Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.245
Filtrar
1.
Indian J Orthop ; 58(8): 1016-1026, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087054

RESUMO

Introduction: Anti-inflammatory and anti-fibrotic properties maximize the therapeutic potential of bone marrow aspiration concentrate (BMAC) in osteoarthritis (OA) knee. There is a lack of studies to standardize the treatment procedure to make the studies done across various centers comparable to understand the lacunae better and develop further the deficiency in our understanding of BMAC for OA knee. We aimed to assess the degree of pain relief, functional outcome, and cartilage thickness with different doses of BMAC in primary OA knee. Materials and Methods: A single-centered prospective observational study was conducted with 80 patients of OA knee who were divided into 4 groups where group A (n = 20), group B (n = 20), group C (n = 20), and group D (n = 20) received intra-articular 1, 2, 5 million BMAC cells per kg body weight, and intra-articular saline, respectively. All patients were followed up with Visual Analog Scale (VAS), knee Injury and Osteoarthritis Outcome Score (KOOS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and International Knee Documentation Committee (IKDC) scores both pre and post-procedurally at 1, 3, 6, and 12 months follow-up. Results: The study found no significant differences in demographics or co-morbidities across four participant groups (A, B, C, D). However, clinical outcomes varied markedly: Groups B and C showed significant improvements in pain perception (VAS scores), knee function, and quality of life (KOOS and WOMAC scores), while Group A showed marginal or non-significant changes, and Group D exhibited no significant improvements. These findings suggest that treatments in Groups B and C reached the Minimal Clinically Important Difference, significantly enhancing patient-reported outcomes. Conclusion: A dose of 2 million BMAC cells per kg body weight for knee OA serves as the better regenerative modality of choice in cartilage regeneration. With our dose-escalation study, we would be able to standardize the treatment procedure and enable global comparison of the treatment method across various regions of the world.

2.
J Extracell Vesicles ; 13(8): e12472, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39092563

RESUMO

Recently, therapies utilizing extracellular vesicles (EVs) derived from mesenchymal stromal/stem cells (MSCs) have begun to show promise in clinical trials. However, EV therapeutic potential varies with MSC tissue source and in vitro expansion through passaging. To find the optimal MSC source for clinically translatable EV-derived therapies, this study aims to compare the angiogenic and immunomodulatory potentials and the protein and miRNA cargo compositions of EVs isolated from the two most common clinical sources of adult MSCs, bone marrow and adipose tissue, across different passage numbers. Primary bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (ASCs) were isolated from adult female Lewis rats and expanded in vitro to the indicated passage numbers (P2, P4, and P8). EVs were isolated from the culture medium of P2, P4, and P8 BMSCs and ASCs and characterized for EV size, number, surface markers, protein content, and morphology. EVs isolated from different tissue sources showed different EV yields per cell, EV sizes, and protein yield per EV. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of proteomics data and miRNA seq data identified key proteins and pathways associated with differences between BMSC-EVs and ASC-EVs, as well as differences due to passage number. In vitro tube formation assays employing human umbilical vein endothelial cells suggested that both tissue source and passage number had significant effects on the angiogenic capacity of EVs. With or without lipopolysaccharide (LPS) stimulation, EVs more significantly impacted expression of M2-macrophage genes (IL-10, Arg1, TGFß) than M1-macrophage genes (IL-6, NOS2, TNFα). By correlating the proteomics analyses with the miRNA seq analysis and differences observed in our in vitro immunomodulatory, angiogenic, and proliferation assays, this study highlights the trade-offs that may be necessary in selecting the optimal MSC source for development of clinical EV therapies.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Ratos Endogâmicos Lew , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Animais , Feminino , Ratos , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Neovascularização Fisiológica , Imunomodulação , Humanos , Células Cultivadas , Proliferação de Células , Células da Medula Óssea/metabolismo
3.
Biomater Adv ; 164: 213986, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39151272

RESUMO

Decellularized extracellular matrix (dECM) hydrogels loaded with adipose-derived stromal cells (ASC) or their conditioned medium (ASC CM) present a promising and versatile treatment approach for tissue vascularization and regeneration. These hydrogels are easy to produce, store, personalize, manipulate, and deliver to the target tissue. This literature review aimed to investigate the applications of dECM hydrogels with ASC or ASC CM for in vivo tissue vascularization. Fourteen experimental studies have been reviewed using vessel density as the primary outcome parameter for in vivo vascularization. The studies consistently reported an increased efficacy in augmenting angiogenesis by the ASC or ASC CM-loaded hydrogels compared to untreated controls. However, this systematic review shows the need to standardize procedures and characterization, particularly of the final administered product(s). The findings from these experimental studies highlight the potential of dECM hydrogel with ASC or ASC CM in novel tissue regeneration and regenerative medicine applications.

4.
J Bone Oncol ; 47: 100621, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39157742

RESUMO

Secondary metastases, accounting for 90 % of cancer-related deaths, pose a formidable challenge in cancer treatment, with bone being a prevalent site. Importantly, tumours may relapse, often in the skeleton even after successful eradication of the primary tumour, indicating that tumour cells may lay dormant within bone for extended periods of time. This review summarises recent findings in the mechanisms underlying tumour cell dormancy and the role of bone cells in this process. Hematopoietic stem cell (HSC) niches in bone provide a model for understanding regulatory microenvironments. Dormant tumour cells have been shown to exploit similar niches, with evidence suggesting interactions with osteoblast-lineage cells and other stromal cells via CXCL12-CXCR4, integrins, and TAM receptor signalling, especially through GAS6-AXL, led to dormancy, with exit of dormancy potentially regulated by osteoclastic bone resorption and neuronal signalling. A comprehensive understanding of dormant tumour cell niches and their regulatory mechanisms is essential for developing targeted therapies, a critical step towards eradicating metastatic tumours and stopping disease relapse.

5.
Inflamm Regen ; 44(1): 37, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152520

RESUMO

Mesenchymal stem/stromal cells (MSCs) are distributed in various tissues and are used in clinical applications as a source of transplanted cells because of their easy harvestability. Although MSCs express numerous cell-surface antigens, single-cell analyses have revealed a highly heterogeneous cell population depending on the original tissue and donor conditions, including age and interindividual differences. This heterogeneity leads to differences in their functions, such as multipotency and immunomodulatory effects, making it challenging to effectively treat targeted diseases. The therapeutic efficacy of MSCs is controversial and depends on the implantation site. Thus, there is no established recipe for the transplantation of MSCs (including the type of disease, type of origin, method of cell culture, form of transplanted cells, and site of delivery). Our recent preclinical study identified appropriate MSCs and their suitable transplantation routes in a mouse model of inflammatory bowel disease (IBD). Three-dimensional (3D) cultures of MSCs have been demonstrated to enhance their properties and sustain engraftment at the lesion site. In this note, we explore the methods of MSC transplantation for treating IBDs, especially Crohn's disease, from clinical trials published over the past decade. Given the functional changes in MSCs in 3D culture, we also investigate the clinical trials using 3D constructs of MSCs and explore suitable diseases that might benefit from this approach. Furthermore, we discuss the advantages of the prospective isolation of MSCs in terms of interindividual variability. This note highlights the need to define the method of MSC transplantation, including interindividual variability, the culture period, and the transplantation route.

6.
Front Cell Dev Biol ; 12: 1286815, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119037

RESUMO

Introduction: Fanconi anemia (FA) is an inherited disorder characterized by bone marrow failure, congenital malformations, and predisposition to malignancies. Alterations in hematopoietic stem cells (HSC) have been reported, but little is known regarding the bone marrow (BM) stroma. Thus, the characterization of Mesenchymal Stromal Cells (MSC) would help to elucidate their involvement in the BM failure. Methods: We characterized MSCs of 28 FA patients (FA-MSC) before and after treatment (hematopoietic stem cell transplantation, HSCT; or gene therapy, GT). Phenotypic and functional properties were analyzed and compared with MSCs expanded from 26 healthy donors (HD-MSCs). FA-MSCs were genetically characterized through, mitomycin C-test and chimerism analysis. Furthermore, RNA-seq profiling was used to identify dysregulated metabolic pathways. Results: Overall, FA-MSC had the same phenotypic and functional characteristics as HD-MSC. Of note, MSC-GT had a lower clonogenic efficiency. These findings were not confirmed in the whole FA patients' cohort. Transcriptomic profiling identified dysregulation in HSC self-maintenance pathways in FA-MSC (HOX), and was confirmed by real-time quantitative polymerase chain reaction (RT-qPCR). Discussion: Our study provides a comprehensive characterization of FA-MSCs, including for the first time MSC-GT and constitutes the largest series published to date. Interestingly, transcript profiling revealed dysregulation of metabolic pathways related to HSC self-maintenance. Taken together, our results or findings provide new insights into the pathophysiology of the disease, although whether these niche defects are involved in the hematopoietic defects seen of FA deserves further investigation.

7.
Stem Cell Res Ther ; 15(1): 242, 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098899

RESUMO

BACKGROUND: Mesenchymal stromal cell (MSC)-derived exosomes (MSC-Exo) have been recognized for their significant role in regulating macrophage polarization, a process crucial to the pathogenesis of abdominal aortic aneurysm (AAA). However, the therapeutic effects of MSC-Exo on AAA remain largely unexplored. Therefore, this study aimed to investigate the functional and mechanistic aspects of MSC-Exo in the progression of AAA. METHODS: The MSC-derived exosomes were characterized using Transmission Electron Microscopy, Nanoparticle Tracking Analysis, and Western blotting. An experimental mouse model of AAA was established through the administration of angiotensin II (Ang II) in male apoe-/- mice and calcium chloride (CaCl2) in male C57/B6 mice, with subsequent tail vein injection of exosomes to evaluate their efficacy against AAA. Macrophage polarization was assessed using immunofluorescence staining and WB analysis. Mechanistic analysis was performed using 4D Label-free Proteomics analysis. RESULTS: We found that intravenous administration of MSC-Exo induced M2 polarization of macrophages within an inflammatory environment, effectively impeding AAA development in Ang II or CaCl2-induced AAA model. The therapeutic efficacy of MSC-Exo treatment was dependent on the presence of macrophages. Mechanistically, MSC-Exo suppressed the levels of cluster of differentiation 74 (CD74), modulating macrophage polarization through the TSC2-mTOR-AKT pathway. These findings highlight the potential of MSC-Exo as a therapeutic strategy for AAA by modulating macrophage polarization.


Assuntos
Aneurisma da Aorta Abdominal , Exossomos , Macrófagos , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Exossomos/metabolismo , Camundongos , Células-Tronco Mesenquimais/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Masculino , Modelos Animais de Doenças , Angiotensina II/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Cloreto de Cálcio
8.
Zhongguo Zhong Yao Za Zhi ; 49(14): 3818-3827, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39099355

RESUMO

To explore the mechanism of Liangfang Wenjing Decoction regulating coiled-coil-helix coiled-coil-helix domain containing 4(CHCHD4) in the treatment of hypoxia on endometriosis(EMs) with cold coagulation and blood stasis. The rat model of cold coagulation and blood stasis syndrome was prepared by the ice-water bath method, and then the EMs model was established by autologous intimal transplantation. The rats were randomly divided into model group, low, medium, and high(4.7, 9.4, and 18.8 g·kg~(-1)) dose groups of Liangfang Wenjing Decoction, Shaofu Zhuyu Decoction group, and sham group, with 10 rats in each group. The rats were given intragastric administration for four weeks. During the modeling, the general condition and vaginal smear of rats were observed, and the blood flow of ears and uterus were detected by laser speckle contrast imaging(LSCI) to judge the syndrome of cold coagulation and blood stasis. After the administration, the general condition of the rats was observed, and the area of ectopic lesions was measured by caliper. The localization and expression of CHCHD4 and hypoxia inducible factors-1α(HIF-1α) were detected by immunohistochemistry, and the mRNA and protein expressions of CHCHD4 and HIF-1α were detected by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot. The primary culture of ectopic endometrial stromal cells(ESCs) from EMs patients was performed, and the CHCHD4 overexpression plasmid was constructed and transfected to establish the ESCs model of CHCHD4 overexpression. The cells were divided into the control group, CHCHD4 overexpression group, CHCHD4 overexpression+control serum group, and CHCHD4 overexpression+Liangfang Wenjing Decoction serum group. The protein expression of CHCHD4 and HIF-1α was detected by Western blot, and the glucose consumption and lactic acid level were detected. The cell proliferation was detected by MTT assay. The experiment found that compared with normal rats, the modeling rats showed symptoms of cold coagulation and blood stasis, such as mental malaise, reduced diet and drinking water, disordered estrous cycle, and blocked blood circulation in ears and uterine microvessels. Compared with the sham group, the ectopic lesions in the model group were uplifted, and the mRNA and protein expressions of CHCHD4 and HIF-1α were significantly increased(P<0.05). Compared with the model group, the symptoms of cold coagulation and blood stasis in each treatment group were improved, and the area of ectopic lesions was significantly reduced(P<0.05 or P<0.01). The mRNA and protein expression levels of CHCHD4 and HIF-1α were significantly decreased(P<0.05 or P<0.01). In the cell model, compared with the control group, the expression of CHCHD4, HIF-1α protein, glucose consumption, lactic acid level, and cell proliferation activity in the CHCHD4 overexpression group were significantly increased(P<0.01). Compared with the CHCHD4 overexpression group, there was no significant change in each index in the control serum group, while the protein expression of CHCHD4 and HIF-1α in the Liangfang Wenjing Decoction serum group was decreased significantly(P<0.05 or P<0.01). The glucose consumption, lactic acid level, and cell proliferation activity decreased significantly(P<0.01). It can be seen from the above that the therapeutic effect of Liangfang Wenjing Decoction on EMs with cold coagulation and blood stasis might be related to reducing the expression of CHCHD4 and then improving the hypoxia of ectopic lesions and ectopic ESCs.


Assuntos
Medicamentos de Ervas Chinesas , Endometriose , Hipóxia , Ratos Sprague-Dawley , Animais , Feminino , Endometriose/tratamento farmacológico , Endometriose/genética , Endometriose/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Ratos , Humanos , Hipóxia/genética , Hipóxia/tratamento farmacológico , Hipóxia/fisiopatologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
9.
Front Bioeng Biotechnol ; 12: 1391728, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132253

RESUMO

Introduction: Collagen is extensively utilised in regenerative medicine due to its highly desirable properties. However, collagen is typically derived from mammalian sources, which poses several limitations, including high cost, potential risk of immunogenicity and transmission of infectious diseases, and ethical and religious constraints. Jellyfish-sourced type 0 collagen represents a safer and more environmentally sustainable alternative collagen source. Methods: Thus, we investigated the potential of jellyfish collagen-based hydrogels, obtained from Rhizostoma pulmo (R. pulmo) jellyfish, to be utilised in regenerative medicine. A variety of R. pulmo collagen hydrogels (RpCol hydrogels) were formed by adding a range of chemical crosslinking agents and their physicochemical and biological properties were characterised to assess their suitability for regenerative medicine applications. Results and Discussion: The characteristic chemical composition of RpCol was confirmed by Fourier-transform infrared spectroscopy (FTIR), and the degradation kinetics, morphological, and rheological properties of RpCol hydrogels were shown to be adaptable through the addition of specific chemical crosslinking agents. The endotoxin levels of RpCol were below the Food and Drug Administration (FDA) limit for medical devices, thus allowing the potential use of RpCol in vivo. 8-arm polyethylene glycol succinimidyl carboxyl methyl ester (PEG-SCM)-crosslinked RpCol hydrogels preserved the viability and induced a significant increase in the metabolic activity of immortalised human mesenchymal stem/stromal cells (TERT-hMSCs), therefore demonstrating their potential to be utilised in a wide range of regenerative medicine applications.

10.
Adv Sci (Weinh) ; : e2402168, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120048

RESUMO

Cellular senescence leads to the functional decline of regenerative cells such as mesenchymal stromal/stem cells (MSCs), which gives rise to chronic conditions and contributes to poor cell therapy outcomes. Aging tissues are associated with extracellular matrix (ECM) dysregulation, including loss of elastin. However, the role of the ECM in modulating senescence is underexplored. In this work, it is shown that tropoelastin, the soluble elastin precursor, is not only a marker of young MSCs but also actively preserves cell fitness and delays senescence during replicative aging. MSCs briefly exposed to tropoelastin exhibit upregulation of proliferative genes and concurrent downregulation of senescence genes. The seno-protective benefits of tropoelastin persist during continuous, long-term MSC culture, and significantly extend the MSC replicative lifespan. Tropoelastin-expanded MSCs further maintain youth-associated phenotype and function compared to age-matched controls, including preserved clonogenic potential, minimal senescence-associated beta-galactosidase activity, maintained cell sizes, reduced expression of senescence markers, suppressed secretion of senescence-associated factors, and increased production of youth-associated proteins. This work points to the utility of exogenously-supplemented tropoelastin for manufacturing MSCs that robustly maintain regenerative potential with age. It further reveals the active role of classical structural ECM proteins in driving cellular age-associated fitness, potentially leading to future interventions for aging-related pathologies.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39120439

RESUMO

Despite recent advances in neonatal intensive care medicine, neonatal disorders such as (bronchopulmonary dysplasia [BPD], intraventricular hemorrhage [IVH], and hypoxic ischemic encephalopathy [HIE]) remain major causes of death and morbidity in survivors, with few effective treatments being available. Recent preclinical studies have demonstrated the pleiotropic host injury-responsive paracrine protective effects of cell therapy especially with mesenchymal stromal cells (MSCs) against BPD, IVH, and HIE. These findings suggest that MSCs therapy might emerge as a novel therapeutic modality for these currently devastating neonatal disorders with complex multifactorial etiologies. Although early-phase clinical trials suggest their safety and feasibility, their clinical therapeutic benefits have not yet been proven. Therefore, based on currently available preclinical research and clinical trial data, we focus on critical issues that need to be addressed for future successful clinical trials and eventual clinical translation such as selecting the right patient and optimal cell type, route, dose, and timing of MSCs therapy for neonatal disorders such as BPD, HIE, and IVH.

12.
Front Immunol ; 15: 1448092, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104523

RESUMO

Introduction: The immunomodulatory properties of mesenchymal stromal cells (MSC) have been well-characterized in in-vitro and in-vivo models. We have previously shown that liver MSC (L-MSC) are superior inhibitors of T-cell activation/proliferation, NK cell cytolytic function, and macrophage activation compared to adipose (A-MSC) and bone marrow MSC (BM-MSC) in-vitro. Method: To test these observations in-vivo, we infused these types of MSC into mice with unilateral renal artery stenosis (RAS), an established model of kidney inflammation. Unilateral RAS was induced via laparotomy in 11-week-old, male 129-S1 mice under general anesthesia. Control mice had sham operations. Human L-MSC, AMSC, and BM-MSC (5x105 cells each) or PBS vehicle were injected intra-arterially 2 weeks after surgery. Kidney morphology was studied 2 weeks after infusion using micro-MRI imaging. Renal inflammation, apoptosis, fibrosis, and MSC retention were studied ex-vivo utilizing western blot, immunofluorescence, and immunohistological analyses. Results: The stenotic kidney volume was smaller in all RAS mice, confirming significant injury, and was improved by infusion of all MSC types. All MSC-infused groups had lower levels of plasma renin and proteinuria compared to untreated RAS. Serum creatinine improved in micetreated with BM- and L-MSC. All types of MSC located to and were retained within the stenotic kidneys, but L-MSC retention was significantly higher than A- and BM-MSC. While all groups of MSC-treated mice displayed reduced overall inflammation and macrophage counts, L-MSC showed superior potency in-vivo at localizing to the site of inflammation and inducing M2 (reparative) macrophage polarization to reduce inflammatory changes. Discussion: These in-vivo findings extend our in-vitro studies and suggest that L-MSC possess unique anti-inflammatory properties that may play a role in liver-induced tolerance and lend further support to their use as therapeutic agents for diseases with underlying inflammatory pathophysiology.


Assuntos
Isquemia , Fígado , Macrófagos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Camundongos , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Humanos , Fígado/patologia , Fígado/imunologia , Isquemia/terapia , Isquemia/imunologia , Macrófagos/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/terapia , Ativação de Macrófagos , Obstrução da Artéria Renal/terapia , Obstrução da Artéria Renal/imunologia , Rim/patologia , Rim/imunologia
13.
Methods Mol Biol ; 2835: 17-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39105902

RESUMO

Human mesenchymal stromal cells (MSCs) have gained significant interest as cell-based therapeutics for organ restoration in the field of regenerative medicine. More recently, substantial attention has been directed toward cell-free therapy, achieved through the utilization of soluble factors possessing trophic and immunomodulatory properties present in the MSC secretome. This collection of soluble factors can be found either freely in the secretome or packed within its vesicular fraction, known as extracellular vesicles (EVs). MSCs can be derived from various tissue sources, each involving different extraction methods and yielding varying cell amounts. In this study, we describe a nonenzymatic procedure for a straightforward isolation of MSCs from the fetal dermis and the adult dermis. The results demonstrate the isolation of a cell population with a uniform MSC immunophenotype from the earliest passages (approximately 90% positive for the classical MSC markers CD90, CD105, and CD73, while negative for the hematopoietic markers CD34 and CD45, as well as HLA-DR). Additionally, we describe the procedures for cell expansion, banking, and secretome collection.


Assuntos
Separação Celular , Derme , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Derme/citologia , Derme/metabolismo , Separação Celular/métodos , Imunofenotipagem , Técnicas de Cultura de Células/métodos , Biomarcadores , Células Cultivadas , Vesículas Extracelulares/metabolismo , Secretoma/metabolismo
14.
Adv Sci (Weinh) ; : e2403201, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39137351

RESUMO

Angiogenesis is crucial for successful bone defect repair. Co-transplanting Bone Marrow Stromal Cells (BMSCs) and Endothelial Cells (ECs) has shown promise for vascular augmentation, but it face challenges in hostile tissue microenvironments, including poor cell survival and limited efficacy. In this study, the mitochondria of human BMSCs are isolated and transplanted to BMSCs from the same batch and passage number (BMSCsmito). The transplanted mitochondria significantly boosted the ability of BMSCsmito-ECs to promote angiogenesis, as assessed by in vitro tube formation and spheroid sprouting assays, as well as in vivo transplantation experiments in balb/c mouse and SD rat models. The Dll4-Notch1 signaling pathway is found to play a key role in BMSCsmito-induced endothelial tube formation. Co-transplanting BMSCsmito with ECs in a rat cranial bone defect significantly improves functional vascular network formation, and improve bone repair outcomes. These findings thus highlight that mitochondrial transplantation, by acting through the DLL4-Notch1 signaling pathway, represents a promising therapeutic strategy for enhancing angiogenesis and improving bone repair. Hence, mitochondrial transplantation to BMSCS as a therapeutic approach for promoting angiogenesis offers valuable insights and holds much promise for innovative regenerative medicine therapies.

15.
Cells ; 13(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39120270

RESUMO

Degenerative disorders like osteoarthritis (OA) might impair the ability of tissue-resident mesenchymal stem/stromal cells (MSCs) for tissue regeneration. As primary cells with MSC-like properties are exploited for patient-derived stem cell therapies, a detailed evaluation of their in vitro properties is needed. Here, we aimed to compare synovium-derived and bone-derived MSCs in early hip OA with those of patients without OA (non-OA). Tissues from three synovial sites of the hip (paralabral synovium, cotyloid fossa, inner surface of peripheral capsule) were collected along with peripheral trabecular bone from 16 patients undergoing hip arthroscopy (8 early OA and 8 non-OA patients). Primary cells isolated from tissues were compared using detailed in vitro analyses. Gene expression profiling was performed for the skeletal stem cell markers podoplanin (PDPN), CD73, CD164 and CD146 as well as for immune-related molecules to assess their immunomodulatory potential. Synovium-derived and bone-derived MSCs from early OA patients showed comparable clonogenicity, cumulative population doublings, osteogenic, adipogenic and chondrogenic potential, and immunophenotype to those of non-OA patients. High PDPN/low CD146 profile (reminiscent of skeletal stem cells) was identified mainly for non-OA MSCs, while low PDPN/high CD146 mainly defined early OA MSCs. These data suggest that MSCs from early OA patients are not affected by degenerative changes in the hip. Moreover, the synovium represents an alternative source of MSCs for patient-derived stem cell therapies, which is comparable to bone. The expression profile reminiscent of skeletal stem cells suggests the combination of low PDPN and high CD146 as potential biomarkers in early OA.


Assuntos
Células-Tronco Mesenquimais , Membrana Sinovial , Humanos , Células-Tronco Mesenquimais/metabolismo , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Feminino , Masculino , Pessoa de Meia-Idade , Diferenciação Celular , Idoso , Osteoartrite/patologia , Osteoartrite/metabolismo , Osso e Ossos/patologia , Osso e Ossos/metabolismo , Adulto , Biomarcadores/metabolismo , Condrogênese , Osteogênese , Células Cultivadas
16.
Cells ; 13(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39120301

RESUMO

Head and neck cancer (HNC) entails a heterogenous neoplastic disease that arises from the mucosal epithelium of the upper respiratory system and the gastrointestinal tract. It is characterized by high morbidity and mortality, being the eighth most common cancer worldwide. It is believed that the mesenchymal/stem stromal cells (MSCs) present in the tumour milieu play a key role in the modulation of tumour initiation, development and patient outcomes; they also influence the resistance to cisplatin-based chemotherapy, the gold standard for advanced HNC. MSCs are multipotent, heterogeneous and mobile cells. Although no MSC-specific markers exist, they can be recognized based on several others, such as CD73, CD90 and CD105, while lacking the presence of CD45, CD34, CD14 or CD11b, CD79α, or CD19 and HLA-DR antigens; they share phenotypic similarity with stromal cells and their capacity to differentiate into other cell types. In the tumour niche, MSC populations are characterized by cell quiescence, self-renewal capacity, low reactive oxygen species production and the acquisition of epithelial-to-mesenchymal transition properties. They may play a key role in the process of acquiring drug resistance and thus in treatment failure. The present narrative review examines the links between MSCs and HNC, as well as the different mechanisms involved in the development of resistance to current chemo-radiotherapies in HNC. It also examines the possibilities of pharmacological targeting of stemness-related chemoresistance in HNSCC. It describes promising new strategies to optimize chemoradiotherapy, with the potential to personalize patient treatment approaches, and highlights future therapeutic perspectives in HNC.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço , Células-Tronco Mesenquimais , Humanos , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/terapia , Neoplasias de Cabeça e Pescoço/imunologia , Células-Tronco Mesenquimais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Carcinogênese/patologia , Carcinogênese/efeitos dos fármacos , Animais , Transplante de Células-Tronco Mesenquimais
17.
Cells ; 13(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39120320

RESUMO

Muscle-derived mesenchymal stromal cells (mdMSCs) hold great promise in regenerative medicine due to their immunomodulatory properties, multipotent differentiation capacity and ease of collection. However, traditional in vitro expansion methods use fetal bovine serum (FBS) and have numerous limitations including ethical concerns, batch-to-batch variability, immunogenicity, xenogenic contamination and regulatory compliance issues. This study investigates the use of 10% equine platelet lysate (ePL) obtained by plasmapheresis as a substitute for FBS in the culture of mdMSCs in innovative 2D and 3D models. Using muscle microbiopsies as the primary cell source in both models showed promising results. Initial investigations indicated that small variations in heparin concentration in 2D cultures strongly influenced medium coagulation with an optimal proliferation observed at final heparin concentrations of 1.44 IU/mL. The two novel models investigated showed that expansion of mdMSCs is achievable. At the end of expansion, the 3D model revealed a higher total number of cells harvested (64.60 ± 5.32 million) compared to the 2D culture (57.20 ± 7.66 million). Trilineage differentiation assays confirmed the multipotency (osteoblasts, chondroblasts and adipocytes) of the mdMSCs generated in both models with no significant difference observed. Immunophenotyping confirmed the expression of the mesenchymal stem cell (MSC) markers CD-90 and CD-44, with low expression of CD-45 and MHCII markers for mdMSCs derived from the two models. The generated mdMSCs also had great immunomodulatory properties. Specific immunological extraction followed by enzymatic detection (SIEFED) analysis demonstrated that mdMSCs from both models inhibited myeloperoxidase (MPO) activity in a strong dose-dependent manner. Moreover, they were also able to reduce reactive oxygen species (ROS) activity, with mdMSCs from the 3D model showing significantly higher dose-dependent inhibition compared to the 2D model. These results highlighted for the first time the feasibility and efficacy of using 10% ePL for mdMSC expansion in novel 2D and 3D approaches and also that mdMSCs have strong immunomodulatory properties that can be exploited to advance the field of regenerative medicine and cell therapy instead of using FBS with all its drawbacks.


Assuntos
Plaquetas , Diferenciação Celular , Imunomodulação , Células-Tronco Mesenquimais , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/imunologia , Cavalos , Plaquetas/metabolismo , Proliferação de Células/efeitos dos fármacos , Técnicas de Cultura de Células/métodos , Células Cultivadas , Músculos , Imunofenotipagem
18.
J Transl Med ; 22(1): 722, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103873

RESUMO

BACKGROUND: Aging is a multifaceted process that affects all organ systems. With the increasing trend of population aging, aging-related diseases have resulted in significant medical challenges and socioeconomic burdens. Mesenchymal stromal cells (MSCs), due to their antioxidative stress, immunoregulatory, and tissue repair capabilities, hold promise as a potential anti-aging intervention. METHODS: In this study, we transplanted MSCs into naturally aged rats at 24 months, and subsequently examined levels of aging-related factors such as ß-galactosidase, superoxide dismutase, p16, p21 and malondialdehyde in multiple organs. Additionally, we assessed various aging-related phenotypes in these aged rats, including immune senescence, lipid deposition, myocardial fibrosis, and tissue damage. We also conducted a 16 S ribosomal ribonucleic acid (rRNA) analysis to study the composition of gut microbiota. RESULTS: The results indicated that MSCs significantly reduced the levels of aging-associated and oxidative stress-related factors in multiple organs such as the heart, liver, and lungs of naturally aging rats. Furthermore, they mitigated chronic tissue damage and inflammation caused by aging, reduced levels of liver lipid deposition and myocardial fibrosis, alleviated aging-associated immunodeficiency and immune cell apoptosis, and positively influenced the gut microbiota composition towards a more youthful state. This research underscores the diverse anti-aging effects of MSCs, including oxidative stress reduction, tissue repair, metabolic regulation, and improvement of immune functions, shedding light on the underlying anti-aging mechanisms associated with MSCs. CONCLUSIONS: The study confirms that MSCs hold great promise as a potential anti-aging approach, offering the possibility of extending lifespan and improving the quality of life in the elderly population.


Assuntos
Envelhecimento , Senescência Celular , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Estresse Oxidativo , Fenótipo , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Masculino , Microbioma Gastrointestinal , Ratos Sprague-Dawley , Ratos , Apoptose , Inflamação/patologia
19.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39126105

RESUMO

The senescence of bone marrow mesenchymal stromal cells (MSCs) leads to the impairment of stemness and osteogenic differentiation capacity. In a previous study, we screened out stearoyl-CoA desaturase 2 (SCD2), the most evidently changed differential gene in lipid metabolism, using combined transcriptomic and metabolomic analyses, and verified that SCD2 could mitigate MSC senescence. However, the underlying molecular mechanism by which the rate-limiting enzyme of lipogenesis SCD2 manipulates MSC senescence has not been completely understood. In this study, we demonstrate that SCD2 over-expression alleviates MSC replicative senescence and ameliorates their osteogenic differentiation through the regulation of lipogenesis. Furthermore, SCD2 expression is reduced, whereas miR-200c-3p expression is elevated in replicative senescent MSCs. SCD2 is the direct target gene of miR-200c-3p, which can bind to the 3'-UTR of SCD2. MiR-200c-3p replenishment in young MSCs is able to diminish SCD2 expression levels due to epigenetic modulation. In addition, SCD2-rescued MSC senescence and enhanced osteogenic differentiation can be attenuated by miR-200c-3p repletion via suppressing lipogenesis. Taken together, we reveal the potential mechanism of SCD2 influencing MSC senescence from the perspective of lipid metabolism and epigenetics, which provides both an experimental basis for elucidating the mechanism of stem cell senescence and a novel target for delaying stem cell senescence.


Assuntos
Senescência Celular , Lipogênese , Células-Tronco Mesenquimais , MicroRNAs , Osteogênese , Estearoil-CoA Dessaturase , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Lipogênese/genética , Senescência Celular/genética , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Osteogênese/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica , Células Cultivadas , Epigênese Genética
20.
Heliyon ; 10(15): e35372, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39170459

RESUMO

Mesenchymal stem/stromal cells (MSCs) are emerging as a new therapy for diabetes. Here we investigate the properties of MSCs engineered to express Islet Neogenesis Associated Protein (INGAP) previously shown to reverse diabetes in animal models and evaluate their potential for anti-diabetic applications in mice. Mouse bone marrow-derived MSCs retrovirally transduced to co-express INGAP, Firefly Luciferase and EGFP (INGAP-MSCs), were characterized in vitro and implanted intraperitoneally (IP) into non-diabetic and diabetic C57BL/6 mice (Streptozotocin model) and tracked by live bioluminescence imaging (BLI). Distribution and survival of IP injected INGAP-MSCs differed between diabetic and non-diabetic mice, with a rapid clearance of cells in the latter, and a stronger retention (up to 4 weeks) in diabetic mice concurring with homing towards the pancreas. Interestingly, INGAP-MSCs inhibited the progression of hyperglycemia starting at day 3 and lasting for the entire 6 weeks of the study. Pursuing greater retention, we investigated the survival of INGAP-MSCs in hydrogel matrices. When mixed with Matrigel™ and injected subcutaneously into non-diabetic mice, INGAP-MSCs remained in the implant up to 16 weeks. In vitro tests in three matrices (Matrigel™, Type I Collagen and VitroGel®-MSC) demonstrated that INGAP-MSCs survive and secrete INGAP, with best results at the density of 1-2 x 106 cells/mL. However, all matrices induced spontaneous adipogenic differentiation of INGAP-MSCs in vitro and in vivo, which requires further investigation of its potential impact on MSC therapeutic properties. In summary, based on their ability to stop the rise in hyperglycemia in STZ-treated mice, INGAP-MSCs are a promising therapeutic tool against diabetes but require further research to improve cell delivery and survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA