Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 771
Filtrar
1.
Bioact Mater ; 41: 293-311, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39157692

RESUMO

Magnesium alloys, noted for their substantial mechanical strength and exceptional biocompatibility, are increasingly being considered for use in biodegradable implants. However, their rapid degradation and significant hydrogen release have limited their applications in orthopaedics. In this study, a novel Mg-RE-Sr alloy was created by friction stir processing to modify its microstructure and enhance its degradation performance. Through microstructural characterization, the friction stir processing effectively refined the grains, accelerated the re-dissolution of precipitates, and ensured a uniform distribution of these phases. The processed alloy demonstrated improved comprehensive properties, with an in vitro corrosion rate of approximately 0.4 mm/y and increases in ultimate tensile strength and elongation by 37 % and 166 %, respectively. Notably, in vivo experiments involving a rat subcutaneous implantation model revealed a slower degradation rate of 0.09 mm/y and a uniform degradation process, basically achieving the requirements for ideal performance in orthopaedic applications. The superior degradation characteristics were attributed to the synergistic effect of attenuated galvanic corrosion and the formation of a dense Y(OH)3/Y2O3 film induced by an exceptional microstructure with a highly solid-soluted matrix and uniformly refined precipitates. Meanwhile, the alloys exhibited excellent biocompatibility and did not cause undesirable inflammation or produce toxic degradation products. These improvements in biocompatibility and degradation characteristics indicate great promise for the use of this friction stir processed alloy in osteosynthesis systems in the clinical setting.

2.
Materials (Basel) ; 17(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124303

RESUMO

For damage tolerance design in engineering components, the fracture toughness value, KIC, of the material is essential. However, obtaining specimens of sufficient thickness from stir friction welded plates is challenging, and often, the experimental test values do not meet the necessary criteria, preventing the experimental fracture toughness, Kq, from being recognized as plane strain fracture toughness KIC. The fracture toughness Kq of 2195 Al-Li alloy welding seams with different thicknesses was measured on the forward and backward sides. Microstructure characterization was conducted by scanning electron microscope (SEM). The results indicated minimal significant differences in grain size between the advancing and retreating sides of the weld nugget zone. In specimens of the same thickness, fracture toughness measurements along the normal direction of the joint cross-section showed a high similarity between the advancing and retreating sides of the weld nugget zone. Utilizing the quantitative relationships between fracture toughness and sample thickness derived from both the fracture K and G criteria, it is possible to predict the fracture toughness of thick plates using thin plates. This study employs these relationships to calculate the fracture toughness KIC of 2195 aluminum-lithium alloy friction stir welds. The KIC values obtained are 41.65 MPa·m1/2 from the fracture K criterion and 43.54 MPa·m1/2 from the fracture G criterion.

3.
Materials (Basel) ; 17(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124368

RESUMO

A novel dual-speed tool for which the shoulder and pin rotation speeds are separately established was utilized to friction stir weld cast magnesium AZ91 with wrought aluminum 6082-T6. To assess the performance and efficacy of the dual-speed tool, baseline dissimilar welds were also fabricated using a conventional FSW tool. Optical microscopy characterized the weld microstructures, and a numerical simulation enhanced the understanding of the temperature and material flow behaviors. For both tool types, regions of the welds contained significant amounts of the AZ91 primary eutectic phase, Al12Mg17, indicating that weld zone temperatures exceeded the solidus temperature of α-Mg (470 °C). Liquation, therefore, occurred during processing with subsequent eutectic formation upon cooling below the primary eutectic temperature (437 °C). The brittle character of the eutectic phase promoted cracking in the fusion zone, and the "process window" for quality welds was narrow. For the conventional tool, offsetting to the aluminum side (advancing side) mitigated eutectic formation and improved weld quality. For the dual-speed tool, experimental trials demonstrated that separate rotation speeds for the shoulder and pin could mitigate eutectic formation and produce quality welds without an offset at relatively higher weld speeds than the conventional tool. Exploration of various weld parameters coupled with the simulation identified the bounds of a process window based on the percentage of weld cross-section exceeding the eutectic temperature and on the material flow rate at the tool trailing edge. For the dual-speed tool, a minimum flow rate of 26.0 cm3/s and a maximum percentage of the weld cross-section above the eutectic temperature of 35% produced a defect-free weld.

4.
Materials (Basel) ; 17(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124414

RESUMO

High-strength dissimilar aluminum alloys are difficult to connect by fusion welding, while they can be successfully joined by friction stir welding (FSW). However, the asymmetrical deformation and heat input that occur during FSW result in the formation of a heterogeneous microstructure in their welded zone. In this work, the grain structure and texture evolution in the bottom zones of dissimilar FSW AA2024-T351 and AA7075-T651 joints at different welding speeds (feeding speeds) were quantitatively investigated. The results indicated that dynamic recrystallization occurs in the bottom zones of dissimilar FSW joints, and equiaxed grains with low grain sizes are formed at the welding speed of 60-240 mm/min. A high fraction of the recrystallized grains were generated in the bottom zones of the joints at a low welding speed, while a high fraction of the substructured grains are produced at a high welding speed. Different types of shear textures are produced in the bottom zones of the joints; the number fraction of shear texture types depends on different welding speeds. This study helps to understand the mechanism of microstructure homogenization in dissimilar FSW joints and provides a basis for further improving the microstructure of the welded zone for engineering applications.

5.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124464

RESUMO

Tool wear is a key issue for the manufacturing performance of refill friction stir spot welding in high-volume manufacturing environments. As such, the aim of this study is to examine conditions in which tungsten carbide with a cobalt binder can succeed as a tool material in the spot welding of 2029 aluminum for a sustained lifetime. Critical factors are shown herein to include cleanliness and thermal management. The life of a WC-Co toolset is demonstrated to be approximately 2998 welds, which is of the same scale as conventional steel tooling. With a WC-Co shoulder and probe, the H13 clamp showed the only significant wear.

6.
Materials (Basel) ; 17(15)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39124514

RESUMO

Magnesium alloys, renowned for their lightweight yet high-strength characteristics, with exceptional mechanical properties, are highly coveted for numerous applications. The emergence of magnesium alloy additive manufacturing (Mg AM) has further propelled their popularity, offering advantages such as unparalleled precision, swift production rates, enhanced design freedom, and optimized material utilization. This technology holds immense potential in fabricating intricate geometries, complex internal structures, and performance-tailored microstructures, enabling groundbreaking applications. In this paper, we delve into the core processes and pivotal influencing factors of the current techniques employed in Mg AM, including selective laser melting (SLM), electron beam melting (EBM), wire arc additive manufacturing (WAAM), binder jetting (BJ), friction stir additive manufacturing (FSAM), and indirect additive manufacturing (I-AM). Laser powder bed fusion (LPBF) excels in precision but is limited by a low deposition rate and chamber size; WAAM offers cost-effectiveness, high efficiency, and scalability for large components; BJ enables precise material deposition for customized parts with environmental benefits; FSAM achieves fine grain sizes, low defect rates, and potential for precision products; and I-AM boasts a high build rate and industrial adaptability but is less studied recently. This paper attempts to explore the possibilities and challenges for future research in AM. Among them, two issues are how to mix different AM applications and how to use the integration of Internet technologies, machine learning, and process modeling with AM, which are innovative breakthroughs in AM.

7.
Molecules ; 29(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39125063

RESUMO

The advancement of traditional sample preparation techniques has brought about miniaturization systems designed to scale down conventional methods and advocate for environmentally friendly analytical approaches. Although often referred to as green analytical strategies, the effectiveness of these methods is intricately linked to the properties of the sorbent utilized. Moreover, to fully embrace implementing these methods, it is crucial to innovate and develop new sorbent or solid phases that enhance the adaptability of miniaturized techniques across various matrices and analytes. Graphene-based materials exhibit remarkable versatility and modification potential, making them ideal sorbents for miniaturized strategies due to their high surface area and functional groups. Their notable adsorption capability and alignment with green synthesis approaches, such as bio-based graphene materials, enable the use of less sorbent and the creation of biodegradable materials, enhancing their eco-friendly aspects towards green analytical practices. Therefore, this study provides an overview of different types of hybrid graphene-based materials as well as their applications in crucial miniaturized techniques, focusing on offline methodologies such as stir bar sorptive extraction (SBSE), microextraction by packed sorbent (MEPS), pipette-tip solid-phase extraction (PT-SPE), disposable pipette extraction (DPX), dispersive micro-solid-phase extraction (d-µ-SPE), and magnetic solid-phase extraction (MSPE).

8.
Sci Rep ; 14(1): 18729, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134620

RESUMO

The primary objective of this study is to investigate the microstructural, mechanical, and wear behaviour of AZ31/TiC surface composites fabricated through friction stir processing (FSP). TiC particles are reinforced onto the surface of AZ31 magnesium alloy to enhance its mechanical properties for demanding industrial applications. The FSP technique is employed to achieve a uniform dispersion of TiC particles and grain refinement in the surface composite. Microstructural characterization, mechanical testing (hardness and tensile strength), and wear behaviour evaluation under different operating conditions are performed. Response surface methodology (RSM) is utilized to optimize the wear rate by considering the effects of process parameters. The results reveal a significant improvement in hardness (41.3%) and tensile strength (39.1%) of the FSP-TiC composite compared to the base alloy, attributed to the refined grain structure (6-10 µm) and uniform distribution of TiC particles. The proposed regression model accurately predicts the wear rate, with a confirmation test validating an error percentage within ± 4%. Worn surface analysis elucidates the wear mechanisms, such as shallow grooves, delamination, and oxide layer formation, influenced by the applied load, sliding distance, and sliding velocity. The enhanced mechanical properties and wear resistance are attributed to the synergistic effects of grain refinement, particle-accelerated nucleation, the barrier effect of TiC particles, and improved interfacial bonding achieved through FSP. The optimized FSP-TiC composites exhibit potential for applications in industries demanding high strength, hardness, and wear resistance.

9.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000646

RESUMO

Parts produced using a 3D printer are combined with friction stir welding (FSW). In the FSW processing of parts with a low infill ratio, welding errors occur due to a lack of material. In this study, plates were created using two different-colored PLA Plus filaments with different infill ratios in the weld area (20%, 60%, and 100%). Triangular pin geometry, different feed rates (20, 40, and 60 mm/min), and different tool rotation speeds (1250, 1750, and 2250 rpm) were used as FSW process parameters. Tensile testing was performed to determine weld strength and hardness measurements, and visual inspections were performed. Color measurements were made on the test samples before and after the welding process, and the relationship between welding performance and color was evaluated. The best welding strength was obtained as 17.83 ± 0.68 MPa at a feed rate of 20 mm/min, a tool rotation speed of 1750 rpm, and a part with a 60% infill ratio in the welding zone. In the sample with the best weld strength, the temperature was measured as 198.97 °C. Color changes in the weld area of parts with 60% and 100% infill ratios were measured between 78.9-82.2 and 79.1-84.5, respectively. It was determined that the color change decreases as the weld strength increases in these parts. The results show that with the proposed new part design, the FSW method can be used at low infill ratios, and the weld strength can be evaluated based on the color changes in the weld zone.

10.
Polymers (Basel) ; 16(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39000750

RESUMO

Additive manufacturing (AM), also known as 3D printing, offers many advantages and, particularly in the medical field, it has stood out for its potential for the manufacture of patient-specific implantable devices. Thus, the unique properties of 3D-printed biocompatible polymers such as Polylactic Acid (PLA) and Polyetheretherketone (PEEK) have made these materials the focus of recent research where new post-processing and joining techniques need to be investigated. This study investigates the weldability of PLA and PEEK 3D-printed plates through stationary shoulder friction stir welding (SS-FSW) with assisted heating. An SS-FSW apparatus was developed to address the challenges of rotating shoulder FSW of thermoplastics, with assisted heating either through the shoulder or through the backing plate, thus minimizing material removal defects in the welds. Successful welds revealed that SS-FSW improves surface quality in both PLA and PEEK welds compared to rotating shoulder tools. Process parameters for PLA welds are investigated using the Taguchi method, emphasizing the importance of lower travel speeds to achieve higher joint efficiencies. In PEEK welds, the heated backing plate proved effective in increasing process heat input and reducing cooldown rates which were associated with higher crystallinity PEEK. Despite these findings, further research is needed to improve the weld strength of SS-FSW with these materials considering aspects like tool design, process stability, and 3D printing parameters. This investigation emphasizes the potential of SS-FSW in the assembly of thermoplastic materials, offering insights into the weldability of additively manufactured biocompatible polymers like PLA and PEEK.

11.
Materials (Basel) ; 17(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39063710

RESUMO

Aiming at the repairing of keyhole defects after friction stir welding of complex structures, a new method combined with tungsten inert gas welding (TIG) and friction stir processing (FSP) was proposed. The results showed that the pre-filling wire of TIG can completely fill the volumetric keyhole. FSP can refine the coarse grain area into equiaxial grains due to dynamic recrystallization, while some pore defects are eliminated. The interface bonding quality is high. The microhardness of the repairing zone with FSP is significantly stronger than that of the untreated parts. Compared to direct TIG repairing, the introduction of FSP transformed the fracture from brittle fracture to ductile fracture, and the tensile strength of the joint was increased by 131.7%, realizing the high-quality repairing of keyhole defects in 2195 Al-Li alloy.

12.
Materials (Basel) ; 17(14)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39063750

RESUMO

Additive friction stir deposition (AFSD) is an emerging solid-state additive manufacturing process with a high deposition rate. Being a non-fusion additive manufacturing (AM) process, it significantly eliminates problems related to melting such as cracking or high residual stresses. Therefore, it is possible to process reactive materials or high-strength alloys with high susceptibility to cracking. Although the residual stresses are lower in this process than with the other AM processes, depending on the deposition path, geometry, and boundary conditions, residual stresses may lead to undesired deformations and deteriorate the dimensional accuracy. Thermal cycling during layer deposition, which also depends on the geometry of the manufactured component, is expected to affect mechanical properties. To this day, the influence of the deposit geometry on the residual stresses and mechanical properties is not well understood, which presents a barrier for industry uptake of this process for large-scale part manufacturing. In this study, a stepped structure with 4, 7, and 10 passes manufactured via AFSD is used to investigate changes in microstructure, residual stress, and mechanical property as a function of the number of passes. The microstructure and defects are assessed using scanning electron microscopy and electron backscatter diffraction. Hardness maps for each step are created. The residual stress distributions at the centreline of each step are acquired via non-destructive neutron diffraction. The valuable insights presented here are essential for the successful utilisation of AFSD in industrial applications.

13.
Materials (Basel) ; 17(14)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39063778

RESUMO

Friction stir welding was utilized to obtain high-quality SUS301L stainless steel joints, whose mechanical and corrosion properties were thoroughly evaluated. Sound joints were obtained with a wide range of rotational velocities from 400 to 700 rpm. The microstructures of the stir zone primarily consisted of austenite and lath martensite without the formation of detrimental phases. The ultimate tensile strength of the welded joints improved with higher rotational velocities apart from 400 rpm. The ultimate tensile strength reached 813 ± 16 MPa, equal to 98.1 ± 1.9% of the base materials (BMs) with a rotational velocity of 700 rpm. The corrosion resistance of the FSW joints was improved, and the corrosion rates related to uniform corrosion with lower rotational velocities were one order of magnitude lower than that of the BMs, which was attributed to the lower martensite content. However, better anti-pitting corrosion performance was obtained with a high rotational velocity of 700 rpm, which was inconsistent with the uniform corrosion results. It could be speculated that a higher martensitic content had a negative effect on the uniform corrosion performance, but had a positive effect on the improvement of the anti-pitting corrosion ability.

14.
Sci Rep ; 14(1): 15453, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965308

RESUMO

Present study has been conducted to characterize the Mg alloy namely AZ31-based composite joined by Friction stir processing (FSP) technique. This study deals with the effect of single and double passes in FSP of AZ31 Mg alloy. The single pass run in FSP is followed at tool rotation speed (N) of 1000 to 1400 rpm. Also, the double pass run in FSP was followed at these speeds without using reinforcements. The feedstock particles namely SiC, Al2O3, Cr, and Si powders were used in fabrication process. The hardness, impact strength, and tensile strength characteristics were assessed in the stir region zone, and the results indicated significant improvement in these properties. The highest values of mechanical strength were seen in the FSPed area with N = 1000 rpm at a constant transverse speed (r) of 40 mm/min. Also, the tensile strength of the two passes FSPed plates is much higher than that of the single section without any reinforcement, as revealed in previous study also. The Scanning electron microscopy (SEM) analysis is done at two different magnifications for the Silicon carbide, Alumina, Chromium, and Silicon powder reinforced composites fabricated at speed of 1000 rpm. The microstructure shows that reinforced particles were uniform dispersed into FSPed region and agglomerated with Mg matrix. Si powder produces finer microstructure as compare to SiC, Al2O3, Cr. FSP decreases the grain size of processed material. Optical Microscopy results revealed that the reinforcement particle produced a homogenous microstructure and, a refined grain and equally dispersed in matrix material without split to the particle.

15.
Materials (Basel) ; 17(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38998157

RESUMO

The process of grain refinement during welding significantly influences both the final microstructure and performance of the weld joint. In the present work, merits of acoustic addition in the conventional Frictions Stir Welding (FSW) process were evaluated for joining dissimilar Al/Mg alloys. To capture the near "in situ" structure around the exit hole, an "emergency stop" followed by rapid cooling using liquid nitrogen was employed. Electron Backscatter Diffraction analysis was utilized to characterize and examine the evolution of grain microstructure within the aluminum matrix as the material flowed around the exit hole. The findings reveal that two mechanisms, continuous dynamic recrystallization (CDRX) and geometric dynamic recrystallization (GDRX), jointly or alternatively influence the grain evolution process. In conventional FSW, CDRX initially governs grain evolution, transitioning to GDRX as material deformation strain and temperature increase. Subsequently, as material deposition commences, CDRX reasserts dominance. Conversely, in acoustic addition, ultrasonic vibration accelerates GDRX, promoting its predominance by enhancing material flow and dislocation movements. Even during the material deposition, GDRX remains the dominant mechanism.

16.
Materials (Basel) ; 17(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38998415

RESUMO

The aim of this work is to study joining Al 2024-T3 alloy plates with different welding procedures. Aluminum alloy AA 2024-T351 is especially used in the aerospace industry. Aluminum plates are welded by the TIG and MIG fusion welding process, as well as by the solid-state welding process, friction stir welding (FSW), which has recently become very important in aluminum and alloy welding. For welding AA2024-T35 with MIG and TIG fusion processes, the filler material ER 4043-AlSi5 was chosen because of reduced cracking. Different methods were used to evaluate the quality of the produced joints, including macro- and microstructure evaluation, in addition to hardness and tensile tests. The ultimate tensile strength (UTS) of the FSW sample was found to be 80% higher than that of MIG and TIG samples. The average hardness value of the weld zone of metal for the MIG- and TIG-produced AA2024-T3511 butt joints showed a significant decrease compared to the hardness of the base metal AA2024-T351 by 50%, while for FSW joints, in the nugget zone, the hardness is about 10% lower relative to the base metal AA2024-T3511.

17.
Magn Reson Med ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987979

RESUMO

PURPOSE: Fluid-sensitive turbo spin echo (TSE) MRI with short-TI inversion-recovery preparation for fat suppression (STIR) plays a critical role in the diagnostics of the musculoskeletal system (e.g., close to metal implants). Potential advantages of 3D acquisitions, however, are difficult to exploit due to long acquisition times. Shortening the TR incurs a signal loss, and a driven-equilibrium (DE) extension reduces fluid signal even further. METHODS: The phase of the flip-back pulse was changed by 180° relative to the conventional implementation (i.e., 90° along the positive x-axis (90°x) instead of -90°x). After signal modeling and numerical simulations, the modification was implemented in STIR-TSE sequences and tested on a clinical 3T system. Imaging was performed in the lumbar spine, and long-TR images without DE were acquired as reference. CSF SNR and fluid-muscle contrast were measured and compared between the sequences. Imaging was repeated in a metal implant phantom. RESULTS: A shortening of TR by 43%-57% reduced the CSF SNR by 39%-59%. A conventional DE module further reduced SNR to 26%-40%, whereas the modified DE recovered SNR to 59%-108% compared with the long-TR acquisitions. Fluid-tissue contrast was increased by about 340% with the modified DE module compared with the conventional extension. Similar results were obtained in implant measurements. CONCLUSIONS: The proposed DE element for TSE-STIR sequences has the potential to accelerate the acquisition of fluid-sensitive images. DE-STIR may work most efficiently for 3D acquisitions, in which no temporo-spatial interleaving of inversion and imaging pulses is possible.

18.
Biomimetics (Basel) ; 9(7)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39056868

RESUMO

In this study, based on the principles of bionics, we fabricated a bionic non-smooth concave pit structure on the shoulders of friction stir welding tools and detected the thermal cycling curve, downforce, and torque of the tool in the welding process. We tested the wear loss weight and analyzed the surface morphology of the shoulder surfaces after welding for 200 m. This study found that as the distance between the concave pits decreased and the number of concave pits increased, the maximum downforce, torque, and temperature in the welding process showed a decreasing trend. As the speed increased, no matter how the tool structure changed, the downforce and torque decreased, while the peak thermal cycle temperature increased. The experimental welding results show that the wear loss weight of the non-smooth structure tool significantly reduced. The lowest wear loss weight of the tool with a concave pit interval of 1.125 mm was only 0.1529 g, which is 27% lower than that of the conventional tool. Our observations of the surface morphology of the tool shoulder after welding showed that the amount of aluminum swarf on the tool shoulder of the welding tool gradually declined with the increasing density of the uneven pits. The lowest number of aluminum chips adhered to a welding tool with a pit distance of 1.125 mm. Therefore, friction stir welding tools with biomimetic structures have better wear resistance and adhesion resistance.

19.
Sci Rep ; 14(1): 16999, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043708

RESUMO

This study focuses on optimizing double stir casting process parameters to enhance the tensile strength of hybrid composites comprising aluminum alloy, brown pumice, and coal ash, intended for brake disc applications. Analytical techniques including X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy were employed to characterize the composite constituents. The Taguchi method was utilized for experimental design and optimization to determine the optimal weight compositions of brown pumice and coal ash, as well as stir casting parameters (stirrer speed, pouring temperature, and stirring duration). Regression analysis was employed to develop a predictive mathematical model for the tensile strength of the hybrid composites and to assess the significance of process parameters. The optimized composite achieved a predicted tensile strength of 186.81 MPa and an experimental strength of 190.67 MPa using 7.5 vol% brown pumice, 2.5 vol% coal ash, a pouring temperature of 700 °C, stirrer speed of 500 rpm, and stirring duration of 10 min. This represents a 52.23% improvement over the as-cast aluminum alloy's tensile strength. Characterization results revealed that brown pumice and coal ash contain robust minerals (SiO2, Fe2O3, Al2O3) suitable for reinforcing metal matrices like aluminum, titanium, and magnesium. Thermogravimetric and differential thermal analyses demonstrated thermal stability up to 614.01 °C for the optimized composite, making it suitable for brake disc applications.

20.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930245

RESUMO

Friction stir processing (FSP) was performed on an AZ91 magnesium alloy cladding layer fabricated by a cold metal transfer (CMT) technique. Electrochemical properties and immersion corrosion behavior of the cladding layer before and after FSP in 3.5 wt.% NaCl solution were investigated. After applying the FSP, the corrosion potential and corrosion current density of the cladding layer increased from -1.455 V to -1.397 V and decreased from 4.135 µA/cm2 to 1.275 µA/cm2, respectively. The results of OM and SEM displayed the refinement of grains and the dispersion of ß-Mg17Al12 second phase in the friction stir processed (FSPed) cladding layer and more severe corrosion of the unprocessed sample. The corrosion rate of the FSPed cladding layer was lower, and a more compact corrosion product film was formed on the surface of the FSPed cladding layer. EDS results and XRD patterns showed that the corrosion products was mainly composed of Mg(OH)2. The increase in Al content in the α-Mg matrix, grain refinement, and fragmentation and dispersion of the ß-Mg17Al12 second phase induced by FSP were the main factors that led to the improvement in corrosion resistance of the cladding layer of the AZ91 magnesium alloy fabricated by CMT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA