RESUMO
A series of novel renewable copolymers based on poly(ethylene succinate) (PESu) and poly(isosorbide succinate) (PISSu), with the Isosorbide (Is)/PESu molar ratio varying from 5/95 to 75/25, were synthesized in-situ and studied in this work. A sum of characterization techniques was employed here for the structural and thermo-dynamical characterization. The sophisticated technique of dielectric spectroscopy, along with proper analysis, enabled the molecular dynamics mapping of both the local and segmental types, which is presented for such materials for the first time. With increasing the Is fraction, shorter copolymeric entities were gradually formed. Based on the overall findings, the systems were found to be homogeneous, e.g., exhibiting single glass transitions, with the two polymer segments being found to be excellently distributed. The latter is indirect, although strong, evidence for the successful copolymerization. The thermal degradation mechanism for the copolymers was exhaustingly explored employing analytical pyrolysis. The systems exhibited, in general, good thermal stability, according to the thermogravimetric analysis. Confirming one of the initial scopes for the present systems, isosorbide plays here the role of hardener (PISSu) over the soft polymer (PESu), and this is reflected in the monotonic increase of the glass transition temperature, Tg, from -16 to ~56 °C. The introduction of Is results in an increase in constraints (hardening of the matrix), while there seems to be an overall densification of the polymer (decrease of the free volume).
RESUMO
Graphene is undoubtedly the carbon allotrope that has attracted the attention of a myriad of researchers in the last decades more than any other. The interaction of external or intercalated Li and Li+ with graphene layers has been the subject of particular attention for its importance in the applications of graphene layers in Lithium Batteries (LiBs). It is well known that lithium atoms and Li+ can be found inside and/or outside the double layer of graphene, and the graphene layers are often twisted around its parallel plane to obtain twisted graphene with tuneable properties. Thus, in this research, the interactions between Li and Li+ with bilayer graphene and twisted bilayer graphene were investigated by a first-principles density functional theory method, considering the lithium atom and the cation at different symmetry positions and with two different adsorption configurations. Binding energies and equilibrium interlayer distances of filled graphene layers were obtained from the computed potential energy profiles. This work shows that the twisting can regulate the interaction of bilayer graphene with Li and Li+. The binding energies of Li+ systematically increase from bilayer graphene to twisted graphene regardless of twisted angles, while for lithium atoms, the binding energies decrease or remain substantially unchanged depending on the twist angles. This suggests a higher adsorption capacity of twisted graphene towards Li+, which is important for designing twisted graphene-based material for LiB anode coating. Furthermore, when the Li or Li+ is intercalated between two graphene layers, the equilibrium interlayer distances in the twisted layers increase compared to the unrotated bilayer, and the relaxation is more significant for Li+ with respect to Li. This suggests that the twisted graphene can better accommodate the cation in agreement with the above result. The outcomes of this research pave the way for the study of the selective properties of twisted graphene.
RESUMO
Due to the observed increase in the importance of computational methods in determining selected physicochemical parameters of biologically active compounds that are key to understanding their ADME/T profile, such as lipophilicity, there is a great need to work on accurate and precise in silico models based on some structural descriptors, such as topological indices for predicting lipophilicity of certain anti-androgenic and hypouricemic agents and their derivatives, for which the experimental lipophilicity parameter is not accurately described in the available literature, e.g., febuxostat, oxypurinol, ailanthone, abiraterone and teriflunomide. Therefore, the following topological indices were accurately calculated in this paper: Gutman (M, Mν), Randic (0χ, 1χ, 0χν, 1χν), Wiener (W), Rouvray-Crafford (R) and Pyka (A, 0B, 1B) for the selected anti-androgenic drugs (abiraterone, bicalutamide, flutamide, nilutamide, leflunomide, teriflunomide, ailanthone) and some hypouricemic compounds (allopurinol, oxypurinol, febuxostat). Linear regression analysis was used to create simple linear correlations between the newly calculated topological indices and some physicochemical parameters, including lipophilicity descriptors of the tested compounds (previously obtained by TLC and theoretical methods). Our studies confirmed the usefulness of the obtained linear regression equations based on topological indices to predict ADME/T important parameters, such as lipophilicity descriptors of tested compounds with anti-androgenic and hypouricemic effects. The proposed calculation method based on topological indices is fast, easy to use and avoids valuable and lengthy laboratory experiments required in the case of experimental ADME/T studies.
RESUMO
The rational design of chemical entities with desired properties for a specific target is a long-standing challenge in drug design. Generative neural networks have emerged as a powerful approach to sample novel molecules with specific properties, termed as inverse drug design. However, generating molecules with biological activity against certain targets and predefined drug properties still remains challenging. Here, we propose a conditional molecular generation net (CMGN), the backbone of which is a bidirectional and autoregressive transformer. CMGN applies large-scale pretraining for molecular understanding and navigates the chemical space for specified targets by fine-tuning with corresponding datasets. Additionally, fragments and properties were trained to recover molecules to learn the structure-properties relationships. Our model crisscrosses the chemical space for specific targets and properties that control fragment-growth processes. Case studies demonstrated the advantages and utility of our model in fragment-to-lead processes and multi-objective lead optimization. The results presented in this paper illustrate that CMGN has the potential to accelerate the drug discovery process.
Assuntos
Desenho de Fármacos , Descoberta de Drogas , Aprendizagem , Redes Neurais de Computação , Receptores Proteína Tirosina QuinasesRESUMO
Emollient oils are ubiquitous ingredients of personal care products, especially skin care and hair care formulations. They offer excellent spreading properties and give end-use products a soft, pleasant and non-sticky after-feel. Emollients belong to various petro- or bio-based chemical families among which silicone oils, hydrocarbons and esters are the most prominent. Silicones have exceptional physicochemical and sensory properties but their high chemical stability results in very low biodegradability and a high bioaccumulation potential. Nowadays, consumers are increasingly responsive to environmental issues and demand more environmentally friendly products. This awareness strongly encourages cosmetics industries to develop bio-based alternatives to silicone oils. Finding effective silicon-free emollients requires understanding the molecular origin of emollience. This review details the relationships between the molecular structures of emollients and their physicochemical properties as well as the resulting functional performances in order to facilitate the design of alternative oils with suitable physicochemical and sensory properties. The molecular profile of an ideal emollient in terms of chemical function (alkane, ether, ester, carbonate, alcohol), optimal number of carbons and branching is established to obtain an odourless oil with good spreading on the skin. Since none of the carbon-based emollients alone can imitate the non-sticky and dry feel of silicone oils, it is judicious to blend alkanes and esters to significantly improve both the sensory properties and the solubilizing properties of the synergistic mixture towards polar ingredients (sun filters, antioxidants, fragrances). Finally, it is shown how modelling tools (QSPR, COSMO-RS and neural networks) can predict in silico the key properties of hundreds of virtual candidate molecules in order to synthesize only the most promising whose predicted properties are close to the specifications.
Assuntos
Cosméticos , Emolientes , Cosméticos/química , Emolientes/química , Ésteres/química , Humanos , Óleos , Desempenho Físico Funcional , Óleos de Silicone , Silicones/químicaRESUMO
*These authors contributed equally.Electrospun fibers often exhibit enhanced properties at reduced diameters, a characteristic now widely attributed to a high molecular orientation of the polymer chains along the fiber axis. A parameter that can affect the molecular organization is the type of collector onto which fibers are electrospun. In this work, we use polarized confocal Raman spectromicroscopy to determine the incidence of the three most common types of collectors on the molecular orientation and structure in individual fibers of a broad range of diameters. Poly(ethylene terephthalate) is used as a model system for fibers of weakly crystalline polymers. A clear correlation emerges between the choice of collector, the induced molecular orientation, the fraction of trans conformers, and the degree of crystallinity within fibers. Quantitative structural information gathered by Raman contributes to a general description of the mechanism of action of the collectors based on the additional strain they exert on the forming fibers.
RESUMO
The impetus for the expanding interest in ionic liquids (ILs) is their favorable properties and important applications. Ionic liquid-based surfactants (ILBSs) carry long-chain hydrophobic tails. Two or more molecules of ILBSs can be joined by covalent bonds leading, e.g., to gemini compounds (GILBSs). This review article focuses on aspects of the chemistry and applications of ILBSs and GILBSs, especially in the last ten years. Data on their adsorption at the interface and micelle formation are relevant for the applications of these surfactants. Therefore, we collected data for 152 ILBSs and 11 biamphiphilic compounds. The head ions of ILBSs are usually heterocyclic (imidazolium, pyridinium, pyrrolidinium, etc.). Most of these head-ions are also present in the reported 53 GILBSs. Where possible, we correlate the adsorption/micellar properties of the surfactants with their molecular structures, in particular, the number of carbon atoms present in the hydrocarbon "tail". The use of ILBSs as templates for the fabrication of mesoporous nanoparticles enables better control of particle porosity and size, hence increasing their usefulness. ILs and ILBSs form thermodynamically stable water/oil and oil/water microemulsions. These were employed as templates for (radical) polymerization reactions, where the monomer is the "oil" component. The formed polymer nanoparticles can be further stabilized against aggregation by using a functionalized ILBS that is co-polymerized with the monomers. In addition to updating the literature on the subject, we hope that this review highlights the versatility and hence the potential applications of these classes of surfactants in several fields, including synthesis, catalysis, polymers, decontamination, and drug delivery.
RESUMO
The feasibility to synthesize the ligand-protected atomically precise nanoclusters with various compositions in sub-nanometer range (≤2â nm) and the determination of their structures is an important step in long-pursuit of well-defined heterogeneous catalysis. Such types of precise catalysts provide an opportunity to understand the fundamentals of catalysis better in terms of: 1) activity and selectivity by metal-core and metal-ligand interface, 2) size-dependent activity, 3) reaction mechanism and 4) active-site identification and activation. It motivated us to develop the novel metal nanoclusters with precise structures as the new catalytic systems, which led to the several significant findings on above mentioned points. We consider that with this gained knowledge, the future research is expected to bring more exciting advancement in deep understanding of the reaction mechanism, specific-site identification and tailoring of catalytic active sites at atomic level.
RESUMO
Two-dimensional MX2 (M = Mo, W; X = S, Se, Te) homo- and heterostructures have attracted extensive attention in electronics and optoelectronics due to their unique structures and properties. In this work, the layer-dependent electronic and optical properties have been studied by varying layer thickness and stacking order. Based on the quantum theory of atoms in molecules, topological analyses on interatomic interactions of layered MX2 and WX2/MoX2, including bond degree (BD), bond length (BL), and bond angle (BA), have been detailed to probe structure-property relationships. Results show that M-X and X-X bonds are strengthened and weakened in layered MX2 compared to the counterparts in bulks. X-X and M-Se/Te are weakened at compressive strain while strengthened at tensile strain and are more responsive to the former than the latter. Discordant BD variation of individual parts of WX2/MoX2 accounts for exclusively distributed electrons and holes, yielding type-II band offsets. X-X BL correlates positively to binding energy (Eb), while X-X BA correlates negatively to lattice mismatch (lm). The resulting interlayer distance limitation evidences constraint-free lattice of vdW structure. Finally, the connection between microscopic interatomic interaction and macroscopic electromagnetic behavior has been quantified firstly by a cubic equation relating to weighted BD summation and static dielectric constant.
RESUMO
By combining density functional theory, quantum theory of atoms in molecules and transport properties calculations, we evaluated the thermoelectric properties of Sb-S system compounds and shed light on their relationships with electronic structures. The results show that, for Sb2S3, the large density of states (DOS) variation induces a large Seebeck coefficient. Taking into account the long-range weak bonds distribution, Sb2S3 should exhibit low lattice thermal conductivity. Therefore, Sb2S3 is promising for thermoelectric applications. The insertion of Be atoms into the Sb2S3 interstitial sites demonstrates the electrical properties and Seebeck coefficient anisotropy and sheds light on the understanding of the role of quasi-one-dimensional structure in the electron transport. The large interstitial sites existing in SbS2 are at the origin of phonons anharmonicity which counteracts the thermal transport. The introduction of Zn and Ga atoms into these interstitial sites could result in an enhancement of all the thermoelectric properties.
RESUMO
Nanoporous metals made by dealloying take the form of macroscopic (mm- or cm-sized) porous bodies with a solid fraction of around 30%. The material exhibits a network structure of "ligaments" with an average ligament diameter that can be adjusted between 5 and 500 nm. Current research explores the use of nanoporous metals as functional materials with respect to electrochemical conversion and storage, bioanalytical and biomedical applications, and actuation and sensing. The mechanical behavior of the network structure provides the scope for fundamental research, particularly because of the high complexity originating from the randomness of the structure and the challenges arising from the nanosized ligaments, which can be accessed through an experiment only indirectly via the testing of the macroscopic properties. The strength of nanoscale ligaments increases systematically with decreasing size, and owing to the high surface-to-volume ratio their elastic and plastic properties can be additionally tuned by applying an electric potential. Therefore, nanoporous metals offer themselves as suitable model systems for exploring the structure-property relationships of complex interconnected microstructures as well as the basic mechanisms of the chemo-electro-mechanical coupling at interfaces. The micromechanical modeling of nanoporous metals is a rapidly growing field that strongly benefits from developments in computational methods, high-performance computing, and visualization techniques; it also benefits at the same time through advances in characterization techniques, including nanotomography, 3D image processing, and algorithms for geometrical and topological analysis. The review article collects articles on the structural characterization and micromechanical modeling of nanoporous metals and discusses the acquired understanding in the context of advancements in the experimental discipline. The concluding remarks are given in the form of a summary and an outline of future perspectives.
RESUMO
A series of fatty acid cellulose esters (FACEs) with both various degrees of substitution (from DS = 1.7 to 3) and side chain length were obtained by grafting aliphatic acid chlorides (from C10 to C16) onto cellulose backbone, in a homogeneous LiCl/DMAc medium. These materials were characterized by Fourier Transformed InfraRed (FTIR) and Nuclear Magnetic Resonance of Proton (1H NMR) spectroscopies, as well as Wide Angle X-ray Scattering (WAXS), Differential Scanning Calorimetry (DSC), mechanical analyses and chemical resistance to concentrated acid and alkali solutions. Whatever the alkyl chains length and the DS, all samples displayed a layered structure composed of a planar arrangement of parallel cellulosic backbones with fully extended flexible side chains oriented perpendicular to the planar structure without interdigitation. The alkyl chains were able to crystallize as soon as they are long enough. As the DS decreased, the plasticizing effect of the alkyl chains was less pronounced and their ability to crystallize was improved. Regarding the mechanical behavior and the chemical resistance, similar results were observed whatever the DS is.
Assuntos
Celulose/química , Ésteres/química , Ácidos Graxos/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
We report the synthesis and physicochemical analysis of mixed-substituent dipeptide-based polyphosphazene polymers, poly[(glycineethylglycinato) x (phenylphenoxy) y phosphazene] (PNGEG x PhPh y ) and poly[(ethylphenylalanato) x (glycineethylglycinato) y phosphazene] (PNEPA x GEG y ), using glycylglycine ethyl ester (GEG) as the primary substituent side group and cosubstituting with phenylphenol (PhPh) and phenylalanine ethyl ester (EPA), respectively. The suitability of the cosubstituted polyphosphazenes to regenerative engineering was evaluated. The physicochemical evaluation revealed that the molecular weights, glass transition temperatures, hydrophilicity, and mechanical properties could be modulated by varying the compositions of the side groups to obtain a variety of properties. The PNEPA25GEG75 and PNGEG75PhPh25 polymers exhibited the most promising physicochemical properties. These two polymers were further subjected to in vitro hydrolysis and cell proliferation studies using poly(lactic-co-glycolic acid) (PLAGA) as a control. The hydrolysis experiments revealed that the two polymers hydrolyzed to near-neutral pH media (~5.3 to 7.0) in a relatively slow fashion, whereas a pH value as low as 2.2 was obtained for the PLAGA media over 12 weeks of degradation study. Furthermore, the two polymers showed continuous MC3T3 cell proliferation and growth in comparison to PLAGA over a 21-day culture period. These findings establish that cosubstitution of different side groups of polyphosphazenes and exploitation of the hydrogen-bonding capacity of peptide bonds in GEG offer a flexible tool that can be employed to make new and fascinating polymeric biomaterials with different and tailored properties that can suit different regenerative needs.
RESUMO
Heterogeneous solid base catalysis is valuable and promising in chemical industry, however it is insufficiently developed compared to solid acid catalysis due to the lack of satisfied solid base catalysts. To gain the strong basicity, the previous strategy was to basify oxides with alkaline metals to create surficial vacancies or defects, which suffers from the instability under catalytic conditions. Monocomponent basic oxides like MgO are literally stable but deficient in electron-withdrawing ability. Here we prove that a special connectivity of atoms could enhance the Lewis basicity of oxygen in monocomponent solids exemplified by Ga4B2O9. The structure-induced basicity is from the µ3-O linked exclusively to five-coordinated Ga3+. Ga4B2O9 behaved as a durable catalyst with a high yield of 81% in the base-catalyzed synthesis of α-aminonitriles by Strecker reaction. In addition, several monocomponent solid bases were evaluated in the Strecker reaction, and Ga4B2O9 has the largest amount of strong base centers (23.1 µmol/g) and the highest catalytic efficiency. Ga4B2O9 is also applicable in high-temperature solid-gas catalysis, for example, Ga4B2O9 catalyzed efficiently the dehydrogenation of n-propanol, resulting in a high selectivity to propanal (79%). In contrast, the comparison gallium borate, Ga-PKU-1, which is a Brönsted acid, preferred to catalyze the dehydration process to obtain propylene with a selectivity of 94%.
RESUMO
A series of anthrazoline-containing monomers are synthesized, and eight co-polyamides of different chemical structures, containing 1,9-anthrazoline fragments in the main chain, are obtained and investigated. Photoluminescent, stress-strain, and thermal properties of these polymers are studied. It is shown that polymers with fragments of 4,4'-(pyrido[3,2-g]-quinoline-2,8-diyl)dianiline and 4,4'-(10-methylpyrido[3,2-g]quinoline-2,8-diyl)dianiline possess an intense luminescence in the range 550-650 nm. The performed investigations made it possible to determine the effect of substituents of various natures in the anthrazoline cycle and the position of amide group (meta- and para-configurations) on optical, stress-strain, and thermal properties of copolymers, opening up a prospect for further developments of principles of design of polymers with optimal characteristics.
Assuntos
Nylons/química , Quinolinas/química , Técnicas de Química Sintética , Corantes Fluorescentes/química , Medições Luminescentes , Peso Molecular , Nylons/síntese química , Espectrofotometria UltravioletaRESUMO
Iron-based biodegradable metals have been shown to present high potential in cardiac, vascular, orthopaedic and dental in adults, as well as paediatric, applications. These require suitable mechanical properties, adequate biocompatibility while guaranteeing a low toxicity of degradation products. For example, in cardiac applications, stents need to be made by homogeneous and isotropic materials in order to prevent sudden failures which would impair the deployment site. Besides, the presence of precipitates and pores, chemical inhomogeneity or other anisotropic microstructural defects may trigger stress concentration phenomena responsible for the early collapse of the device. Metal manufacturing processes play a fundamental role towards the final microstructure and mechanical properties of the materials. The present work assesses the effect of mode of rolling on the micro-texture evolution, mechanical properties and biodegradation behaviour of polycrystalline pure iron. Results indicated that cross-rolled samples recrystallized with lower rates than the straight-rolled ones due to a reduction in dislocation density content and an increase in intensity of {100} crystallographic plane which stores less energy of deformation responsible for primary recrystallization. The degradation resulted to be more uniform for cross-rolled samples, while the corrosion rates of cross-rolled and straight-rolled samples did not show relevant differences in simulated body solution. Finally, this work shows that an adequate compromise between biodegradation rate, strength and ductility could be achieved by modulating the deformation mode during cold rolling.