Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38999652

RESUMO

Cereal + legume rotation is an integrated system that facilitates soil fertility and sustainable agricultural production. However, research on the management compatibility affecting soil physico-chemical properties yields overall agro-ecosystem sustainability, but profitability is lacking, especially under straw retention and potential reductions in fertilizer application. An 11-year field experiment investigated three treatments: no straw retention + traditional mineral fertilization (TNS), straw retention + traditional mineral fertilization (TS), and straw retention + reduced mineral fertilization (DS). Compared with TNS, TS significantly improved soil physico-chemical properties, including macro-aggregates (R > 0.25 mm), porosity, field water capacity (FWC), soil organic carbon (SOC) storage, total nitrogen storage, microbial biomass carbon (MBC), and microbial biomass nitrogen (MBN) by 17.3%, 3.2%, 13.0%, 5.5%, 3.2%, 15.5%, and 13.8%, respectively. TS also significantly increased total (wheat + soybean) yields (TYs), economic profits, and emergy sustainability index (ESI) by 15.8%, 25.0%, 3.7 times that of TNS, respectively. Surprisingly, compared with TS, DS further significantly improved R > 0.25 mm, porosity, FWC, SOC storage, MBC, MBN, TY, economic profits, and ESI by 11.4%, 1.5%, 6.1%, 3.0%, 10.6%, 7.2%, 5.7%, 11.1%, and 36.5%, respectively. Overall, retaining straw with reduced fertilization enhances soil properties, yields, and emergy sustainability in wheat-soybean rotation systems.

2.
Sci Total Environ ; 931: 172862, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38705286

RESUMO

Intricate microbial associations contribute greatly to the multiple functions (multifunctionality) of natural ecosystems. However, the relationship between microbial associations and soil multifunctionality (SMF) in artificial ecosystems, particularly in agricultural ecosystem with frequent fertilization, remains unclear. In this study, based on a 28-year paddy field experiment, high-throughput sequencing and networks analysis was performed to investigate changes in soil microbial (archaea, bacteria, fungi, and protists) associations and how these changes correlate with SMF under long-term fertilization. Compared to no fertilization (CK), both chemical fertilization with N, P, and K (CF) and chemical fertilization plus rice straw retention (CFR) treatments showed significantly higher soil nutrient content, grain yield, microbial abundance, and SMF. With the exception of archaeal diversity, the CF treatment exhibited the lowest bacterial, fungal, and protist diversity, and the simplest microbial co-occurrence network. In contrast, the CFR treatment had the lowest archaeal diversity, but the highest bacterial, fungal, and protist diversity. Moreover, the CFR treatment exhibited the most complex microbial co-occurrence network with the highest number of nodes, edges, and interkingdom edges. These results highlight that both chemical fertilization with and without straw retention caused high ecosystem multifunctionality while changing microbial association oppositely. Furthermore, these results indicate that rice straw retention contributes to the development of the soil microbiome and ensures the sustainability of high-level ecosystem multifunctionality.


Assuntos
Agricultura , Fertilizantes , Microbiologia do Solo , Solo , Fertilizantes/análise , Solo/química , Agricultura/métodos , Bactérias/classificação , Fungos , Oryza , Ecossistema , Microbiota/efeitos dos fármacos , Archaea
3.
Sci Total Environ ; 881: 163570, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37076002

RESUMO

No-tillage treatment, including no-tillage with straw retention (NTS) and without (NT), has been widely used as an efficient and sustainable alternative to conventional tillage with straw retention (CTS) and without (CT) and greatly affects soil physical quality and organic matter dynamics in cropland ecosystems. Although some studies have reported the effects of NTS on soil aggregate stability and soil organic carbon (SOC) concentration, the underlying mechanisms of how soil aggregates, aggregate-associated SOC and total nitrogen (TN) respond to no-tillage remain unclear. Through a global meta-analysis of 91 studies in cropland ecosystems, we evaluated the effects of no-tillage on soil aggregates and their associated SOC and TN concentrations. On average, no-tillage treatment significantly decreased the proportions of microaggregates (MA) by 21.4 % (95 % CI, -25.5 to -17.3 %) and silt+clay size particles (SIC) by 24.1 (95 % CI, -30.9 to -17.0 %), and increased the proportions of large macroaggregate (LA) by 49.5 % (95 % CI, 36.7-63.0 %) and small macroaggregate (SA) by 6.1 % (95 % CI, 2.0-10.9 %) compared to those in conventional tillage. The SOC concentrations for all three aggregate sizes increased significantly with no tillage: for LA by 28.2 % (95 % CI, 18.8-39.5 %), SA by 18.0 % (95 % CI, 12.8-23.3 %), and MA by 9.1 % (95 % CI, 2.6-16.8 %). TN also increased significantly for all sizes with no tillage, with LA by 13.6 % (95 % CI, 8.6-17.6 %), SA by 11.0 % (95 % CI, 5.0-17.0 %), MA by 11.7 % (95 % CI, 7.0-16.4 %), and SIC by 7.6 % (95 % CI, 2.4-13.8 %). The magnitude of the no-tillage treatment effect on soil aggregation, aggregate-associated SOC and TN varied with the environmental and experimental conditions. The positive effect on the proportions of LA occurred with initial soil organic matter (SOM) content >10 g kg-1, whereas SOM <10 g kg-1 did not change significantly. Additionally, the effect size of NTS compared with CTS was lower than that of NT compared with CT. These findings suggest that NTS may promote physically protective SOC accumulation through the formation of macroaggregates by reducing disturbance destruction and increasing plant-derived binding agents. The findings highlight that no-tillage may enhance the formation of soil aggregates and the associated SOC and TN concentrations in global cropland ecosystems.

4.
Front Microbiol ; 14: 1133973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998394

RESUMO

Sugarcane straw returned to the field has rapidly increased due to the bane on straw burning in China. Straw returning of new sugarcane cultivars has been practiced in the fields. Still, its response has not been explored on soil functionality, microbial community and yield of different sugarcane cultivars. Therefore, a comparison was made between an old sugarcane cultivar ROC22 and a new sugarcane cultivar Zhongzhe9 (Z9). The experimental treatments were: without (R, Z), with straw of the same cultivar (RR, ZZ), and with straw of different cultivars (RZ, ZR). Straw returning improved the contents of soil total nitrogen (TN by 73.21%), nitrate nitrogen (NO3 -N by 119.61%), soil organic carbon (SOC by 20.16%), and available potassium (AK by 90.65%) at the jointing stage and were not significant at the seedling stage. The contents of NO3 -N was 31.94 and 29.58%, available phosphorus (AP 53.21 and 27.19%), and available potassium (AK 42.43 and 11.92%) in RR and ZZ were more than in RZ and ZR. Straw returning with the same cultivar (RR, ZZ) significantly increased the richness and diversity of the rhizosphere microbial community. The microbial diversity of cultivar Z9 (treatment Z) was greater than that of cultivar ROC22 (Treatment R). In the rhizosphere, the relative abundance of beneficial microorganisms Gemmatimonadaceae, Trechispora, Streptomyces, Chaetomium, etc., increased after the straw returned. Sugarcane straw enhanced the activity of Pseudomonas and Aspergillus and thus increased the yield of sugarcane., The richness and diversity of the rhizosphere microbial community of Z9 increased at maturity. In ROC22, bacterial diversity increased, and fungal diversity decreased. These findings collectively suggested that the impact of Z9 straw returning was more beneficial than ROC22 on the activity of rhizosphere microorganism's soil functionality and sugarcane production.

5.
Environ Sci Pollut Res Int ; 30(17): 51075-51088, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807262

RESUMO

Application of crop residues and chemical nitrogen (N) fertilizer is a conventional practice for achieving high yield in a rice system. However, the fallacious combination of N fertilizers with crop straw not only significantly reduces the N use efficiencies (NUEs) but also leads to serious environmental problems. The present study employed five treatments including no N fertilization and no straw incorporation (ck), N fertilization incorporation only (S0), N fertilization with 40% straw (S40), N fertilization with 60% straw (S60), and N fertilization with 100% straw (S100) to improve N use efficiency as well as reduced Cd distribution in rice. The crop yields were largely enhanced by fertilization ranging from 13 to 52% over the straw addition treatments. Compared with ck, N fertilizer input significantly decreased soil pH, while DOC contents were raised in response to straw amendment, reaching the highest in S60 and S100 treatments, respectively. Moreover, straw addition substantially impacted the Cd accumulation and altered the bacterial community structure. The soil NH4+-N concentration under S0 performed the maximum in yellow soil, while the minimum in black soil compared to straw-incorporated pots. In addition, the soil NO3--N concentration in straw-incorporated plots tended to be higher than that in straw-removed plots in both soils, indicating that crop straw triggering the N mineralization was associated with native soil N condition. Furthermore, the NUE increased with 15 N uptake in the plant, and the residual 15 N in soil was increased by 26.8% with straw addition across four straw application rates. Overall, our study highlights the trade-offs between straw incorporation with N fertilizer in eliminating potential Cd toxicity, increasing fertilizer-N use efficiencies and help to provide a feasible agricultural management.


Assuntos
Fertilizantes , Oryza , Fertilizantes/análise , Oryza/química , Cádmio/análise , Agricultura , Solo/química , Nitrogênio/análise , China
6.
Sci Total Environ ; 828: 154316, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35257762

RESUMO

Minimum tillage, residue recycling and the use of cover crops are key elements of conservation agriculture that play important roles in soil carbon (C) and nitrogen (N) dynamics. This study determined the long-term effects of tillage practice (conventional ploughing vs. direct seeding), straw management (retained vs. removed), and the presence of a cover crop (CC; fodder radish in this study) on nitrous oxide (N2O) emissions, nitrate (NO3-) leaching, and soil mineral N dynamics between October 2019 and June 2020. In the factorial experiment with eight treatment combinations, cumulative N2O emissions ranged from 0.04 to 0.8 kg N ha-1, whereas NO3- leaching varied between 4 and 28 kg N ha-1. The study did not find effects of straw retention on NO3- leaching or N2O emissions. No-till reduced N2O emissions by on average 46% compared to ploughing. Fodder radish reduced NO3- leaching by 80-84%, and there was little N2O emission in the presence of the cover crop; however, after termination in spring there was a flush of N2O, cumulative N2O-N averaged 0.1 and 0.5 kg N ha-1 without and with a cover crop. With information about long-term soil C retention from straw and fodder radish, an overall greenhouse (GHG) balance was calculated for each system. Without straw retention after harvest, there was always a positive net GHG emission, and the indirect N2O emission from NO3- leaching was similar to, or greater than direct N2O emissions. However, in the presence of fodder radish, the direct N2O emissions after termination were much more important than indirect emissions, and negated the C input from fodder radish. Direct seeding, straw retention and the use of a cover crop showed positive effects on N retention and/or GHG balance and could substantially improve the carbon footprint of agroecosystems on sandy soil in a wet temperate climate.


Assuntos
Óxido Nitroso , Solo , Agricultura , Fertilizantes/análise , Nitratos , Óxido Nitroso/análise , Areia , Solo/química
7.
Huan Jing Ke Xue ; 43(3): 1668-1677, 2022 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-35258231

RESUMO

In order to explore the characteristics of N2O emissions from winter wheat fields in the Loess Plateau under different farming methods and nitrogen levels, the dynamic changes in N2O emissions from rain-fed winter wheat fields were quantified using static box-gas chromatography. Winter wheat 'Xiaoyan22' was used as the material, and a two-factor split area design was adopted. The conventional tillage (CT), straw incorporated into soil (SM), and flat film mulching (FM) were assigned as the main plot, and three nitrogen fertilizer rates (no nitrogen fertilization, 20% nitrogen reduction (144 kg·hm-2), and conventional nitrogen application (180 kg·hm-2)) were assigned as a split plot. Taking CT as a control, the effects of FM and SM on soil N2O emissions under different nitrogen rates were assessed. Furthermore, the correlation between relevant environmental factors and N2O emission flux were analyzed, and N2 emissions were estimated using empirical formulas. The results showed the following:the N2O emissions from the soil of each nitrogen treatment occurred within 20 days, and N2O emission flux peaked within two weeks post-fertilization. The average N2O flux, the total N2O emissions, and the global warming potential of N2O were 1.92-22.75 µg·(m2·h)-1, 0.10-0.46 kg·hm-2, and 26.72-122.15 kg·hm-2, respectively. The N2O emission coefficient of fertilizer nitrogen was 0.05%-0.28%. The total N2 emissions ranged from 0.70-1.82 kg·hm-2. The N fertilization and film mulching significantly increased the N2O emission flux (P<0.05) and the cumulative N2O emissions (P<0.05); however, SM marginally reduced the total N2O emissions. The N2O emission coefficient and global warming potential of fertilizer nitrogen under FM were significantly higher than those under CT and SM (P<0.05). The N2O emissions without nitrogen treatment were only significantly positively correlated with soil water-filled pore spaces (WFPS) (P<0.05); the N2O emissions in the N fertilization condition were significantly positively correlated with WFPS, ω(NO3--N), ω(NH4+-N), and 0-5 cm soil layer temperature (P<0.05). Overall, under the condition of no fertilization, water was the main factor to control the nitrogen transformation and soil N2O emission; nevertheless, under the N fertilization condition, both nitrification and denitrification contributed to the N2O emissions in the rain-fed winter wheat fields. Film mulching practice and nitrogen application markedly increased the N2O emissions, fertilizer nitrogen emission coefficient, and global warming potential in the rain-fed winter wheat fields. Nonetheless, straw incorporated into the soil resulted in a marginal reduction in N2O emissions.


Assuntos
Nitrogênio , Triticum , Agricultura/métodos , China , Fertilização , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Solo/química
8.
Sci Total Environ ; 820: 153352, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35077795

RESUMO

Soil surface management, i.e., mulch by film, straw or cover crop, is very important to water availability in soil on drylands worldwide, especially during the fallow season, when there is a high concentration of soil nitrate nitrogen (N) to produce nitrous oxide (N2O). To determine whether soil surface management affects N2O emissions during the fallow season, we conducted an experiment to compare N2O emissions from a wheat field that received different surface soil management strategies: control (CK), straw mulch and incorporation (SR), planting legume green manure and incorporation (GM), SR plus GM (SR + GM), and plastic film mulch (FM). The results showed that the average hourly N2O emissions during the fallow season were in the order SR (7.4 µg N m-2 h-1), GM (10.7 µg N m-2 h-1), SR + GM (11.7 µg N m-2 h-1), FM (15.5 µg N m-2 h-1), and CK (16.4 µg N m-2 h-1). Correspondingly, reduced total N2O emissions were observed in the SR, GM and SR + GM treatments, with an average reduction of 39.0% (from 302 to 184 g N ha-1) while increased N2O emissions were from the GM and SR + GM treatments in the wheat growing season. Additionally, N2O emissions were related to soil nitrate N content, microbial biomass and moisture. Overall, considering N2O emissions, C and N inputs by plant residues and grain yield, the management of GM has the potential to reduce greenhouse gas emissions and improve soil C sequestration and soil fertility. These results emphasized the importance of legume green manure to wheat-fallow cropping systems.


Assuntos
Fabaceae , Óxido Nitroso , Agricultura/métodos , China , Fertilizantes/análise , Óxido Nitroso/análise , Estações do Ano , Solo/química , Triticum
9.
Environ Sci Pollut Res Int ; 28(39): 54792-54801, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34014477

RESUMO

Inappropriate farm management practices can lead to increased agricultural inputs and changes in atmospheric greenhouse gas (GHG) emissions, impacting climate change. This study was initiated in 2012 to assess the potential for straw retention to mitigate the negative environmental impact of various cropping systems on the Songnen Plain using the life cycle assessment (LCA) method combined with field survey data. Straw retention (STR) and straw removal (STM) treatments were established in continuous corn (CC) and corn-soybean rotation (CS) systems in a split-plot experiment. The effects of straw retention on the carbon footprint (CF) of cropland under different cropping systems were compared. The CF under CC was 2434-2707 kg CO2 ha-1 year-1, 49-57% higher than that under CS. Nitrogen fertilizer produced the most CO2, accounting for 66-80% of the CF. The carbon balances of the CC and CS systems with STR were positive, with annual carbon sequestrations of 9633 and 2716 kg CO2 ha-1 year-1, respectively. The carbon balance (CB) of CC-STR was 255% higher than that of CS-STR. This study demonstrates that STR under CC cultivation is an environmentally friendly practice for agricultural production, can help achieve high-yield and low-carbon production in rainfed cropland, and can support the sustainable development of grain production in Northeast China.


Assuntos
Agricultura/métodos , Pegada de Carbono , Desenvolvimento Sustentável , China , Produtos Agrícolas/crescimento & desenvolvimento , Projetos de Pesquisa
10.
Environ Sci Pollut Res Int ; 28(31): 42362-42371, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813695

RESUMO

Crop straw retention is a strongly recommended practice for sustainable agricultural production in China. However, a comprehensive analysis of straw retention effects on crop yield, N2O and CH4 emissions, net greenhouse gas (NGHG), and net greenhouse gas intensity (NGHGI) and their response to various external influence factors, including location/climatic conditions, soil properties, and field management practices, in a national scale were easily ignored. Based on the collected published literatures, we found that straw retention improved crop yield and N2O and CH4 emissions by 4.7% (-4.6 to 25.8%), 18.3% (-26.6 to 57.6%), and 21.0% (-49.0 to 214.5%) in contrast with no-straw retention. For different external conditions, crop yield was increased by 15.9% in temperate zone and 10.7% in upland soils with straw retention. N2O emissions which correspond to the above conditions were enhanced by 42.2% and 18.8%, while CH4 emissions were restrained by 49.0% in temperate zone. Negligible changes in crop yield and N2O emissions were observed for subtropical zone or paddy soils, but with increase in CH4 emissions. Additionally, straw retention enhanced NGHG and NGHGI by 20.7% and 15.4% on average regardless of various external conditions, respectively. However, NGHG was reduced under conditions of straw retention in temperature or mulching to field. Straw retention under appropriate site-specially conditions simultaneously safeguard food security and slightly increase environmental effects.


Assuntos
Gases de Efeito Estufa , Oryza , Agricultura , China , Gases de Efeito Estufa/análise , Metano/análise , Óxido Nitroso/análise , Solo
11.
BMC Microbiol ; 21(1): 52, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33596827

RESUMO

BACKGROUND: Straw retention is a substitute for chemical fertilizers, which effectively maintain organic matter and improve microbial communities on agricultural land. The purpose of this study was to provide sufficient information on soil fungal community networks and their functions in response to straw retention. Hence, we used quantitative real-time PCR (qRT-PCR), Illumina MiSeq (ITS rRNA) and FUNGuild to examine ITS rRNA gene populations, soil fungal succession and their functions under control (CK) and sugarcane straw retention (SR) treatments at different soil layers (0-10, 10-20, 20-30, and 30-40 cm) in fallow fields. RESULT: The result showed that SR significantly enhanced ITS rRNA gene copy number and Shannon index at 0-10 cm soil depth. Fungi abundance, OTUs number and ACE index decreased with the increasing soil depth. The ANOSIM analysis revealed that the fungal community of SR significantly differed from that of CK. Similarly, significant difference was also observed between topsoil (0-20 cm) and subsoil (20-40 cm). Compared with CK, SR decreased the relative abundance of the pathogen, while increased the proportion of saprotroph. Regarding soil depth, pathogen relative abundance in topsoil was lower than that in subsoil. Besides, both sugarcane straw retention and soil depths (topsoil and subsoil) significantly altered the co-occurrence patterns and fungal keystone taxa closely related to straw decomposition. Furthermore, both SR and topsoil had higher average clustering coefficients (aveCC), negative edges and varied modularity. CONCLUSIONS: Overall, straw retention improved α-diversity, network structure and fungal community, while reduced soil pathogenic microbes across the entire soil profile. Thus, retaining straw to improve fungal composition, community stability and their functions, in addition to reducing soil-borne pathogens, can be an essential agronomic practice in developing a sustainable agricultural system.


Assuntos
Agricultura/métodos , Ecossistema , Micobioma/genética , Micobioma/fisiologia , Microbiologia do Solo , Fungos/genética , Fungos/metabolismo , Saccharum/metabolismo , Solo/química
12.
J Environ Sci Health B ; 55(12): 1114-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296266

RESUMO

Sugarcane straw may work as a physical barrier for pre-emergent herbicides and interact with their molecules, increasing sorption process. Adjuvants may change herbicides dynamics in the environment and improve their efficiency for weed control. The objective of this work was to evaluate sorption and desorption of pendimethalin alone and in mixture with adjuvant in soil and sugarcane straw. Sorption experiments were performed using pendimethalin alone and in mixture with vegetable oil with herbicide solution concentrations ranging between 2.5 and 40 µg mL-1 for both conditions. Sorption distribution coefficient (Kd) for soil was 18.48 mL g-1 using pendimethalin alone. Kd value was not determined when pendimethalin was in mixture with adjuvant due to the complete retention of the herbicide in the soil regardless of the initial aqueous phase concentration. Sugarcane straw sorption experiment had Kd values corresponding to 355.52 and 27.24 mL g-1 for pendimethalin alone and in mixture with adjuvant, respectively, indicating the addition of vegetable oil may significantly decrease pendimethalin retention in the straw and could improve weed control. Besides all desorption coefficients were higher than the respective sorption coefficients, which means that the sorption process may be considered irreversible.


Assuntos
Compostos de Anilina/química , Herbicidas/química , Saccharum , Solo/química , Adsorção , Brasil , Cromatografia Líquida de Alta Pressão , Caules de Planta/química , Água , Controle de Plantas Daninhas/métodos
13.
Ying Yong Sheng Tai Xue Bao ; 30(2): 573-582, 2019 Feb 20.
Artigo em Chinês | MEDLINE | ID: mdl-30915810

RESUMO

A field experiment was conducted to examine the effects of plastic film mulching (PM), straw retention (SR), and planting green manure (GM) on winter wheat grain yield and soil fertility. The results showed that PM did not have consistently positive effect on the grain yield, when compared to the traditional patterns (TP). No difference of average grain yield was observed between them over three years. Soil total nitrogen (N), available phosphorus (P), potassium (K), sulfur (S), zinc (Zn) and manganese (Mn) were decreased in 20-40 cm layer in PM than those in TP, while no difference was observed for soil organic matter, nitrate (NO3--N), available iron (Fe) and copper (Cu). The mean grain yield of three years decreased by 12.1% in SR than that in TP treatment. At maturity stage of winter wheat, soil total N and available Cu was increased by 5.8% in 0-20 cm and 6.2% in 20-40 cm layer, respectively, while soil available P and Mn were decreased by 36.1% and 10.2%, respectively. No difference was observed between SR and TP treatments for soil organic matter, NO3--N, available K, S, Zn and Fe at anthesis and maturity stages. Compared to the TP treatment, the mean grain yield was decreased by 12.1% in GM treatment. Soil pH, available P and S were decreased, while the soil organic matter, total N, NO3--N, and available Zn and Mn were increased. No difference was observed for soil available K, Fe and Cu. In conclusion, the PM and SR were not beneficial for the improvement of soil fertility, and thus inhibited the grain yield increase in dryland with low soil fertility level. The GM has greater potential to increase soil nutrients, but it should be paid more attention to the risk of grain yield reduction due to insufficient annual precipitation.


Assuntos
Solo , Triticum , Grão Comestível , Esterco , Nitrogênio
14.
Front Plant Sci ; 9: 1328, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30369934

RESUMO

Intercropping is considered a promising system for boosting crop productivity. However, intercropping usually requires higher inputs of resources that emit more CO2. It is unclear whether an improved agricultural pattern could relieve this issue and enhance agricultural sustainability in an arid irrigation area. A field experiment using a well-designed agricultural practice was carried out in northwest China; reduced tillage, coupled with wheat straw residue retention measures, was integrated with a strip intercropping pattern. We determined the crop productivity, water use, economic benefits, and carbon emissions (CEs). The wheat-maize intercropping coupled with straw covering (i.e., NTSI treatment), boosted grain yield by 27-38% and 153-160% more than the conventional monoculture of maize and wheat, respectively, and it also increased by 9.9-11.9% over the conventional intercropping treatment. Similarly, this pattern also improved the water use efficiency by 15.4-22.4% in comparison with the conventional monoculture of maize by 45.7-48.3% in comparison with the conventional monoculture of wheat and by 14.7-15.9% in comparison with the conventional intercropping treatment. Meanwhile, NTSI treatment caused 7.4-13.7% and 37.0-47.7% greater solar energy use efficiency than the conventional monoculture of maize and wheat, respectively. Furthermore, the NTSI treatment had a higher net return (NR) by 54-71% and 281-338% and a higher benefit per cubic meter of water (BPW) by 35-51% and 119-147% more than the conventional monoculture of maize and wheat, respectively. Similarly, it increased the NR and BPW by 8-14% and 14-16% in comparison with the conventional intercropping treatment, respectively. An additional feature of the NTSI treatment is that it reduced CEs by 13.4-23.8% and 7.3-17.5% while improving CE efficiency by 62.6-66.9% and 23.2-33.2% more than the conventional monoculture maize and intercropping treatments, respectively. We can draw a conclusion that intercropping maize and wheat, with a straw covering soil surface, can be used to enhance crop production and NRs while effectively lowering CO2 emissions in arid oasis irrigation region.

15.
Ying Yong Sheng Tai Xue Bao ; 29(3): 818-826, 2018 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-29722224

RESUMO

A field experiment was conducted to examine the effects of plastic film mulching (PM), straw retention (SR) and planting green manure (GM) on grain yield and nutrient concentrations of winter wheat. Compared to the traditional pattern (TP), plastic film mulching showed no significant effect on the average yield over the three years but increased the average phosphorus (P) uptake and concentration in grain by 8.4% and 13.0%, respectively. The average uptake of nitrogen (N), sulfur (S) and iron (Fe) was decreased by 12.6%, 15.0% and 11.1%, and the corresponding concentration was decreased by 12.1%, 12.9% and 10.1%, respectively. There was no significant effect on grain zinc (Zn) concentration. Straw retention decreased grain yield by 12.1%, reduced the average uptake of N, S and Fe decreased by 22.5%, 21.0% and 19.8%, and their corresponding concentration by 10.1%, 9.4% and 3.8%, respectively. The average uptake of P in grain was decreased by 9.8% with straw retention, while the P concentration was increased by 5.0%. There was no significant effect of straw retention on Zn concentration in grain. Planting green manure decreased the grain yield by 12.1%. It had no significant effect on the average uptake of N and Zn, but increased the grain N and Zn concentration by 12.1% and 12.6%, respectively. It showed no impact on P, S and Fe concentration in grain. The discordance between variation of grain yield and its nutrient uptake under different cultivations was the key reason for the changes of their nutrient concentration. Considering the potential adverse effects of plastic film mulching and straw retention on the quantity and quality of grain yield, suitable N fertilization should be applied to ensure the nutrient requirement for grain yield and regulate the uptake and utilization of N, S and Fe for improving the grain quality. Planting green manure could improve soil fertility and increase grain N and Zn concentration, but the yield reduction deserves more attention.


Assuntos
Solo/química , Triticum/crescimento & desenvolvimento , Agricultura , Grão Comestível , Poaceae
16.
Environ Sci Pollut Res Int ; 25(7): 6407-6413, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29249028

RESUMO

In the hilly areas of southern China, uplands and paddies are located adjacent to each other. Using rice straw as mulch for upland soil may improve crop production and partially replace chemical fertilizers, which may mitigate N2O emissions. A field experiment was conducted to investigate the potential of rice straw mulching for mitigating N2O emissions and increasing crop production. The treatments included no mulching (CK), 5000 kg ha-1 of straw mulching (SM5), and 10,000 kg ha-1 of straw mulching (SM10). Moreover, all the treatments received equivalent amounts of nitrogen, phosphorus, and potassium from chemical fertilizers plus rice straw. Relative to CK, cumulative N2O emissions decreased by 23.1 and 33.5% with SM5 and SM10, respectively. Significant positive correlations were observed between N2O fluxes and soil water-filled pore space (WPFS) (r 2 = 0.495, P < 0.05) and between seasonal cumulative N2O fluxes and the chemical N fertilization rate (r 2 = 0.814, P < 0.05). These findings indicate that soil WPFS was the key environmental factor in N2O emissions and that the substitution of chemical nitrogen fertilizer with rice straw was the main driver of N2O mitigation. Relative to CK, the maize yield increased by 16.5 and 29.6% with SM5 and SM10, respectively, which can be attributed primarily to the increases in soil moisture. The chemical fertilizer input could be decreased and N2O emissions could be mitigated through straw mulching, while achieving improved crop yield. This management strategy has great potential, and this study provides an important reference for low-carbon agriculture.


Assuntos
Poluentes Atmosféricos/análise , Fertilizantes/análise , Óxido Nitroso/análise , Oryza/química , Chuva , Zea mays/crescimento & desenvolvimento , Agricultura , China , Solo/química
17.
Huan Jing Ke Xue ; 38(6): 2586-2593, 2017 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965381

RESUMO

The primary aim of this study was to quantify the effects of long-term organic amendments on soil nitrous oxide (N2O) emissions. Using static chamber-gas chromatograph technique, we measured N2O fluxes from winter wheat-maize rotation system and related environmental factors in the Guanzhong Plain for one year (October 2014 to October 2015). Field experiments were based on the "Chinese National Loess Fertility and Fertilizer Effects Long-term Monitoring Experiment". Four treatments were control (CK, 0 kg·hm-2), NPK (NPK, 353 kg·hm-2), NPK combined with maize straw[NPKS, (353+40) kg·hm-2] and cattle waste[NPKM, (238+115) kg·hm-2]. During the experimental period, N2O fluxes from CK treatment were small[<2.9 g·(hm2·d)-1]; while emissions from fertilized treatments peaked after fertilization[up to 113.4 g·(hm2·d)-1 for NPKS] and irrigation[up to 495.0 g·(hm2·d)-1 for NPKM] during winter wheat and maize seasons, respectively. N2O flux was significantly correlated to soil water-filled pore space for all treatments (r>0.28,P<0.05). Annual N2O emissions were (0.1±0.0), (2.6±0.1), (3.4±0.7) and (2.9±0.3) kg·hm-2 for CK, NPK, NPKS and NPKM, respectively. The fertilized treatments released higher N2O emissions than CK treatment (P<0.05), indicating that fertilization stimulated N2O emissions. However, the differences in N2O emissions were not significant among the fertilized treatments (P=0.06), suggesting that organic amendments did not increase N2O emissions obviously. The direct emission factors were 0.72%, 0.83% and 0.80% for NPK, NPKS and NPKM, respectively, all of which were lower than the IPCC default of 1%. The yield-scaled N2O emission for NPKM was the lowest among the fertilized treatments.


Assuntos
Agricultura , Fertilizantes , Óxido Nitroso/análise , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Animais , Bovinos , China , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA