Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(26): 16468-16488, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38900494

RESUMO

Sodium-ion batteries (SIBs) have significant potential for applications in portable electric vehicles and intermittent renewable energy storage due to their relatively low cost. Currently, hard carbon (HC) materials are considered commercially viable anode materials for SIBs due to their advantages, including larger capacity, low cost, low operating voltage, and inimitable microstructure. Among these materials, renewable biomass-derived hard carbon anodes are commonly used in SIBs. However, the reports about biomass hard carbon from basic research to industrial applications are very rare. In this paper, we focus on the research progress of biomass-derived hard carbon materials from the following perspectives: (1) sodium storage mechanisms in hard carbon; (2) optimization strategies for hard carbon materials encompassing design, synthesis, heteroatom doping, material compounding, electrolyte modulation, and presodiation; (3) classification of different biomass-derived hard carbon materials based on precursor source, a comparison of their properties, and a discussion on the effects of different biomass sources on hard carbon material properties; (4) challenges and strategies for practical of biomass-derived hard carbon anode in SIBs; and (5) an overview of the current industrialization of biomass-derived hard carbon anodes. Finally, we present the challenges, strategies, and prospects for the future development of biomass-derived hard carbon materials.

2.
ACS Nano ; 18(5): 3969-3995, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38271679

RESUMO

Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.


Assuntos
Dispositivos Eletrônicos Vestíveis , Próteses e Implantes , Eletrônica , Polímeros/química
3.
Small ; 20(5): e2305579, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37788902

RESUMO

The photothermal process has attracted considerable attention in water treatment due to its advantages of low energy consumption and high efficiency. In this respect, photothermal materials play a crucial role in the photothermal process. Particularly, carbonaceous materials have emerged as promising candidates for this process because of exceptional photothermal performance. While previous research on carbonaceous materials has primarily focused on photothermal evaporation and sterilization, there is now a growing interest in exploring the potential of photothermal effect-assisted advanced oxidation processes (AOPs). However, the underlying mechanism of the photothermal effect assisted by carbonaceous materials remains unclear. This review aims to provide a comprehensive review of the photothermal process of carbonaceous materials in water treatment. It begins by introducing the photothermal properties of carbonaceous materials, followed by a discussion on strategies for enhancing these properties. Then, the application of carbonaceous materials-based photothermal process for water treatment is summarized. This includes both direct photothermal processes such as photothermal evaporation and sterilization, as well as indirect photothermal processes that assisted AOPs. Meanwhile, various mechanisms assisted by the photothermal effect are summarized. Finally, the challenges and opportunities of using carbonaceous materials-based photothermal processes for water treatment are proposed.

4.
Adv Sci (Weinh) ; 10(22): e2207652, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37226721

RESUMO

Phase change materials have garnered extensive interest in heat harvesting and utilization owing to their high energy storage density and isothermal phase transition. Nevertheless, inherent leakage problems and low heat storage efficiencies hinder their widespread utilization. Nature has served as a great source of inspiration for addressing these challenges. Natural strategies are proposed to achieve advanced thermal energy management systems, and breakthroughs are made in recent years. This review focuses on recent advances in the structural design and functions of phase change materials from a natural perspective. By highlighting the structure-function relationship, advanced applications including human motion, medicine, and intelligent thermal management devices are discussed in detail. Finally, the views on the remaining challenges and future prospects are also provided, that is, phase change materials are advancing around the biomimicry design spiral.

5.
Adv Mater ; 35(17): e2211498, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36747353

RESUMO

3D porous Zn-metal anodes have aroused widespread interest for Zn-ion batteries (ZIBs). Nevertheless, the notorious "top-growth" dendrites caused by the intrinsic top-concentrated ions and randomly distributed electrons may ultimately trigger a cell failure. Herein, an electron/ion-flux dual-gradient 3D porous Zn anode is reported for dendrite-free ZIBs by adopting 3D printing technology. The 3D-printed Zn anode with layer-by-layer bottom-up attenuating Ag nanoparticles (3DP-BU@Zn) establishes dual-gradient electron/ion fluxes, i.e., an internal bottom-up gradient electron flux created by bottom-rich conductive Ag nanoparticles, and a gradient ion flux resulting from zincophilic Ag nanoparticles which pump ions toward the bottom. Meanwhile, the 3D-printing-enabled hierarchical porous structure and continuously conducting network endow unimpeded electron transfer and ion diffusion among the electrode, dominating a bottom-preferential Zn deposition behavior. As a result, the 3DP-BU@Zn symmetrical cell affords highly reversible Zn plating/stripping with an extremely small voltage hysteresis of 17.7 mV and a superior lifespan over 630 h at 1 mA cm-2 and 1 mAh cm-2 . Meanwhile, the 3DP-BU@Zn//VO2 full cell exhibits remarkable cyclic stability over 500 cycles. This unique dual-gradient strategy sheds light on the roadmap for the next-generation safe and durable Zn-metal batteries.

6.
Heliyon ; 9(1): e13058, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36711274

RESUMO

Soil erosion and its consequences is one of the major serious problems in Ethiopia. Even though adoption of soil and water conservation (SWC) measures has been underway for the past three decades, the implementation and use of introduced technologies were below the expectation and the problem is still has continued in the country. The study was aimed at assessing the implemented physical designs of soil and water conservation structures in respect to the standards and identifying the major adoption determinant factors in Wenago district, southern Ethiopia. The data for this studywas collected from a survey of 262 total household farmers selected through simple random sampling techniques in the year 2020/21 and the datawas analyzed using descriptive statistics, chi-square and logistic regression model via SPSS and Stata soft wares. Focus group discussion, key informant interview and personal observation were also undertaken to gather data having qualitative nature. (i) About 55.6% of the implemented physical design failed to meet the standards (ii) Adoption of SWC measures were determined by 47.4% of the tested variables (iii) 55.5% of the variables were significantly associated at 5% probability level between adopters and non-adopters in terms of adoption of SWC measures in the study area. Overall, we conclude that construction of conservation structures should be focused on minimizing the observed mismatch of the implemented physical designs against the standards. This study is expected to contribute in achieving sustainable land management schemes, agricultural productivity and smallholder farmers livelihood improvement in international, national, regional and local level and it is strongly recommended that policy makers and technical institutions should address SWC related issues to ensure rural farmers food security.

7.
Adv Mater ; 34(19): e2110384, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35172026

RESUMO

Snap-through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high-performance soft actuators and soft robots. They have demonstrated broad and unique applications in high-speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics-free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics-guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli-responsive materials such as electro-, photo-, thermo-, magnetic-, and hydro-responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.

8.
Adv Mater ; 32(15): e1902254, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31348578

RESUMO

Over the past decade, the area of stretchable inorganic electronics has evolved very rapidly, in part because the results have opened up a series of unprecedented applications with broad interest and potential for impact, especially in bio-integrated systems. Low modulus mechanics and the ability to accommodate extreme mechanical deformations, especially high levels of stretching, represent key defining characteristics. Most existing studies exploit structural material designs to achieve these properties, through the integration of hard inorganic electronic components configured into strategic 2D/3D geometries onto patterned soft substrates. The diverse structural geometries developed for stretchable inorganic electronics are summarized, covering the designs of functional devices and soft substrates, with a focus on fundamental principles, design approaches, and system demonstrations. Strategies that allow spatial integration of 3D stretchable device layouts are also highlighted. Finally, perspectives on the remaining challenges and open opportunities are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA