Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Biotechnol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619800

RESUMO

Booster doses are crucial against severe COVID-19, as rapid virus mutations and variant emergence prolong the pandemic crisis. The virus's quick evolution, short generation-time, and adaptive changes impact virulence and evolvability, helping predictions about variant of concerns' (VOCs') landscapes. Here, in this study, we used a new computational algorithm, to predict the mutational pattern in SARS-CoV-2 ssRNA, proteomics, structural identification, mutation stability, and functional correlation, as well as immune escape mechanisms. Interestingly, the sequence diversity of SARS Coronavirus-2 has demonstrated a predominance of G- > A and C- > U substitutions. The best validation statistics are explored here in seven homologous models of the expected mutant SARS-CoV-2 spike ssRNA and employed for hACE2 and IgG interactions. The interactome profile of SARS-CoV-2 spike with hACE2 and IgG revealed a strong correlation between phylogeny and divergence time. The systematic adaptation of SARS-CoV-2 spike ssRNA influences infectivity and immune escape. Data suggest higher propensity of Adenine rich sequence promotes MHC system avoidance, preferred by A-rich codons. Phylogenetic data revealed the evolution of SARS-CoV-2 lineages' epidemiology. Our findings may unveil processes governing the genesis of immune-resistant variants, prompting a critical reassessment of the coronavirus mutation rate and exploration of hypotheses beyond mechanical aspects.

2.
J Invertebr Pathol ; 204: 108118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679369

RESUMO

Portunid crabs are distributed worldwide and highly valued in aquaculture. Viral infections are the main limiting factor for the survival of these animals and, consequently, for the success of commercial-scale cultivation. However, there is still a lack of knowledge about the viruses that infect cultured portunid crabs worldwide. Herein, the genome sequence and phylogeny of Callinectes sapidus reovirus 2 (CsRV2) are described, and the discovery of a new bunyavirus in Callinectes danae cultured in southern Brazil is reported. The CsRV2 genome sequence consists of 12 dsRNA segments (20,909 nt) encode 13 proteins. The predicted RNA-dependent RNA polymerase (RdRp) shows a high level of similarity with that of Eriocheir sinensis reovirus 905, suggesting that CsRV2 belongs to the genus Cardoreovirus. The CsRV2 particles are icosahedral, measuring approximately 65 nm in diameter, and exhibit typical non-turreted reovirus morphology. High throughput sequencing data revealed the presence of an additional putative virus genome similar to bunyavirus, called Callinectes danae Portunibunyavirus 1 (CdPBV1). The CdPBV1 genome is tripartite, consisting of 6,654 nt, 3,120 nt and 1,656 nt single-stranded RNA segments that each encode a single protein. Each segment has a high identity with European shore crab virus 1, suggesting that CdPBV1 is a new representative of the family Cruliviridae. The putative spherical particles of CdPBV1 measure ∼120 nm in diameter and present a typical bunyavirus morphology. The results of the histopathological analysis suggest that these new viruses can affect the health and, consequently, the survival of C. danae in captivity. Therefore, the findings reported here should be used to improve prophylactic and pathogen control practices and contribute to the development and optimization of the production of soft-shell crabs on a commercial scale in Brazil.


Assuntos
Braquiúros , Genoma Viral , Filogenia , Reoviridae , Animais , Braquiúros/virologia , Reoviridae/genética , Reoviridae/classificação , Orthobunyavirus/genética , Aquicultura
3.
Methods Mol Biol ; 2793: 185-204, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38526732

RESUMO

Single-stranded RNA bacteriophages (ssRNA phages) are small viruses with a compact genome (~3-4 kb) that infect gram-negative bacteria via retractile pili. These phages have been applied in various fields since their discovery approximately 60 years ago. To understand their biology, it is crucial to analyze the structure of mature virions. Cryo-electron microscopy (cryo-EM) has been employed to determine the structures of two ssRNA phages, MS2 and Qß. This chapter presents a method for purifying these two phages and their receptor, the F-pilus, to allow examination using cryo-EM.


Assuntos
Bacteriófagos , Microscopia Crioeletrônica , Bacteriófagos/genética , RNA Viral/genética , Fímbrias Bacterianas , Levivirus/genética
4.
BMC Bioinformatics ; 25(1): 129, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532339

RESUMO

BACKGROUND: The RNA-Recognition motif (RRM) is a protein domain that binds single-stranded RNA (ssRNA) and is present in as much as 2% of the human genome. Despite this important role in biology, RRM-ssRNA interactions are very challenging to study on the structural level because of the remarkable flexibility of ssRNA. In the absence of atomic-level experimental data, the only method able to predict the 3D structure of protein-ssRNA complexes with any degree of accuracy is ssRNA'TTRACT, an ssRNA fragment-based docking approach using ATTRACT. However, since ATTRACT parameters are not ssRNA-specific and were determined in 2010, there is substantial opportunity for enhancement. RESULTS: Here we present HIPPO, a composite RRM-ssRNA scoring potential derived analytically from contact frequencies in near-native versus non-native docking models. HIPPO consists of a consensus of four distinct potentials, each extracted from a distinct reference pool of protein-trinucleotide docking decoys. To score a docking pose with one potential, for each pair of RNA-protein coarse-grained bead types, each contact is awarded or penalised according to the relative frequencies of this contact distance range among the correct and incorrect poses of the reference pool. Validated on a fragment-based docking benchmark of 57 experimentally solved RRM-ssRNA complexes, HIPPO achieved a threefold or higher enrichment for half of the fragments, versus only a quarter with the ATTRACT scoring function. In particular, HIPPO drastically improved the chance of very high enrichment (12-fold or higher), a scenario where the incremental modelling of entire ssRNA chains from fragments becomes viable. However, for the latter result, more research is needed to make it directly practically applicable. Regardless, our approach already improves upon the state of the art in RRM-ssRNA modelling and is in principle extendable to other types of protein-nucleic acid interactions.


Assuntos
Proteínas , RNA , Humanos , Ligação Proteica , Proteínas/química , RNA/química , Simulação de Acoplamento Molecular , Conformação Proteica
5.
J Phycol ; 60(2): 574-580, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174634

RESUMO

The power of novel vaccination technologies and their rapid development were elucidated clearly during the COVID-19 pandemic. At the same time, it also became clear that there is an urgent need to discover and manufacture new antivirals that target emerging viral threats. Toxic species of cyanobacteria produce a range of bioactive compounds that makes them good candidates for drug discovery. Nevertheless, few studies demonstrate the antiviral potential of cyanobacteria. This is partly due to the lack of specific and simple protocols designed for the rapid detection of antiviral activity in cyanobacteria and partly because specialized facilities for work with pathogenic viruses are few and far between. We therefore developed an easy method for the screening of cyanobacterial cultures for antiviral activity and used our private culture collection of non-pathogenic virus isolates to show that antiviral activity is a prominent feature in the cyanobacterium Microcystis aeruginosa. In this proof-of-concept study, we show that M. aeruginosa extracts from three different cyanobacterial strains delay infection of diatom-infecting single-stranded DNA and single-stranded RNA viruses by up to 2 days. Our work shows the ease with which cyanobacteria from culture collections can be screened for antiviral activity and highlights the potential of cyanobacteria as an excellent source for the discovery of novel antiviral compounds, warranting further investigation.


Assuntos
Cianobactérias , Microcystis , Humanos , Pandemias , Antivirais/farmacologia
6.
Trends Microbiol ; 32(1): 6-7, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37951770

RESUMO

It is widely accepted that the minus strands of positive single-strand RNA (+ssRNA) viruses function as replication templates only. Gong et al. revealed that the minus strand of two unrelated +ssRNA viruses encodes proteins. This textbook-changing discovery calls for the reconsideration of the molecular mechanisms underlying the infection cycle of +ssRNA viruses.


Assuntos
Vírus de RNA , RNA Viral , RNA Viral/genética , RNA Viral/metabolismo , Replicação Viral , Vírus de RNA de Cadeia Positiva/genética , Vírus de RNA de Cadeia Positiva/metabolismo , Vírus de RNA/genética , Vírus de RNA/metabolismo
7.
Environ Res ; 241: 117704, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37984783

RESUMO

Ultraviolet germicidal irradiation (UVGI) disinfection technology is effective in inactivating microorganisms. However, its performance can vary against different microorganisms due to their diverse structural and genomic features. Thus, rapid predictions of UV (254 nm) inactivation kinetics are essential, particularly for highly infectious emerging pathogens, such as SARS-CoV-2, during the extemporary COVID-19 pandemic. In this study, aiming at single-strand RNA (ssRNA) viruses, an improved genomic model was introduced to predict the UV inactivation kinetics of viral genomes using genome sequence data. First, the overall virus infectivity loss in an aqueous matrix was estimated as the sum of damage to both the entire genome and the protein capsid. Then, the "UV rate constant ratio of aerosol and liquid" was used to convert the UV rate constant for viruses in a liquid-based matrix to an airborne state. The prediction model underwent both quantitative and qualitative validation using experimental data from this study and the literature. Finally, with the goal of mitigating potential airborne transmission of ssRNA viruses in indoor environments, this paper summarizes existing in-duct UVGI system designs and evaluates their germicidal performance. The prediction model may serve as a preliminary tool to assess the effectiveness of a UVGI system for emerging or unculturable viruses or to estimate the required UV dose when designing such a system.


Assuntos
Vírus de RNA , Vírus , Humanos , Pandemias , Aerossóis e Gotículas Respiratórios , Raios Ultravioleta , Vírus/efeitos da radiação , Desinfecção , RNA
8.
Plants (Basel) ; 12(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38068681

RESUMO

Long non-coding RNAs (lncRNAs) regulate gene expression in eukaryotic organisms. Research suggests that lncRNAs may be involved in the regulation of nitrogen use efficiency in plants. In this study, we identified 1628 lncRNAs based on the transcriptomic sequencing of rice roots under low-nitrogen (LN) treatment through the implementation of an integrated bioinformatics pipeline. After 4 h of LN treatment, 50 lncRNAs and 373 mRNAs were significantly upregulated, and 17 lncRNAs and 578 mRNAs were significantly downregulated. After 48 h LN treatment, 43 lncRNAs and 536 mRNAs were significantly upregulated, and 42 lncRNAs and 947 mRNAs were significantly downregulated. Moreover, the interaction network among the identified lncRNAs and mRNAs was investigated and one of the LN-induced lncRNAs (lncRNA24320.6) was further characterized. lncRNA24320.6 was demonstrated to positively regulate the expression of a flavonoid 3'-hydroxylase 5 gene (OsF3'H5). The overexpression of lncRNA24320.6 was shown to improve nitrogen absorption and promote growth in rice seedlings under LN conditions. Our results provide valuable insights into the roles of lncRNAs in the rice response to nitrogen starvation.

9.
Viruses ; 15(12)2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140645

RESUMO

From the first isolation of the cystovirus bacteriophage Φ6 from Pseudomonas syringae 50 years ago, we have progressed to a better understanding of the structure and transformations of many parts of the virion. The three-layered virion, encapsulating the tripartite double-stranded RNA (dsRNA) genome, breaches the cell envelope upon infection, generates its own transcripts, and coopts the bacterial machinery to produce its proteins. The generation of a new virion starts with a procapsid with a contracted shape, followed by the packaging of single-stranded RNA segments with concurrent expansion of the capsid, and finally replication to reconstitute the dsRNA genome. The outer two layers are then added, and the fully formed virion released by cell lysis. Most of the procapsid structure, composed of the proteins P1, P2, P4, and P7 is now known, as well as its transformations to the mature, packaged nucleocapsid. The outer two layers are less well-studied. One additional study investigated the binding of the host protein YajQ to the infecting nucleocapsid, where it enhances the transcription of the large RNA segment that codes for the capsid proteins. Finally, I relate the structural aspects of bacteriophage Φ6 to those of other dsRNA viruses, noting the similarities and differences.


Assuntos
Bacteriófago phi 6 , Bacteriófagos , Animais , RNA Viral/genética , Bacteriófagos/genética , Bacteriófagos/metabolismo , Nucleocapsídeo/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/genética , RNA de Cadeia Dupla/metabolismo , Estágios do Ciclo de Vida
10.
Artigo em Inglês | MEDLINE | ID: mdl-37974615

RESUMO

Oncolytic viruses (OVs) are at the forefront of biologicals for cancer treatment. They represent a diverse landscape of naturally occurring viral strains and genetically modified viruses that, either as single agents or as part of combination therapies, are being evaluated in preclinical and clinical settings. As the field gains momentum, the research on OVs has been shifting efforts to expand our understanding of the complex interplay between the virus, the tumor and the immune system, with the aim of rationally designing more efficient therapeutic interventions. Nowadays, the potential of an OV platform is no longer defined exclusively by the targeted replication and cancer cell killing capacities of the virus, but by its contribution as an immunostimulator, triggering the transformation of the immunosuppressive tumor microenvironment (TME) into a place where innate and adaptive immunity players can efficiently engage and lead the development of tumor-specific long-term memory responses. Here we review the immune mechanisms and host responses induced by ssRNA(-) (negative-sense single-stranded RNA) viruses as OV platforms. We focus on two ssRNA(-) OV candidates: Newcastle disease virus (NDV), an avian paramyxovirus with one of the longest histories of utilization as an OV, and influenza A (IAV) virus, a well-characterized human pathogen with extraordinary immunostimulatory capacities that is steadily advancing as an OV candidate through the development of recombinant IAV attenuated platforms.

11.
Viruses ; 15(10)2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37896763

RESUMO

Positive-sense single-stranded RNA (ssRNA) bacteriophages (phages) were first isolated six decades ago. Since then, extensive research has been conducted on these ssRNA phages, particularly those infecting E. coli. With small genomes of typically 3-4 kb that usually encode four essential proteins, ssRNA phages employ a straightforward infectious cycle involving host adsorption, genome entry, genome replication, phage assembly, and host lysis. Recent advancements in metagenomics and transcriptomics have led to the identification of ~65,000 sequences from ssRNA phages, expanding our understanding of their prevalence and potential hosts. This review article illuminates significant investigations into ssRNA phages, with a focal point on their structural aspects, providing insights into the various stages of their infectious cycle.


Assuntos
Bacteriófagos , Fagos RNA , Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli/genética , RNA Viral/genética , Montagem de Vírus , Fagos RNA/genética , Genoma Viral
12.
Viruses ; 15(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766258

RESUMO

The rabies virus is a major zoonosis that causes severe nervous disease in humans, leading to paralysis and death. The world's second anti-rabies center was established in 1888 by Victor Babeș, in Bucharest, where an eponymous strain of rabies was isolated and used to develop a method for immunization. The Babeș strain of the rabies virus was used for over 100 years in Romania to produce a rabies vaccine for human use, based on animal nerve tissue, thus having a proven history of prophylactic use. The present study aimed to sequence the whole genome of the Babeș strain and to explore its genetic relationships with other vaccine strains as well as to characterize its relevant molecular traits. After being adapted for multiplication in cell lines and designated BAB-TMP, 99% of the viral genome was sequenced. The overall organization of the genome is similar to that of other rabies vaccine strains. Phylogenetic analysis indicated that the BAB-TMP strain is closely related to the Russian RV-97 vaccine strain, and both seem to have a common ancestor. The nucleoprotein gene of the investigated genome was the most conserved, and the glycoprotein showed several unique amino acid substitutions within the major antigenic sites and linear epitopes.

13.
Viruses ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37632020

RESUMO

Aspen mosaic-associated virus (AsMaV) is a newly identified Emaravirus, in the family Fimoviridae, Bunyavirales, associated with mosaic symptoms in aspen trees (Populus tremula). Aspen trees are widely distributed in Europe and understanding the population structure of AsMaV may aid in the development of better management strategies. The virus genome consists of five negative-sense single-stranded RNA (-ssRNA) molecules. To investigate the genetic diversity and population parameters of AsMaV, different regions of the genome were amplified and analyzed and full-length sequence of the divergent isolates were cloned and sequenced. The results show that RNA3 or nucleoprotein is a good representative for studying genetic diversity in AsMaV. Developed RT-PCR-RFLP was able to identify areas with a higher number of haplotypes and could be applied for screening the large number of samples. In general, AsMaV has a conserved genome and based on the phylogenetic studies, geographical structuring was observed in AsMaV isolates from Sweden and Finland, which could be attributed to founder effects. The genome of AsMaV is under purifying selection but not distributed uniformly on genomic RNAs. Distant AsMaV isolates displayed amino acid sequence variations compared to other isolates, and bioinformatic analysis predicted potential post-translational modification sites in some viral proteins.


Assuntos
Vírus do Mosaico , Vírus Satélites , Finlândia , Suécia , Filogenia , Genética Populacional
14.
mBio ; 14(4): e0071523, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37439571

RESUMO

Wildlife is the source of many emerging infectious diseases. Several viruses from the order Nidovirales have recently emerged in wildlife, sometimes with severe consequences for endangered species. The order Nidovirales is currently classified into eight suborders, three of which contain viruses of vertebrates. Vertebrate coronaviruses (suborder Cornidovirineae) have been extensively studied, yet the other major suborders have received less attention. The aim of this minireview was to summarize the key findings from the published literature on nidoviruses of vertebrate wildlife from two suborders: Arnidovirineae and Tornidovirineae. These viruses were identified either during investigations of disease outbreaks or through molecular surveys of wildlife viromes, and include pathogens of reptiles and mammals. The available data on key biological features, disease associations, and pathology are presented, in addition to data on the frequency of infections among various host populations, and putative routes of transmission. While nidoviruses discussed here appear to have a restricted in vivo host range, little is known about their natural life cycle. Observational field-based studies outside of the mortality events are needed to facilitate an understanding of the virus-host-environment interactions that lead to the outbreaks. Laboratory-based studies are needed to understand the pathogenesis of diseases caused by novel nidoviruses and their evolutionary histories. Barriers preventing research progress include limited funding and the unavailability of virus- and host-specific reagents. To reduce mortalities in wildlife and further population declines, proactive development of expertise, technologies, and networks should be developed. These steps would enable effective management of future outbreaks and support wildlife conservation.

15.
Antiviral Res ; 216: 105664, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414288

RESUMO

Recent evidence suggests that lipids play a crucial role in viral infections beyond their traditional functions of supplying envelope and energy, and creating protected niches for viral replication. In the case of Zika virus (ZIKV), it alters host lipids by enhancing lipogenesis and suppressing ß-oxidation to generate viral factories at the endoplasmic reticulum (ER) interface. This discovery prompted us to hypothesize that interference with lipogenesis could serve as a dual antiviral and anti-inflammatory strategy to combat the replication of positive sense single-stranded RNA (ssRNA+) viruses. To test this hypothesis, we examined the impact of inhibiting N-Acylethanolamine acid amidase (NAAA) on ZIKV-infected human Neural Stem Cells. NAAA is responsible for the hydrolysis of palmitoylethanolamide (PEA) in lysosomes and endolysosomes. Inhibition of NAAA results in PEA accumulation, which activates peroxisome proliferator-activated receptor-α (PPAR-α), directing ß-oxidation and preventing inflammation. Our findings indicate that inhibiting NAAA through gene-editing or drugs moderately reduces ZIKV replication by approximately one log10 in Human Neural Stem Cells, while also releasing immature virions that have lost their infectivity. This inhibition impairs furin-mediated prM cleavage, ultimately blocking ZIKV maturation. In summary, our study highlights NAAA as a host target for ZIKV infection.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Infecção por Zika virus/tratamento farmacológico
16.
BMC Biol ; 21(1): 123, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226244

RESUMO

BACKGROUND: Changes in gene expression levels during brain development are thought to have played an important role in the evolution of human cognition. With the advent of high-throughput sequencing technologies, changes in brain developmental expression patterns, as well as human-specific brain gene expression, have been characterized. However, interpreting the origin of evolutionarily advanced cognition in human brains requires a deeper understanding of the regulation of gene expression, including the epigenomic context, along the primate genome. Here, we used chromatin immunoprecipitation sequencing (ChIP-seq) to measure the genome-wide profiles of histone H3 lysine 4 trimethylation (H3K4me3) and histone H3 lysine 27 acetylation (H3K27ac), both of which are associated with transcriptional activation in the prefrontal cortex of humans, chimpanzees, and rhesus macaques. RESULTS: We found a discrete functional association, in which H3K4me3HP gain was significantly associated with myelination assembly and signaling transmission, while H3K4me3HP loss played a vital role in synaptic activity. Moreover, H3K27acHP gain was enriched in interneuron and oligodendrocyte markers, and H3K27acHP loss was enriched in CA1 pyramidal neuron markers. Using strand-specific RNA sequencing (ssRNA-seq), we first demonstrated that approximately 7 and 2% of human-specific expressed genes were epigenetically marked by H3K4me3HP and H3K27acHP, respectively, providing robust support for causal involvement of histones in gene expression. We also revealed the co-activation role of epigenetic modification and transcription factors in human-specific transcriptome evolution. Mechanistically, histone-modifying enzymes at least partially contribute to an epigenetic disturbance among primates, especially for the H3K27ac epigenomic marker. In line with this, peaks enriched in the macaque lineage were found to be driven by upregulated acetyl enzymes. CONCLUSIONS: Our results comprehensively elucidated a causal species-specific gene-histone-enzyme landscape in the prefrontal cortex and highlighted the regulatory interaction that drove transcriptional activation.


Assuntos
Epigênese Genética , Histonas , Animais , Humanos , Lisina , Macaca mulatta/genética , Córtex Pré-Frontal , Expressão Gênica
17.
Biochem Biophys Res Commun ; 660: 73-81, 2023 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-37068391

RESUMO

Cardiac fibrosis is a common pathological feature of cardiac remodelling process with disordered expression of multiple genes and eventually lead to heart failure. Emerging evidence suggests that long noncoding RNAs (lncRNAs) have emerged as critical regulators of various biological processes. However, the exact mechanisms of lncRNAs as mediators in cardiac fibrosis have not been fully elucidated. This study aimed to profile the lncRNA expression pattern in human cardiac fibroblasts (HCFs) with cardiac fibrosis. We treated HCFs with transforming growth factor-ß (TGF-ß) to induce their activation. Then, strand-specific RNA-seq was performed to profile and classify lncRNAs; and perform functional analysis in HCFs. We study the transformation of HCFs with molecular and cell biology methods. Among all identified lncRNA candidates, 176 and 526 lncRNAs were upregulated and downregulated respectively in TGF-ß-stimulated HCFs compared with controls. Functional analyses revealed that the target genes of differentially expressed lncRNAs were mainly related to focal adhesion, metabolic pathways, Hippo signaling pathway, PI3K-Akt signaling pathway, regulation of actin cytoskeleton, and hypertrophic cardiomyopathy. As a representative, novel lncRNAs NONHSAG005537 and NONHSAG017620 inhibited the proliferation, migration, invasion, and transformation of HCFs induced by TGF-ß. Collectively, our study established the expression signature of lncRNAs in cardiac fibrosis and demonstrated the cardioprotective role of NONHSAG005537 and NONHSAG017620 in cardiac fibrosis, providing a promising target for anti-fibrotic therapy.


Assuntos
RNA Longo não Codificante , Humanos , RNA Longo não Codificante/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fibrose , Fibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Fluids Barriers CNS ; 20(1): 8, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721242

RESUMO

BACKGROUND: The multidrug resistance (MDR) transporters, P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) contribute to the blood-brain barrier (BBB), protecting the brain from drug exposure. The impact of infection on MDR in the developing human BBB remains to be determined. We hypothesized that exposure to bacterial and viral pathogen-associated molecular patterns (PAMPs) modify MDR expression and activity in human fetal brain endothelial cells (hfBECs) isolated from early and mid-gestation brain microvessels. METHODS: We modelled infection (4 h and 24 h) using the bacterial PAMP, lipopolysaccharide (LPS; a toll-like receptor [TLR]-4 ligand) or the viral PAMPs, polyinosinic polycytidylic acid (Poly I:C; TLR-3 ligand) and single-stranded RNA (ssRNA; TLR-7/8 ligand). mRNA expression was assessed by qPCR, whereas protein expression was assessed by Western blot or immunofluorescence. P-gp and BCRP activity was evaluated by Calcein-AM and Chlorin-6 assays. RESULTS: TLRs-3,4 and 8 were expressed by the isolated hfBECs. Infection mimics induced specific pro-inflammatory responses as well as changes in P-gp/ABCB1 or BCRP/ABCG2 expression (P < 0.05). LPS and ssRNA significantly decreased P-gp activity at 4 and 24 h in early and mid-gestation (P < 0.03-P < 0.001), but significantly increased BCRP activity in hfBECs in a dose-dependent pattern (P < 0.05-P < 0.002). In contrast, Poly-IC significantly decreased P-gp activity after 4 h in early (P < 0.01) and mid gestation (P < 0.04), but not 24 h, and had no overall effect on BCRP activity, though BCRP activity was increased with the highest dose at 24 h in mid-gestation (P < 0.05). CONCLUSIONS: Infectious PAMPs significantly modify the expression and function of MDR transporters in hfBECs, though effects are PAMP-, time- and dose-specific. In conclusion, bacterial and viral infections during pregnancy likely have profound effects on exposure of the fetal brain to physiological and pharmacological substrates of P-gp and BCRP, potentially leading to altered trajectories of fetal brain development.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Feminino , Gravidez , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Moléculas com Motivos Associados a Patógenos , Ligantes , Lipopolissacarídeos , Proteínas de Neoplasias , Encéfalo , Proteínas de Membrana Transportadoras , Resistência a Múltiplos Medicamentos
19.
Cell Mol Life Sci ; 80(3): 72, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36840772

RESUMO

Replication of viruses requires interaction with host cell factors and repression of innate immunity. Recent findings suggest that a subset of intracellular mono-ADP-ribosylating PARPs, which are induced by type I interferons, possess antiviral activity. Moreover, certain RNA viruses, including Chikungunya virus (CHIKV), encode mono-ADP-ribosylhydrolases. Together, this suggests a role for mono-ADP-ribosylation (MARylation) in host-virus conflicts, but the relevant substrates have not been identified. We addressed which PARP restricts CHIKV replication and identified PARP10 and PARP12. For PARP10, this restriction was dependent on catalytic activity. Replication requires processing of the non-structural polyprotein nsP1-4 by the protease located in nsP2 and the assembly of the four individual nsP1-nsP4 into a functional replication complex. PARP10 and PARP12 inhibited the production of nsP3, indicating a defect in polyprotein processing. The nsP3 protein encodes a macrodomain with de-MARylation activity, which is essential for replication. In support for MARylation affecting polyprotein processing, de-MARylation defective CHIKV replicons revealed reduced production of nsP2 and nsP3. We hypothesized that MARylation regulates the proteolytic function of nsP2. Indeed, we found that nsP2 is MARylated by PARP10 and, as a consequence, its proteolytic activity was inhibited. NsP3-dependent de-MARylation reactivated the protease. Hence, we propose that PARP10-mediated MARylation prevents polyprotein processing and consequently virus replication. Together, our findings provide a mechanistic explanation for the role of the viral MAR hydrolase in CHIKV replication.


Assuntos
Vírus Chikungunya , Poli(ADP-Ribose) Polimerases , ADP-Ribosilação , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , Peptídeo Hidrolases/genética , Poliproteínas/genética , Poliproteínas/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo
20.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834773

RESUMO

The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5'-methyl cap (m7GpppN), a 3'- and 5'-untranslated region (3'-UTR, 5'-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body's natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA-ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer's disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19's long-term neurological effects.


Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/metabolismo , MicroRNAs/genética , Encéfalo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA