as both recovered. SsEM corroborated normoxic SD-elicited dendritic and mitochondrial swelling and transformation of the filamentous mitochondrial network into shorter, swollen tubular, and globular structures. Our results revealed normoxic SD-induced disruption of the dendritic mitochondrial structure that might impact mitochondrial bioenergetics during migraine with aura.

8.
J Headache Pain ; 25(1): 113, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39009958

RESUMO

BACKGROUND: Neurogenic meningeal inflammation is regarded as a key driver of migraine headache. Multiple evidence show importance of inflammatory processes in the dura mater for pain generation but contribution of the leptomeninges is less clear. We assessed effects of cortical spreading depolarization (CSD), the pathophysiological mechanism of migraine aura, on expression of inflammatory mediators in the leptomeninges. METHODS: A single CSD event was produced by a focal unilateral microdamage of the cortex in freely behaving rats. Three hours later intact cortical leptomeninges and parenchyma of ipsi-lesional (invaded by CSD) and sham-treated contra-lesional (unaffected by CSD) hemispheres were collected and mRNA levels of genes associated with inflammation (Il1b, Tnf, Ccl2; Cx3cl1, Zc3h12a) and endocannabinoid CB2 receptors (Cnr2) were measured using qPCR. RESULTS: Three hours after a single unilateral CSD, most inflammatory factors changed their expression levels in the leptomeninges, mainly on the side of CSD. The meninges overlying affected cortex increased mRNA expression of all proinflammatory cytokines (Il1b, Tnf, Ccl2) and anti-inflammatory factors Zc3h12a and Cx3cl1. Upregulation of proinflammatory cytokines was found in both meninges and parenchyma while anti-inflammatory markers increased only meningeal expression. CONCLUSION: A single CSD is sufficient to produce pronounced leptomeningeal inflammation that lasts for at least three hours and involves mostly meninges overlying the cortex affected by CSD. The prolonged post-CSD inflammation of the leptomeninges can contribute to mechanisms of headache generation following aura phase of migraine attack.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Meninges , Animais , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Ratos , Masculino , Meninges/fisiopatologia , Inflamação/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Modelos Animais de Doenças , Ratos Wistar , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética
9.
J Headache Pain ; 25(1): 124, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39080518

RESUMO

BACKGROUND: The initiation of migraine headaches and the involvement of neuroinflammatory signaling between parenchymal and meningeal cells remain unclear. Experimental evidence suggests that a cascade of inflammatory signaling originating from neurons may extend to the meninges, thereby inducing neurogenic inflammation and headache. This review explores the role of parenchymal inflammatory signaling in migraine headaches, drawing upon recent advancements. BODY: Studies in rodents have demonstrated that sterile meningeal inflammation can stimulate and sensitize meningeal nociceptors, culminating in headaches. The efficacy of relatively blood-brain barrier-impermeable anti-calcitonin gene-related peptide antibodies and triptans in treating migraine attacks, both with and without aura, supports the concept of migraine pain originating in meninges. Additionally, PET studies utilizing inflammation markers have revealed meningeal inflammatory activity in patients experiencing migraine with aura, particularly over the occipital cortex generating visual auras. The parenchymal neuroinflammatory signaling involving neurons, astrocytes, and microglia, which eventually extends to the meninges, can link non-homeostatic perturbations in the insensate brain to pain-sensitive meninges. Recent experimental research has brought deeper insight into parenchymal signaling mechanisms: Neuronal pannexin-1 channels act as stress sensors, initiating the inflammatory signaling by inflammasome formation and high-mobility group box-1 release in response to transient perturbations such as cortical spreading depolarization (CSD) or synaptic metabolic insufficiency caused by transcriptional changes induced by migraine triggers like sleep deprivation and stress. After a single CSD, astrocytes respond by upregulating the transcription of proinflammatory enzymes and mediators, while microglia are involved in restoring neuronal structural integrity; however, repeated CSDs may prompt microglia to adopt a pro-inflammatory state. Transcriptional changes from pro- to anti-inflammatory within 24 h may serve to dampen the inflammatory signaling. The extensive coverage of brain surface and perivascular areas by astrocyte endfeet suggests their role as an interface for transporting inflammatory mediators to the cerebrospinal fluid to contribute to meningeal nociception. CONCLUSION: We propose that neuronal stress induced by CSD or synaptic activity-energy mismatch may initiate a parenchymal inflammatory signaling cascade, transmitted to the meninges, thereby triggering lasting headaches characteristic of migraine, with or without aura. This neuroinflammatory interplay between parenchymal and meningeal cells points to the potential for novel targets for migraine treatment and prophylaxis.


Assuntos
Meninges , Transtornos de Enxaqueca , Doenças Neuroinflamatórias , Transdução de Sinais , Humanos , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Doenças Neuroinflamatórias/fisiopatologia , Animais , Transdução de Sinais/fisiologia , Neurônios/metabolismo
10.
Fluids Barriers CNS ; 21(1): 51, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858667

RESUMO

Oedema occurs when higher than normal amounts of solutes and water accumulate in tissues. In brain parenchymal tissue, vasogenic oedema arises from changes in blood-brain barrier permeability, e.g. in peritumoral oedema. Cytotoxic oedema arises from excess accumulation of solutes within cells, e.g. ischaemic oedema following stroke. This type of oedema is initiated when blood flow in the affected core region falls sufficiently to deprive brain cells of the ATP needed to maintain ion gradients. As a consequence, there is: depolarization of neurons; neural uptake of Na+ and Cl- and loss of K+; neuronal swelling; astrocytic uptake of Na+, K+ and anions; swelling of astrocytes; and reduction in ISF volume by fluid uptake into neurons and astrocytes. There is increased parenchymal solute content due to metabolic osmolyte production and solute influx from CSF and blood. The greatly increased [K+]isf triggers spreading depolarizations into the surrounding penumbra increasing metabolic load leading to increased size of the ischaemic core. Water enters the parenchyma primarily from blood, some passing into astrocyte endfeet via AQP4. In the medium term, e.g. after three hours, NaCl permeability and swelling rate increase with partial opening of tight junctions between blood-brain barrier endothelial cells and opening of SUR1-TPRM4 channels. Swelling is then driven by a Donnan-like effect. Longer term, there is gross failure of the blood-brain barrier. Oedema resolution is slower than its formation. Fluids without colloid, e.g. infused mock CSF, can be reabsorbed across the blood-brain barrier by a Starling-like mechanism whereas infused serum with its colloids must be removed by even slower extravascular means. Large scale oedema can increase intracranial pressure (ICP) sufficiently to cause fatal brain herniation. The potentially lethal increase in ICP can be avoided by craniectomy or by aspiration of the osmotically active infarcted region. However, the only satisfactory treatment resulting in retention of function is restoration of blood flow, providing this can be achieved relatively quickly. One important objective of current research is to find treatments that increase the time during which reperfusion is successful. Questions still to be resolved are discussed.


Assuntos
Edema Encefálico , Encéfalo , Humanos , Edema Encefálico/fisiopatologia , Edema Encefálico/metabolismo , Edema Encefálico/etiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/fisiopatologia , Isquemia Encefálica/metabolismo
11.
J Cereb Blood Flow Metab ; : 271678X241262203, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902207

RESUMO

Spreading depolarizations (SD) contribute to lesion progression after experimental focal cerebral ischemia while such correlation has never been shown in stroke patients. In this prospective, diagnostic study, we investigate the association of SDs and secondary infarct progression after malignant hemispheric stroke. SDs were continuously monitored for 3-9 days with electrocorticography after decompressive hemicraniectomy for malignant hemispheric stroke. To ensure valid detection and analysis of SDs, a threshold based on the electrocorticographic baseline activity was calculated to identify valid electrocorticographic recordings. Subsequently SD characteristics were analyzed in association to infarct progression based on serial MRI. Overall, 62 patients with a mean stroke volume of 289.6 ± 68 cm3 were included. Valid electrocorticographic recordings were found in 44/62 patients with a mean recording duration of 139.6 ± 26.5 hours and 52.5 ± 39.5 SDs per patient. Infarct progression of more than 5% was found in 21/44 patients. While the number of SDs was similar between patients with and without infarct progression, the SD-induced depression duration per day was significantly longer in patients with infarct progression (593.8 vs. 314.1 minutes; *p = 0.046). Therefore, infarct progression is associated with a prolonged SD-induced depression duration. Real-time analysis of electrocorticographic recordings may identify secondary stroke progression and help implementing targeted management strategies.

12.
Eur J Pharmacol ; 977: 176718, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38849040

RESUMO

Nimodipine is used to prevent delayed ischemic deficit in patients with aneurysmal subarachnoid hemorrhage (aSAH). Spreading depolarization (SD) is recognized as a factor in the pathomechanism of aSAH and other acute brain injuries. Although nimodipine is primarily known as a cerebral vasodilator, it may have a more complex mechanism of action due to the expression of its target, the L-type voltage-gated calcium channels (LVGCCs) in various cells in neural tissue. This study was designed to investigate the direct effect of nimodipine on SD, ischemic tissue injury, and neuroinflammation. SD in control or nimodipine-treated live mouse brain slices was induced under physiological conditions using electrical stimulation, or by subjecting the slices to hypo-osmotic stress or mild oxygen-glucose deprivation (mOGD). SD was recorded applying local field potential recording or intrinsic optical signal imaging. Histological analysis was used to estimate tissue injury, the number of reactive astrocytes, and the degree of microglia activation. Nimodipine did not prevent SD occurrence in mOGD, but it did reduce the rate of SD propagation and the cortical area affected by SD. In contrast, nimodipine blocked SD occurrence in hypo-osmotic stress, but had no effect on SD propagation. Furthermore, nimodipine prevented ischemic injury associated with SD in mOGD. Nimodipine also exhibited anti-inflammatory effects in mOGD by reducing reactive astrogliosis and microglial activation. The results demonstrate that nimodipine directly inhibits SD, independent of nimodipine's vascular effects. Therefore, the use of nimodipine may be extended to treat acute brain injuries where SD plays a central role in injury progression.


Assuntos
Isquemia Encefálica , Encéfalo , Depressão Alastrante da Atividade Elétrica Cortical , Nimodipina , Animais , Nimodipina/farmacologia , Camundongos , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Bloqueadores dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/uso terapêutico , Pressão Osmótica/efeitos dos fármacos
13.
Microcirculation ; 31(6): e12861, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38762881

RESUMO

OBJECTIVE: We attempted to record the regional cerebral blood flow (CBF) simultaneously at various regions of the cerebral cortex and the striatum during middle cerebral artery (MCA) occlusion and to evaluate neurological deficits and infarct formation. METHODS: In male C57BL/6J mice, CBF was recorded in three regions including the ipsilateral cerebral cortex and the striatum with laser Doppler flowmeters, and the origin of MCA was occluded with a monofilament suture for 15-90 min. After 48 h, neurological deficits were evaluated, and infarct was examined by triphenyltetrazolium chloride (TTC) staining. RESULTS: CBF decrease in the striatum was approximately two-thirds of the MCA-dominant region of the cortex during MCA occlusion. The characteristic CBF fluctuation because of spontaneously occurred spreading depolarization observed throughout the cortex was not found in the striatum. Ischemic foci with slight lower staining to TTC were found in the ipsilateral striatum in MCA-occluded mice for longer than 30 min (n = 54). Twenty-nine among 64 MCA-occluded mice exhibited neurological deficits even in the absence of apparent infarct with minimum staining to TTC in the cortex, and the severity of neurological deficits was not correlated with the size of the cortical infarct. CONCLUSION: Neurological deficits might be associated with the ischemic striatum rather than with cortical infarction.


Assuntos
Circulação Cerebrovascular , Corpo Estriado , Infarto da Artéria Cerebral Média , Animais , Infarto da Artéria Cerebral Média/fisiopatologia , Infarto da Artéria Cerebral Média/patologia , Camundongos , Masculino , Circulação Cerebrovascular/fisiologia , Corpo Estriado/fisiopatologia , Corpo Estriado/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/fisiopatologia , Camundongos Endogâmicos C57BL
14.
J Neurol ; 271(8): 5146-5155, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38822148

RESUMO

OBJECTIVE: Alice in Wonderland Syndrome (AIWS) is a sensory disorder characterized by a distorted somatosensory and/or visual perception. Additionally, distortion of time perception and symptoms of derealization/depersonalization may occur. AIWS is frequently associated with migraine. However, its prevalence, and clinical characteristics remain poorly understood. Here, we investigated the prevalence and features of AIWS in individuals with migraine. We hypothesized AIWS is more frequent in migraine patients with aura than in those without aura. METHODS: This was a prospective cross-sectional cohort study, conducted at a tertiary headache center. Participants with migraine filled out questionnaires, providing details on demographics, headache, AIWS characteristics and the occurrence of transient visual phenomena such as fragmented vision. RESULTS: Of 808 migraine patients, 133 individuals (16.5%, mean age 44.4 ± 13.3 years, 87% women) reported AIWS symptoms throughout their lives. Micro- and/or telopsia (72.9%) were most frequent, followed by micro- and/or macrosomatognosia (49.6%), and macro- and/or pelopsia (38.3%), lasting on average half an hour. AIWS symptoms occurred in association with headache in 65.1% of individuals, and 53.7% had their first AIWS episode at the age of 18 years or earlier. Migraine patients with aura were more likely to report AIWS symptoms than those without aura (19.5% vs. 14.1%, p = 0.04). Participants with AIWS reported a higher incidence of 17 out of the 22 investigated visual phenomena. CONCLUSION: AIWS symptoms appear to be a common lifetime phenomenon in migraine patients. The correlation and clinical parallels between AIWS and migraine aura could indicate shared underlying pathomechanisms.


Assuntos
Síndrome de Alice no País das Maravilhas , Transtornos de Enxaqueca , Humanos , Feminino , Masculino , Síndrome de Alice no País das Maravilhas/epidemiologia , Adulto , Prevalência , Pessoa de Meia-Idade , Transtornos de Enxaqueca/epidemiologia , Estudos Transversais , Estudos Prospectivos
15.
Sci Rep ; 14(1): 10186, 2024 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702377

RESUMO

Spreading depolarizations (SDs) occur frequently in patients with malignant hemispheric stroke. In animal-based experiments, SDs have been shown to cause secondary neuronal damage and infarct expansion during the initial period of infarct progression. In contrast, the influence of SDs during the delayed period is not well characterized yet. Here, we analyzed the impact of SDs in the delayed phase after cerebral ischemia and the potential protective effect of ketamine. Focal ischemia was induced by distal occlusion of the left middle cerebral artery in C57BL6/J mice. 24 h after occlusion, SDs were measured using electrocorticography and laser-speckle imaging in three different study groups: control group without SD induction, SD induction with potassium chloride, and SD induction with potassium chloride and ketamine administration. Infarct progression was evaluated by sequential MRI scans. 24 h after occlusion, we observed spontaneous SDs with a rate of 0.33 SDs/hour which increased during potassium chloride application (3.37 SDs/hour). The analysis of the neurovascular coupling revealed prolonged hypoemic and hyperemic responses in this group. Stroke volume increased even 24 h after stroke onset in the SD-group. Ketamine treatment caused a lesser pronounced hypoemic response and prevented infarct growth in the delayed phase after experimental ischemia. Induction of SDs with potassium chloride was significantly associated with stroke progression even 24 h after stroke onset. Therefore, SD might be a significant contributor to delayed stroke progression. Ketamine might be a possible drug to prevent SD-induced delayed stroke progression.


Assuntos
Isquemia Encefálica , Progressão da Doença , Ketamina , Camundongos Endogâmicos C57BL , Ketamina/farmacologia , Animais , Camundongos , Masculino , Isquemia Encefálica/prevenção & controle , Isquemia Encefálica/diagnóstico por imagem , Isquemia Encefálica/tratamento farmacológico , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Infarto da Artéria Cerebral Média
16.
Neurosci Lett ; 832: 137814, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38723760

RESUMO

Galanin (Gal) is a neuropeptide with the potential to ameliorate cortical spreading depolarization (CSD), an electrophysiological phenomenon occurring after brain injury or in migraine aura. Gal is expressed in all cortical neurons both in rat and in mouse cortices. Here we investigated whether the effect of Gal on CSD previously described in the rat is conserved in the mouse cortex. In rats, the topical application of Gal to the cortex for 1 h did not induce any change in CSD amplitudes, propagation velocity, or threshold of elicitation. Rather, topical application of Gal for 3 h was necessary to obtain a significant decrease in these CSD parameters and to develop a remarkable increase in the KCl threshold to elicit a CSD in rat cortex. In contrast, the topical application of Gal on cortical surface for 1 h in mice was sufficient to significantly attenuate CSD amplitudes and increase threshold. A thinner cortex, a faster diffusion or different affinity/expression of receptors for Gal are possible reasons to explain this difference in the time course between rats and mice. Our data are relevant to postulate Gal as a potential target for inhibition of CSD under pathological situations such as stroke or ischemia. SIGNIFICANCE STATEMENT: The neuropeptide Galanin (Gal) is expressed in all neurons throughout the cerebral cortex, both in rats and mice, and is able to reduce or even inhibit Cortical Spreading Depolarization, thus, Gal has the potential to control neuronal excitability that may identify Gal as a target in drug development against CSD.


Assuntos
Córtex Cerebral , Depressão Alastrante da Atividade Elétrica Cortical , Galanina , Animais , Galanina/farmacologia , Galanina/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Masculino , Camundongos , Ratos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos Wistar
17.
Rinsho Shinkeigaku ; 64(6): 383-389, 2024 Jun 27.
Artigo em Japonês | MEDLINE | ID: mdl-38811205

RESUMO

Migraine attacks, especially ones with aura, have symptoms similar to epileptic seizures, and the two may sometimes be difficult to differentiate clinically. However, the characteristic minute-by-minute symptom development and progress within 60 |min is useful for diagnosis. Although the details of its pathophysiology remain unsolved, cortical spreading depolarization (CSD) is one of the main pathogenetic factors. In epilepsy, clinical data have shown that ictal DC shifts could reflect impaired homeostasis of extracellular potassium by astrocyte dysfunction. Ictal DC shifts were found to be difficult to detect by scalp EEG, but can be clinically recorded from the seizure focus using wide-band EEG method. The similarity between DC shifts and CSD has been gaining attention from the neurophysiology point of view. The clinical implementation of infraslow activity/DC shifts analysis of scalp EEG is expected to elucidate further the pathophysiology of migraine, which may lie in the borderland of epilepsy.


Assuntos
Eletroencefalografia , Epilepsia , Transtornos de Enxaqueca , Humanos , Transtornos de Enxaqueca/fisiopatologia , Transtornos de Enxaqueca/diagnóstico , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Couro Cabeludo , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Convulsões/diagnóstico , Convulsões/fisiopatologia
18.
Rinsho Shinkeigaku ; 64(6): 422-426, 2024 Jun 27.
Artigo em Japonês | MEDLINE | ID: mdl-38811202

RESUMO

A 62-year-old, right-handed man was diagnosed with asymptomatic bilateral chronic subdural hematomas and underwent hematoma removal on the left side only. At 1 month after surgery, he was admitted to our hospital because he began to have one or two attacks/day of apraxia of speech and dysesthesia of the right hand with a duration of approximately 5 |min. The left hematoma had not re-expanded, but fluid-attenuated inversion resonance imaging showed hyperintense lesions in the sulci adjacent to the hematoma. Moreover, single-photon emission computed tomography revealed low-uptake lesions in the left cerebrum adjacent to the hematoma. Electroencephalogram showed no abnormalities, and CT angiography showed a slight deviation of the left middle cerebral arteries due to the hematoma. The attacks disappeared within 10 days, although the volume of the hematoma was unchanged. It was suggested that his transient neurological deficits were caused by cerebral ischemia related to chronic subdural hematoma.


Assuntos
Hematoma Subdural Crônico , Humanos , Masculino , Hematoma Subdural Crônico/diagnóstico por imagem , Hematoma Subdural Crônico/complicações , Hematoma Subdural Crônico/cirurgia , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética , Tomografia Computadorizada de Emissão de Fóton Único , Angiografia por Tomografia Computadorizada , Ataque Isquêmico Transitório/etiologia , Ataque Isquêmico Transitório/diagnóstico por imagem , Ataque Isquêmico Transitório/complicações
19.
IBRO Neurosci Rep ; 16: 609-621, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800086

RESUMO

This study aimed to investigate the effects of focal brain cooling (FBC) on spreading depolarization (SD), which is associated with several neurological disorders. Although it has been studied from various aspects, no medication has been developed that can effectively control SD. As FBC can reduce neuronal damage and promote functional recovery in pathological conditions such as epilepsy, cerebral ischemia, and traumatic brain injury, it may also potentially suppress the onset and progression of SD. We created an experimental rat model of SD by administering 1 M potassium chloride (KCl) to the cortical surface. Changes in neuronal and vascular modalities were evaluated using multimodal recording, which simultaneously recorded brain temperature (BrT), wide range electrocorticogram, and two-dimensional cerebral blood flow. The rats were divided into two groups (cooling [CL] and non-cooling [NC]). Warm or cold saline was perfused on the surface of one hemisphere to maintain BrT at 37°C or 15°C in the NC and CL groups, respectively. Western blot analysis was performed to determine the effects of FBC on endothelial nitric oxide synthase (eNOS) expression. In the NC group, KCl administration triggered repetitive SDs (mean frequency = 11.57/h). In the CL group, FBC increased the duration of all KCl-induced events and gradually reduced their frequency. Additionally, eNOS expression decreased in the cooled brain regions compared to the non-cooled contralateral hemisphere. The results obtained by multimodal recording suggest that FBC suppresses SD and decreases eNOS expression. This study may contribute to developing new treatments for SD and related neurological disorders.

20.
J Neurotrauma ; 41(13-14): e1695-e1707, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687331

RESUMO

Unexplained neurological deterioration is occasionally observed in patients with traumatic brain injuries (TBIs). We aimed to describe the clinical features of post-traumatic transient neurological dysfunction and provide new insight into its pathophysiology. We retrospectively collected data from patients with focal neurological deterioration of unknown origin during hospitalization for acute TBI for 48 consecutive months. Brain imaging, including computed tomography, diffusion-weighted imaging and perfusion-weighted imaging, and electroencephalography were conducted during the episodes. Fourteen (2.0%) patients experienced unexplained focal neurological deterioration among 713 patients who were admitted for traumatic intracranial hemorrhage during the study period. Aphasia was the predominant symptom in all patients, and hemiparesis or hemianopia was accompanied in three patients. These symptoms developed within 14 days after trauma. Structural imaging did not show any significant interval change, and electroencephalography showed persistent arrhythmic slowing in the corresponding hemisphere in most patients. Perfusion imaging revealed increased cerebral blood flow in the symptomatic hemisphere. Surgical intervention and anti-seizure medications were ineffective in abolishing the symptoms. The symptoms disappeared spontaneously after 4 h to 1 month. Transient neurological dysfunction (TND) can occur during the acute phase of TBI. Although TND may last longer than a typical transient ischemic attack or seizure, it eventually resolves regardless of treatment. Based on our observation, we postulate that this is a manifestation of spreading depolarization occurring in the injured brain, which is analogous to migraine aura.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Adulto , Estudos Retrospectivos , Idoso , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Adulto Jovem , Eletroencefalografia/métodos , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/fisiopatologia , Afasia/etiologia , Afasia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA