Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Molecules ; 29(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125033

RESUMO

The toxicity of silver nanoparticles (AgNPs) depends on their physicochemical properties. The ongoing research aims to develop effective methods for modifying AgNPs using molecules that enable control over the processes induced by nanoparticles in both normal and cancerous cells. Application of amino acid-stabilized nanoparticles appears promising, exhibiting tunable electrokinetic properties. Therefore, this study focused on determining the influence of the surface charge of cysteine (CYS)-stabilized AgNPs on their toxicity towards human normal B (COLO-720L) and T (HUT-78) lymphocyte cell lines. CYS-AgNPs were synthesized via the chemical reduction. Transmission electron microcopy (TEM) imaging revealed that they exhibited a quasi-spherical shape with an average size of 18 ± 3 nm. CYS-AgNPs remained stable under mild acidic (pH 4.0) and alkaline (7.4 and 9.0) conditions, with an isoelectric point observed at pH 5.1. Following a 24 h treatment of lymphocytes with CYS-AgNPs, concentration-dependent alterations in cell morphology were observed. Positively charged CYS-AgNPs notably decreased lymphocyte viability. Furthermore, they exhibited grater genotoxicity and more pronounced disruption of biological membranes compared to negatively charged CYZ-AgNPs. Despite both types of AgNPs interacting similarly with fetal bovine serum (FBS) and showing comparable profiles of silver ion release, the biological assays consistently revealed that the positively charged CYS-AgNPs exerted stronger effects at all investigated cellular levels. Although both types of CYS-AgNPs have the same chemical structure in their stabilizing layers, the pH-induced alterations in their surface charge significantly affect their biological activity.


Assuntos
Cisteína , Nanopartículas Metálicas , Prata , Prata/química , Cisteína/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Humanos , Sobrevivência Celular/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Linhagem Celular , Propriedades de Superfície , Concentração de Íons de Hidrogênio , Tamanho da Partícula
2.
ACS Nano ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052842

RESUMO

Moisture power generation (MPG) technology, producing clean and sustainable energy from a humid environment, has drawn significant attention and research efforts in recent years as a means of easing the energy crisis. Despite the rapid progress, MPG technology still faces numerous challenges with the most significant one being the low power-generating performance of individual MPG devices. In this review, we introduce the background and underlying principles of MPG technology while thoroughly explaining how the selection of suitable materials (carbons, polymers, inorganic salts, etc.) and the optimization of the device structure (pore structure, moisture gradient structure, functional group gradient structure, and electrode structure) can address the existing and anticipated challenges. Furthermore, this review highlights the major scientific and engineering hurdles on the way to advancing MPG technology and offers potential insights for the development of high-performance MPG systems.

3.
Sensors (Basel) ; 24(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38894304

RESUMO

The streaming potential effect has a wide range of applications in geophysics. The core streaming potential experiment requires that there is no external circuit at both ends of the core, but a measurement circuit must be introduced to measure the voltage between both ends of the core which will cause an external circuit. In order to analyze the effect of measurement circuits on the streaming potential experiment, this paper proposes a core current source model, i.e., the core in the streaming potential experiment is regarded as a circuit composed of a current source whose output current is equal to the seepage current and the core resistance. By changing the resistance value of the external circuit, it is found that the seepage current is not affected by the external resistance but by the excitation pressure. Experiments on the streaming potential of 20 sandstone cores under distilled water, 0.01 mol/L, 0.02 mol/L, 0.05 mol/L, 0.1 mol/L, 0.2 mol/L, 0.4 mol/L, and 0.6 mol/L sodium chloride solutions revealed that the effect of the external circuit on the streaming potential signal increased with decreasing mineralization. For distilled water-saturated sandstone cores, the effect of the external circuit was about 2%.

4.
J Mech Behav Biomed Mater ; 154: 106534, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581961

RESUMO

Articular cartilage exhibits site-specific tissue inhomogeneity, for which the tissue properties may continuously vary across the articular surface. To facilitate practical applications such as studying site-specific cartilage degeneration, the inhomogeneity may be approximated with several distinct region-wise variations, with one set of tissue properties for one region. A clustering method was previously developed to partition such regions using cartilage indentation-relaxation and thickness mapping instead of simply using surface geometry. In the present study, a quantitative parameter based on streaming potential measurement was introduced as an additional feature to assess the applicability of the methodology with independent datasets. Experimental data were collected from 24 sets of femoral condyles, extracted from fresh porcine stifle joints, through streaming potential mapping, automated indentation, and needle penetration tests. K-means clustering and Elbow method were used to find optimal region partitions. Consistent with previous findings, three regions were suggested for either lateral or medial condyle regardless of left or right joint. The region shapes were approximately triangular or trapezoidal, which was similar to what was found previously. Streaming potentials were confirmed to be region-dependent, but not significantly different among joints. The cartilage was significantly thicker in the medial than lateral condyles. The region areas were consistent among joints, and comparable to that found in a previous study. The present study demonstrated the capability of region partitioning methods with different variables, which may facilitate new applications whenever site-specific tissue properties must be considered.


Assuntos
Cartilagem Articular , Animais , Suínos , Articulação do Joelho , Fêmur
5.
Artigo em Inglês | MEDLINE | ID: mdl-38679283

RESUMO

OBJECTIVE: To perform non-invasive Electroarthrography (EAG) on live horses and establish relationships between EAG and direct measurements of cartilage streaming potentials in weight bearing areas of the equine metacarpophalangeal joint. DESIGN: EAG was performed bilaterally on the metacarpophalangeal joints of live horses (n = 3). Separate experiments used metacarpophalangeal joint explants (n = 11) to measure EAG obtained during simulated loading followed by direct measurements of cartilage streaming potentials on joint surfaces using the Arthro-BST probe. Joints were assigned to relatively normal (n = 5) and mildly degraded (n = 6) groups based on histological scoring of Safranin-O/Fast Green stained sections. RESULTS: EAG, involving application of electrodes to skin surrounding the joint and repeated weight shifting, was well-tolerated in live horses. One pair of distal forelimbs were available for analogous ex vivo EAG testing and measurements were strongly correlated to in vivo EAG measurements obtained on the same joints (r = 0.804, p = 0.016, n = 8). Both indirect (EAG) and direct (Arthro-BST) measurements of cartilage streaming potentials distinguished between normal and mildly degraded cartilage with statistically significant differences at 5 of 6 and 4 of 6 electrodes during simulated standing and walking, respectively. Strong and moderate correlations for weight bearing regions on the dorsal phalanx and central metacarpus were detected during both standing and walking. At the metacarpus/sesamoid interface a moderate correlation occurred during walking. CONCLUSION: Non-invasive EAG was used successfully in a clinical scenario and correlated to direct measurements of streaming potentials in weight bearing cartilage. These data support the potential of EAG to contribute to the diagnosis and treatment of degenerative joint diseases.

6.
Comput Biol Med ; 172: 108247, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493605

RESUMO

Streaming potential is a type of stress-generated potential in bone that affects the electrical environment of osteocytes and may play a role in bone remodeling. Because the electrical environment around osteocytes has been difficult to measure experimentally until now, a numerical solid-liquid-streaming potential coupling method was proposed to analyze the streaming potential generated by bone deformation in the lacunae and canaliculus network (LCN) of the bone. Using this method, the cellular shear stress caused by liquid flow on the osteocyte surface was first calculated, and the results were consistent with those reported in the literature. Subsequently, the streaming potentials in the LCN caused by bone matrix deformation under an external gait load were calculated numerically. The results showed that the streaming potential increased slowly in the lacuna and relatively rapidly in the canaliculus and that the streaming potential increased with a decrease in the radius or an increase in the length of the canaliculus. The results also showed that relatively large gaps between the lacunae and osteocytes could induce higher streaming potentials under the same loading.


Assuntos
Matriz Óssea , Osteócitos , Humanos , Osso e Ossos , Remodelação Óssea
7.
ACS Appl Mater Interfaces ; 16(8): 9980-9988, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38358294

RESUMO

Thermal evaporation generators exhibit remarkable output performance, sustainability, and economy and, as a result, have attracted considerable interest as a prospective energy-converting technology for harvesting renewable energy. Here, we investigate power generation induced by water evaporation within a button supercapacitor with a simple sandwich structure. For conventional water evaporation devices, the thermodiffusion direction of hydrated ions driven by the Soret effect is opposite to the migration direction of hydrated ions driven by the streaming potential effect during thermal evaporation, which could reduce the output performance of the device. By tuning the thermodiffusion direction to be consistent with the thermal evaporation direction, our button supercapacitor achieves enhanced output performance as high as 674.4 mV, 70.7 mA, and 4.68 mW cm-2 due to the synergistic mechanism of the streaming potential effect and the Soret effect. Moreover, the system could effectively achieve in situ energy generation and storage owing to the device's ability to act as a supercapacitor. Our findings supply a feasible strategy for the synergistic integration of waste energy sources (low-grade waste heat, etc.) to generate electricity.

8.
J Colloid Interface Sci ; 663: 251-261, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38401445

RESUMO

Electricity generation by natural water evaporation generators (NWEGs) using porous materials shows great potential for energy harvesting, but mechanistic investigations of NWEGs have mostly been limited to streaming potential studies. In this study, we propose the coexistence of an evaporation potential and streaming potential in a NWEG using ZSM-5 as the generation material. The iron probe method, salt concentration regulation, solution regulation, and side evaporation area regulation were used to analyze the NWEG mechanism. Our findings revealed that a streaming potential formed as water flowed inside the ZSM-5 nanochannels, driven by electrodynamic effects that increased from the bottom to the top of the generator. In addition, an evaporation potential existed at the surface interface between ZSM-5 and water, which decreased from the bottom to the top as the evaporation height of the generator increased. The resulting open-circuit voltage (Voc) depended on the balance between the evaporation and streaming potentials, both of which were influenced by the evaporation enthalpy (Ee) or vapor pressure. Generally, a higher Ee or lower vapor pressure led to a lower evaporation potential and subsequently a lower Voc. A dual mechanism involving synergistic evaporation potential and streaming potential is proposed to explain the mechanism of NWEGs.

9.
Ann Biomed Eng ; 52(4): 1009-1020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240956

RESUMO

Many arthroscopic tools developed for knee joint assessment are contact-based, which is challenging for in vivo application in narrow joint spaces. Second harmonic generation (SHG) laser imaging is a non-invasive and non-contact method, thus presenting an attractive alternative. However, the association between SHG-based measures and cartilage quality has not been established systematically. Here, we investigated the feasibility of using image-based measures derived from SHG microscopy for objective evaluation of cartilage quality as assessed by mechanical testing. Human tibial plateaus harvested from nine patients were used. Cartilage mechanical properties were determined using indentation stiffness (Einst) and streaming potential-based quantitative parameters (QP). The correspondence of the cartilage electromechanical properties (Einst and QP) and the image-based measures derived from SHG imaging, tissue thickness and cell viability were evaluated using correlation and logistic regression analyses. The SHG-related parameters included the newly developed volumetric fraction of organised collagenous network (Φcol) and the coefficient of variation of the SHG intensity (CVSHG). We found that Φcol correlated strongly with Einst and QP (ρ = 0.97 and - 0.89, respectively). CVSHG also correlated, albeit weakly, with QP and Einst, (|ρ| = 0.52-0.58). Einst and Φcol were the most sensitive predictors of cartilage quality whereas CVSHG only showed moderate sensitivity. Cell viability and tissue thickness, often used as measures of cartilage health, predicted the cartilage quality poorly. We present a simple, objective, yet effective image-based approach for assessment of cartilage quality. Φcol correlated strongly with electromechanical properties of cartilage and could fuel the continuous development of SHG-based arthroscopy.


Assuntos
Cartilagem Articular , Microscopia de Geração do Segundo Harmônico , Humanos , Estudos de Viabilidade , Colágeno/análise , Matriz Extracelular/química
10.
Comput Methods Biomech Biomed Engin ; 26(14): 1761-1771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37902439

RESUMO

In order to understand the distribution of streaming potentials in cartilage pores, this paper established finite element model to analyze. The results showed that the streaming potential in cartilage micro-pores increased along the axis. The electric potential in 5 µm straight micro-pore was about 50 µV, and the electric potential of curved bifurcation model was about 30 µV. The pressure and Zeta potential had a linear growth relationship with the streaming potential. The streaming potential decreased with the increase of ion concentration until ion concentration was saturated. These results could provide a theoretical basis for cartilage research.


Assuntos
Cartilagem Articular , Análise de Elementos Finitos , Estresse Mecânico
11.
Adv Colloid Interface Sci ; 320: 102985, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37734251

RESUMO

In porous systems, such as in oil reservoir rock formations, the double layers from opposite sides of the pores may overlap if the pore size is narrow. This overlap is relatively likely to occur under low-electrolyte concentrations, such as those in crude oil, thus markedly affecting the electrokinetic measurements. This article evaluates the effects of overlap of the diffuse layers in the narrow capillaries of the reservoir rock cores in oils. Methods were developed to estimate the double-layer thickness in hydrocarbon systems, and to predict the effects of double-layer overlap on the streaming current and hence on the calculation of surface potentials for flat-sided capillaries. These methods are used to interpret results from sandstone cores in crude oil and hydrocarbon solvents. The estimation of double-layer thickness in non-aqueous solvents on the basis of 1:1 charge carriers by analogy to water systems, with correction for viscosity and permittivity differences provides good results with respect to those from streaming current measurements.

12.
Nano Lett ; 23(14): 6651-6657, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37459201

RESUMO

Thermodynamic metastable water in negative pressure provides a possible solution to elevate the upper limit of evaporative heat transfer capacity and the efficiency of low-grade heat utilization, but practical implementations are challenging due to the difficulty in generating and maintaining large negative pressure. Herein, we report a novel structure with a hydrogel film as the evaporation surface and a permeable substrate as the functional layer to suppress cavitation. Based on the structure, we achieve an evaporation-driven flow system with negative pressure as low as -1.67 MPa. Molecular dynamics simulations elucidate the importance of strong water-polymer interactions in negative pressure generation. With the large negative pressure, we demonstrate a streaming potential generator that spontaneously converts environmental energy into electricity and outputs a voltage of 1.06 V. Moreover, we propose a "negative pressure heat pipe", which achieves a high heat transfer density of 9.6 kW cm-2 with a flow length of 1 m.

13.
Int J Biol Macromol ; 247: 125701, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37429346

RESUMO

Controlling cellular adhesion is a critical step in the development of biomaterials, and in cell- based biosensing assays. Usually, the adhesivity of cells is tuned by an appropriate biocompatible layer. Here, synthetic poly(diallyldimethylammonium chloride) (PDADMAC), natural chitosan, and heparin (existing in an extracellular matrix) were selected to assembly PDADMAC/heparin and chitosan/heparin films. The physicochemical properties of macroion multilayers were determined by streaming potential measurements (SPM), quartz crystal microbalance (QCM-D), and optical waveguide lightmode spectroscopy (OWLS). The topography of the wet films was imaged using atomic force microscopy (AFM). The adhesion of preosteoblastic cell line MC3T3-E1 on those well-characterized polysaccharide-based multilayers was evaluated using a resonant waveguide grating (RWG) based optical biosensor and digital holographic microscopy. The latter method was engaged to investigate long-term cellular behavior on the fabricated multilayers. (PDADMAC/heparin) films were proved to be the most effective in inducing cellular adhesion. The cell attachment to chitosan/heparin-based multilayers was negligible. It was found that efficient adhesion of the cells occurs onto homogeneous and rigid multilayers (PDADMAC/heparin), whereas the macroion films forming "sponge-like" structures (chitosan/heparin) are less effective, and could be employed when reduced adhesion is needed. Polysaccharide-based multilayers can be considered versatile systems for medical applications. One can postulate that the presented results are relevant not only for modeling studies but also for applied research.


Assuntos
Técnicas Biossensoriais , Quitosana , Quitosana/química , Polissacarídeos/farmacologia , Heparina/farmacologia , Heparina/química , Adesão Celular , Propriedades de Superfície
14.
Front Mol Biosci ; 10: 1063796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122567

RESUMO

Because they enable for the modification of both viscosity and osmolarity, sugars have been used as a biophysical probe of voltage-gated K-channels for a while. Viscosity variations made it possible to measure the pore sizes in large and small conductance K-channels using techniques similar to those used in the 1980s to study the gramicidin A channel. These analyses led to the finding that the size of the internal mouth appears to be the primary cause of the conductance differences between Shaker-like channels and large conductance BK-channels. As an osmotic agent, adding sugar unilaterally causes streaming potentials that indicate H2O/K+ cotransport across the BK-channel pore. Osmotic experiments on Shaker K-channels suggest that the pore gate operation and the slow inactivation displace comparable amounts of water. Functionally isolated voltage sensors allow estimation of individual osmotic work for each voltage sensing charge during voltage-activation, reporting dramatic internal and external remodeling of the Voltage Sensing Domain´s solvent exposed surfaces. Remarkably, each charge of the VSD appears to take a unique trajectory. Thus, manipulation of viscosity and osmolarity, together with 3D structures, brings in solid grounds to harmonize function and structure in membrane proteins such as K-channels and, in a wider scope, other structurally dynamic proteins.

15.
Biosensors (Basel) ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36979569

RESUMO

The application of lab-on-a-chip technologies in in vitro cell culturing swiftly resulted in improved models of human organs compared to static culture insert-based ones. These chip devices provide controlled cell culture environments to mimic physiological functions and properties. Models of the blood-brain barrier (BBB) especially profited from this advanced technological approach. The BBB represents the tightest endothelial barrier within the vasculature with high electric resistance and low passive permeability, providing a controlled interface between the circulation and the brain. The multi-cell type dynamic BBB-on-chip models are in demand in several fields as alternatives to expensive animal studies or static culture inserts methods. Their combination with integrated biosensors provides real-time and noninvasive monitoring of the integrity of the BBB and of the presence and concentration of agents contributing to the physiological and metabolic functions and pathologies. In this review, we describe built-in sensors to characterize BBB models via quasi-direct current and electrical impedance measurements, as well as the different types of biosensors for the detection of metabolites, drugs, or toxic agents. We also give an outlook on the future of the field, with potential combinations of existing methods and possible improvements of current techniques.


Assuntos
Barreira Hematoencefálica , Encéfalo , Animais , Humanos , Barreira Hematoencefálica/metabolismo , Transporte Biológico , Técnicas de Cultura de Células , Dispositivos Lab-On-A-Chip
16.
J Biomech ; 147: 111454, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706639

RESUMO

The stress-generated potential (SGP) of bone is one of the mechanisms affecting bone remodeling including piezoelectricity and streaming potential. To explore the interactions between the piezoelectric and streaming potential, an experimental setup was designed that simultaneously applied a concentrated force and liquid pressure to wet bone. Using this device, the stress-generated potential of wet bone under the two types of loads was measured. The experimental results show that under a constant liquid pressure, the measured potential curves increase over time, and its increasing rate decrease as the concentrated force increase. The measured peak amplitudes of potential decrease as the liquid pressure increase under the same concentrated force whether loading or unloading. To explain the coupling mechanism of the found phenomena, an equivalent model with two voltage sources and three equivalent resistances was established, and the equivalent electrical relationship between the piezoelectric and streaming potential was obtained by analyzing the model. The analysis discussion implies that various factors have influence on the coupling relationship between streaming and piezoelectric potentials, and the factors can be summarized as the changes of the three equivalent resistances caused by piezoelectric and streaming potentials.


Assuntos
Osso e Ossos , Fenômenos Mecânicos , Eletricidade , Pressão , Remodelação Óssea
17.
Nanomaterials (Basel) ; 12(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234482

RESUMO

In this paper, the electrokinetic energy conversion (EKEC) efficiency, streaming potential of viscoelastic fluids in microtubes under an external transversal magnetic field, and an axial pressure gradient are investigated. The Jeffreys fluid is applied to model the viscoelastic fluid, and the analytic solution of velocity field is obtained using the Green's function method. The influence of different dimensionless parameters, for instance, the Deborah numbers De and De*, which are related to the relaxation time and retardation time, respectively; the dimensionless electro-kinetic width K; the dimensionless frequency ω; the volume fraction of the nanoparticles φ and the dimensionless Hartmann number Ha; and three different imposed axial periodic pressure gradients (cosine, triangular, and square) on fluid dynamics are discussed. The physical quantities are graphically described, and the influence of different parameters on the EKEC is analyzed. The results indicate that De promotes the streaming potential and EKEC efficiency of the microtube, while De* inhibits them.

18.
Small ; 18(46): e2204603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36135971

RESUMO

Power generation by converting energy from the ambient environment has been considered a promising strategy for developing decentralized electrification systems to complement the electricity supply for daily use. Wet gases, such as water evaporation or moisture in the atmosphere, can be utilized as a tremendous source of electricity by emerging power generation devices, that is, moisture-enabled-electric nanogenerators (MEENGs). As a promising technology, MEENGs provided a novel manner to generate electricity by harvesting energy from moisture, originating from the interactions between water molecules and hydrophilic functional groups. Though the remarkable progress of MEENGs has been achieved, a systematic review in this specific area is urgently needed to summarize previous works and provide sharp points to further develop low-cost and high-performing MEENGs through overcoming current limitations. Herein, the working mechanisms of MEENGs reported so far are comprehensively compared. Subsequently, a systematic summary of the materials selection and fabrication methods for currently reported MEENG construction is presented. Then, the improvement strategies and development directions of MEENG are provided. At last, the demonstrations of the applications assembled with MEENGs are extracted. This work aims to pave the way for the further MEENGs to break through the performance limitations and promote the popularization of future micron electronic self-powered equipment.


Assuntos
Fontes de Energia Elétrica , Eletricidade , Eletrônica , Água
19.
Polymers (Basel) ; 14(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35808612

RESUMO

Polyelectrolyte multilayers are coatings formed by the alternate deposition of polycations and polyanions on a charged surface. In this study we examined how the type of substrate affects a multilayer prepared from poly(allylamine hydrochloride) and poly(acrylic acid). Silicon and titanium wafers were used as substrates. Their properties were systematically studied using ellipsometry, tensiometry, atomic force microscopy and streaming potential measurements. Multilayers were built up at pH = 7 with tetramethylammonium chloride as the background salt. The growth of films was monitored by ellipsometry, while the morphology and surface roughness were determined by atomic force microscopy. It was found that the thickness of multilayers containing 10 layers on silicon is 10 nm, whereas the thickness of the same film on titanium is three times higher. It was shown that multilayers formed on silicon display a grain-like structure, which was not the case for a film formed on titanium. Such morphological properties are also reflected in the surface roughness. Finally, it was shown that, in addition to the electrostatic interactions, the hydrophobicity of the substrate also plays an important role in the polyelectrolyte multilayer formation process and influences its thickness and properties.

20.
Membranes (Basel) ; 12(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736338

RESUMO

Highly selective ion separations are vital for producing pure salts, and membrane-based separations are promising alternatives to conventional ion-separation techniques. Our previous work demonstrated that simple pressure-driven flow through negatively charged isoporous membranes can separate Li+ and K+ with selectivities as high as 70 in dilute solutions. The separation mechanism relies on spontaneously arising streaming potentials that induce electromigration, which opposes advection and separates cations based on differences in their electrophoretic mobilities. Although the separation technique is simple, this work shows that high selectivities are possible only with careful consideration of experimental conditions including transmembrane pressure, solution ionic strength, the K+/Li+ ratio in the feed, and the extent of concentration polarization. Separations conducted with a rotating membrane show Li+/K+ selectivities as high as 150 with a 1000 rpm membrane rotation rate, but the selectivity decreases to 1.3 at 95 rpm. These results demonstrate the benefits and necessity of quantitative control of concentration polarization in highly selective separations. Increases in solution ionic strength or the K+/Li+ feed ratio can also decrease selectivities more than an order of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA