Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.051
Filtrar
1.
Environ Res ; 262(Pt 1): 119894, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39218340

RESUMO

Neonicotinoid insecticides are widely used in agriculture and have been linked to various detrimental physiological effects on wild birds. Despite this, the impact of acetamiprid - a less studied member of the neonicotinoid family - on the hypothalamic-pituitary-adrenal axis responsible for the hormonal regulation of the response to stress has rarely been examined in birds. In our study, we explored the effects of acetamiprid on feather levels of corticosterone, the major end product of the HPA, and blood oxidative status of House sparrows (Passer domesticus), following the ingestion of a low, field-realistic dose during two consecutive experiments in 2015 and 2016. We involved 112 birds in each experiment - 56 males and 56 females - that were administered a placebo or a dose of acetamiprid equivalent to 0.5% of the LD50 of the Zebra finch over the entire duration of the experiments, which lasted approximately three weeks. We measured corticosterone concentrations in feathers grown during an acclimation phase before ingestion and in newly grown feather after the experiment and assessed three oxidative stress markers in the blood. We found no impact of acetamiprid on oxidative stress markers. However, in 2015, male sparrows that ingested acetamiprid exhibited higher corticosterone levels in their feathers compared to those that received a placebo. No such difference was found in females. Interestingly, this effect was not observed in year 2016, which was characterised by less stressful conditions for the birds. These findings offer the first evidence of a potential effect of acetamiprid on corticosterone levels in a songbird, suggesting that ingesting this compound at very low dose may alter the endocrine physiology of the response to stress.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39207621

RESUMO

Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO4 (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC5) of CuSO4 (120 µg mL-1) or spinosad (0.85 µg mL-1) over a 24-h period. Glyphosate-exposed bees received the recommended label concentration (7400 µg mL-1), as they exhibited 100% survival after exposure. Ingestion of CuSO4 or glyphosate-treated diets by bees was reduced. Levels of NO and catalase (CAT) remained unaffected at 0 h or 24 h post-exposure. Superoxide dismutase (SOD) activity was higher at 0 h compared to 24 h, although insignificantly so when compared to the control. Exposure to CuSO4 reduced glutathione S-transferase (GST) activity at 0 h but increased it after 24 h, for both CuSO4 and glyphosate. MDA levels decreased after 0 h exposure to CuSO4 or spinosad but increased after 24 h exposure to all tested agrochemicals. THC showed no difference among glyphosate or spinosad compared to the control or across time. However, CuSO4 exposure significantly increased THC. These findings shed light on the physiological responses of stingless bees to agrochemicals, crucial for understanding their overall health.

3.
Environ Toxicol Chem ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136649

RESUMO

Imidacloprid and other neonicotinoid insecticides severely impact the performance and survival of honey bees and other pollinators. In the present study, we focused on the gene expression profile of newly emerged Apis mellifera queen bees after sublethal imidacloprid treatment during the larval stage. Royal jelly containing 1 ppb imidacloprid was provided to larvae for 3 consecutive days (2-4 days postemergence). Queen larvae treated with imidacloprid showed lower capping and emergence rates (35.5% and 24.22%, respectively) than did control larvae (61.68% and 52.95%, respectively), indicating a high failure rate of queen rearing associated with imidacloprid exposure during the larval stage. The molecular response to imidacloprid treatment was examined next. By comparing the gene expression profiles of imidacloprid-treated queen larvae and those of control queen larvae using DESeq2, we identified 215 differentially expressed genes, with 105 and 111 up- and downregulated genes, respectively. Gene Ontology results indicated that chitin binding- and calcium ion binding-related genes were upregulated, while phototransduction- and visual perception-related genes were downregulated. The high mortality rate and altered gene expression profiles suggest that treatment with even 1 ppb imidacloprid can severely impact queen bee survival. Environ Toxicol Chem 2024;00:1-11. © 2024 SETAC.

4.
J Agric Food Chem ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178008

RESUMO

Diaphorina citri is a serious citrus pest. Dinotefuran is highly insecticidal against D. citri. To analyze the sublethal effects of dinotefuran on D. citri adults, an indoor toxicity test was performed, which revealed that the lethal concentration 50 (LC50) values were 4.23 and 0.50 µg/mL for 24 and 48 h treatments, respectively. RNA-Seq led to the identification of 71 and 231 differentially expressed genes (DEGs) after dinotefuran treatments with LC20 and LC50 doses, respectively. Many of the DEGs are significantly enriched in the apoptosis pathway. Dinotefuran-induced apoptosis in the gut cells was confirmed through independent assays of 4',6-diamidino-2-phenylindole (DAPI) and TdT-mediated dUTP nick end labeling (TUNEL) staining. Increased levels of reactive oxygen species (ROS) and a loss of mitochondrial membrane potential were observed. Four caspase genes were identified, and dinotefuran treatments resulted in increased mRNA levels of DcCasp1 and DcCasp3a. These findings shed light on the sublethal effects of dinotefuran on D. citri.

5.
Pest Manag Sci ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189548

RESUMO

BACKGROUND: Bees (Apis mellifera), as important pollinators of agricultural crops, are at risk when pesticides are used. Sulfoxaflor is a new insecticide which acts on the nicotinic acetylcholine receptor (nAChR) in a similar way to neonicotinoids. The goal of this study is to evaluate the toxicity of sulfoxaflor and its effect on the A. mellifera exposure. RESULTS: Initially, developmental indicators such as larval survival, pupation, and eclosion were inhibited by 5.0 mg/L (field concentration) sulfoxaflor. In the pupal stage, fat content was significantly increased, while the glycogen content decreased. In addition, A. mellifera heads were treated with 2.0 mg/L (sublethal concentration) of sulfoxaflor and analyzed by RNA sequencing. The transcriptome results indicated that 2.0 mg/L amounts of sulfoxaflor have adverse effects on the immune, digestive, and nervous systems. Sulfoxaflor down-regulated the expression of many genes involved in immunity, detoxification, the myosin cytoskeleton, sensory neurons, and odor-binding proteins. CONCLUSION: Field concentration and sublethal concentration were used for the combined analysis of honeybees. The effect of sublethal concentration of sulfoxaflor on honeybees was studied for the first time from the perspective of transcriptome sequencing of honeybee head. A preliminary study was carried out on the stress of sulfoxaflor at sublethal concentration on honeybee workers, which has certain research significance and can provide theoretical basis for the use of sulfoxaflor in the field environment. © 2024 Society of Chemical Industry.

6.
Pest Manag Sci ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189544

RESUMO

BACKGROUND: Lepidopteran pest control in agriculture has become heavily dependent on cultivars that express Bacillus thuringiensis (Bt) toxins as 'plant-incorporated protectants'. However, populations of Spodoptera frugiperda (Smith) in Brazil appear resistant to the Bt traits currently available in commercial soybean cultivars. RESULTS: This study evaluated S. frugiperda life history when feeding on three different Bt soybean cultivars. Cultivars expressing Cry1Ac + Cry1F and Cry1A.105 + Cry2Ab2 + Cry1Ac Bt toxins caused 100% larval mortality in S. frugiperda. Both non-Bt and Cry1Ac-expressing soybean induced transgenerational effects that increased the survival of subsequent generations. A Cry1Ac soybean diet reduced the generation time (T) of S. frugiperda relative to non-Bt soybean, resulting in shorter generation time and more rapid population growth. CONCLUSION: The implications of these results revealed how diet can alter aspects of insect life history and biology, and have important implications for sustainable management of S. frugiperda on soybean. © 2024 Society of Chemical Industry.

7.
Chemosphere ; 364: 143186, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-39191347

RESUMO

The tobacco cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is an economically important agricultural polyphagous pest worldwide. It has shown high resistance to several insecticides, including cypermethrin, a synthetic pyrethroid that is used in large-scale commercial agricultural applications. The present study investigated the development of selection-induced resistance to cypermethrin and associated fitness costs in S. litura. After continuous exposure to cypermethrin for consecutive fifteen generations, the cypermethrin-selected population (CYP-Sel) of S. litura developed a 21.2-fold resistance. The CYP-Sel strain had a relative fitness of 0.16 when treated with LC50, prolonged larval duration, and development time. Meanwhile, the strain also showed shorter adult duration, lower fecundity, and hatchability compared with the Unsel-Lab population. CYP-Sel population showed a significant disadvantage in intrinsic rate of natural increase (rm), net reproductive rate (Ro), and finite rate of increase (λ) when compared to the Unsel-Lab population. This knowledge could help to design resistance management strategies against this particular pest, along with potential management strategies to overcome the development of resistance.

8.
J Appl Microbiol ; 135(9)2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39165131

RESUMO

AIMS: This study investigates the cell physiology of thermally injured bacterial cells, with a specific focus on oxidative stress and the repair mechanisms associated with oxidative secondary stress. METHODS AND RESULTS: We explored the effect of heat treatment on the activity of two protective enzymes, levels of intracellular reactive oxygen species, and redox potential. The findings reveal that enzyme activity slightly increased after heat treatment, gradually returning to baseline levels during subculture. The response of Escherichia coli cells to heat treatment, as assessed by the level of superoxide radicals generated and redox potential, varied based on growth conditions, namely minimal and rich media. Notably, the viability of injured cells improved when antioxidants were added to agar media, even in the presence of metabolic inhibitors. CONCLUSIONS: These results suggest a complex system involved in repairing damage in heat-treated cells, particularly in rich media. While repairing membrane damage is crucial for cell regrowth and the electron transport system plays a critical role in the recovery process of injured cells under both tested conditions.


Assuntos
Meios de Cultura , Escherichia coli , Temperatura Alta , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Oxirredução , Antioxidantes/metabolismo
9.
Sci Total Environ ; 951: 175467, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39155008

RESUMO

Recent years have witnessed heightened scrutiny of the non-target sublethal effects of pesticides on behavioural and physiological traits of insects. Traditionally, attention has focused on investigating pesticides' primary modes of action, often overlooking the potential secondary mechanisms. This review brings forth the nuanced impacts of sublethal pesticide exposure on the immune system of target and non-target insect species. Pesticides, such as for example neonicotinoids, suppress immune response, while others, like certain organophosphates and some insect growth regulators (IGRs), appear to bolster immunocompetence under certain circumstances. Beyond their individual impacts, the synergic effects of pesticide mixtures on insect immunity are garnering increasing interest. This review thus summarizes recent advances in the immunomodulatory effects of pesticides, detailing both mechanisms and consequences of such interactions. The implications of these effects for ecosystem preservation and viability of beneficial organisms, such as pollinators and natural enemies of pests, are discussed. The review also considers further research directions on pesticide secondary modes of action and explores potential implications for integrated pest management (IPM) programs, as several model organisms studied are crop pest species. While current data provide an expansive overview of how insect innate immunity is modulated, concrete endpoints remain elusive requiring further research into pesticide secondary modes of actions.

10.
Environ Int ; 190: 108919, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39094406

RESUMO

In agricultural environments, bees are routinely exposed to combinations of pesticides. For the most part, exposure to these pesticide mixtures does not result in acute lethal effects, but we know very little about potential sublethal effects and their consequences on reproductive success and population dynamics. In this study, we orally exposed newly emerged females of the solitary bee Osmia cornuta to environmentally-relevant levels of acetamiprid (a cyano-substituted neonicotinoid insecticide) singly and in combination with tebuconazole (a sterol-biosynthesis inhibitor (SBI) fungicide). The amount of feeding solution consumed during the exposure phase was lowest in bees exposed to the pesticide mixture. Following exposure, females were individually marked and released into oilseed rape field cages to monitor their nesting performance and assess their reproductive success. The nesting performance and reproductive success of bees exposed to the fungicide or the insecticide alone were similar to those of control bees and resulted in a 1.3-1.7 net population increases. By contrast, bees exposed to the pesticide mixture showed lower establishment, shortened nesting period, and reduced fecundity. Together, these effects led to a 0.5-0.6 population decrease. Female establishment and shortened nesting period were the main population bottlenecks. We found no effects of the pesticide mixture on nest provisioning rate, offspring body weight or sex ratio. Our study shows how sublethal pesticide exposure may affect several components of bee reproductive success and, ultimately, population growth. Our results calls for a rethinking of pollinator risk assessment schemes, which should target not only single compounds but also combinations of compounds likely to co-occur in agricultural environments.


Assuntos
Fungicidas Industriais , Inseticidas , Neonicotinoides , Reprodução , Triazóis , Animais , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Feminino , Inseticidas/toxicidade , Reprodução/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Triazóis/toxicidade , Neonicotinoides/toxicidade , Crescimento Demográfico , Piridinas/toxicidade
11.
Sci Total Environ ; 950: 175262, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39098428

RESUMO

The utilization of nitenpyram for aphid and whitefly control may induce environmental contamination and negative repercussions on non-target organisms. Formerly, we found that nitenpyram would pollute the peripheral and sub-peripheral areas of the adjacent mulberry orchard. Under acute toxicity conditions, nitenpyram induced oxidative damage in silkworms, affected biological metabolism, synthesis, immunity, and signal transduction. Considering the impact of nitenpyram mist drift on mulberry leaves, we investigated the effects of low concentrations of nitenpyram on silkworms. The results showed that silkworms exposed to 0.17 mg/L, 0.35 mg/L and 0.70 mg/L of nitenpyram (1/40 LC50, 1/20 LC50 and 1/10 LC50) showed obvious poisoning symptoms. The cocoon weight and cocoon shell weight decreased gradually with increases in the concentration, and these decreases prolonged the growth and development time of silkworms and induced the detoxification enzymes carboxylesterase (CarE) and glutathione-S-transferase (GST) to cope with the stress damage caused by nitenpyram. Exposure to low concentrations of nitenpyram downregulates genes involved in the drug metabolism-other enzymes and peroxisome pathway in silkworms. Additionally, through injection of miRNA mimics and inhibitors, we discovered that detoxifying enzyme pathway genes are influenced by bmo-miR-3382-3P, bmo-miR-3213-5P and bmo-miR-133, regulating the immune response of silkworms. This study provides an overall view of the toxicity and detoxification metabolism of nitenpyram in silkworm, and provides a reference for environmental assessment.


Assuntos
Bombyx , Neonicotinoides , Animais , Bombyx/efeitos dos fármacos , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Glutationa Transferase/metabolismo , Glutationa Transferase/genética
12.
Ecotoxicol Environ Saf ; 284: 116917, 2024 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-39182280

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), poses a significant threat to food security, necessitating effective management strategies. While chemical control remains a primary approach, understanding the toxicity and detoxification mechanisms of different insecticides is crucial. In this study, we conducted leaf-dipping bioassays to assess the toxicity of quinalphos and beta-cypermethrin·emamectin benzoate (ß-cyp·EMB) on S. frugiperda larvae. Additionally, we assessed the response of alterations in CarE, GST, MFO, and AChE activities to sublethal concentrations of these insecticides over various treatment durations. Results indicated that ß-cyp·EMB exhibited higher toxicity than quinalphos in S. frugiperda. Interestingly, the highest activities of GST, CarE, MFO, and AChE were observed at 6 h exposure to LC10 and LC25 of ß-cyp·EMB, surpassing equivalent sublethal concentrations of quinalphos. Subsequently, GST and CarE activities exposure to ß-cyp·EMB steadily decreased, while MFO and AChE activities exposure to both insecticides was initially decreased then increased. Conversely, two sublethal concentrations of quinalphos notably enhanced GST activity across all exposure durations, with significantly higher than ß-cyp·EMB at 12-48 h. Similarly, CarE activity was also increased at various durations. Our research has exhibited significant alterations in enzyme activities exposure to both concentration and duration. Furthermore, Pearson correlation analysis showed significant correlations among these enzyme activities at different treatment durations. These findings contribute to a better understanding of detoxification mechanisms across different insecticides, providing valuable insights for the rational management of S. frugiperda populations.

13.
Environ Toxicol Chem ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092778

RESUMO

We compared the effects of lambda-cyhalothrin as the pure active ingredient and as a formulated product (Zero®), on the larval stage of the autochthonous species Boana pulchella. We evaluated ecotoxicological endpoints, behavioral and developmental alterations, and the biochemical detoxifying, neurotoxic, and oxidative stress responses, covering a wide concentration range from environmental to high application levels. Both pyrethroid preparations displayed similar ecotoxicity (median lethal concentration of ~0.5 mg/L), with the lethal effect of Zero® being more pronounced than that of the active ingredient. Sublethal behavioral alterations in natatory activity were observed at 1000 times lower concentrations, indicating the ecological hazard of tadpole exposure to this pyrethroid at environmentally relevant concentrations. Biochemical endpoints in B. pulchella larvae showed significant responses to lambda-cyhalothrin in the ng/L range; these responses were different for the pure or the formulated product, and they were variable at higher concentrations. Principal components analysis confirmed the prevalence of biochemical responses as early endpoints at the lowest lambda-cyhalothrin concentrations; the Integrated Biomarker Response Index proportionally increased with pyrethroid concentration in a similar way for the pure and the formulated products. We conclude that lambda-cyhalothrin is of concern from an environmental perspective, with particular emphasis on autochthonous anuran development. The battery of biochemical biomarkers included in our study showed a consistent integrated biomarker response, indicating that this is a potent tool for monitoring impacts on amphibians. Environ Toxicol Chem 2024;00:1-11. © 2024 SETAC.

14.
Foods ; 13(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39200527

RESUMO

High pressure processing (HPP) is a non-thermal technology with emerging application within the fruit and vegetable sector. The impact of the enumeration agar on the recorded HPP inactivation of L. monocytogenes, Salmonella spp. and E. coli in banana-apple and apple purees was evaluated. Additionally, the HPP inactivation and sublethal injury was quantified in apple puree, considering the impact of acid exposure (24 h before HPP) and sampling time. Inoculated purees were pressurized at 300 MPa for 2 min. Enumeration was performed immediately and 24 h after HPP. HPP inactivation was 0.9-to-4.5-fold higher in apple than banana-apple puree. Compared with nutrient-rich media, selective agar enumeration overestimated the inactivation. HPP inactivation and sublethal injury of L. monocytogenes, Salmonella and E. coli was variable, mainly dependent on the exposure to acid and the sampling time. The 24 h-delayed enumeration slightly increased the inactivation. In apple puree, the CECT5947 strain of E. coli O157:H7 was the most piezo-resistant strain (1.5 log reduction), while L. monocytogenes Scott A was the most piezo-sensitive (6-log reduction when exposed to acid and sampled 24 h after HPP). All the studied factors should be taken into account when designing HPP treatments, performing product-specific validation studies and setting verification procedures.

15.
R Soc Open Sci ; 11(6): 232025, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39100177

RESUMO

Shigella causes shigellosis that requires antibiotic treatment in severe cases. Sublethal antibiotic concentrations can promote resistance, but their effect on antibiotic-sensitive bacteria before resistance development is unclear. This study investigated the effects of sublethal norfloxacin (NOR) challenges on a NOR-sensitive strain, Shigella sonnei UKMCC1015. Firstly, the whole genome of S. sonnei UKMCC1015 was assembled, and 45 antimicrobial resistance (AMR) genes were identified. Interestingly, transcriptomic analysis showed that low NOR levels do not change either the expression of the AMR genes or NOR targets such as gyrA. Instead, multiple ribosomal protein genes were downregulated, which could be attributed to decreased ribosomal protein promoter activity, modulated by elevated guanosine pentaphosphate and tetraphosphate (ppGpp) levels. This alarmone is involved in the bacterial stringent response during environmental stress, and it is mainly produced from the ppGpp synthetase (relA). Additionally, we observed that a relA overexpression (prolonged period of elevated ppGpp levels) may negatively affect the NOR tolerance of the bacteria. In conclusion, this study revealed that a NOR-sensitive strain responds differently to sublethal NOR than commonly reported in resistant strains.

16.
Heliyon ; 10(15): e35213, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39166034

RESUMO

The planktonic Crustacea Daphnia are among the most employed organisms in ecotoxicology, mainly in regulatory assays that follow OECD/ISO protocols. The most common endpoint for acute testing (24-48 h) without feeding of organisms is usually monitored as mortality or immobilization. A rapid and physiologically and environmentally more relevant toxicity endpoint could be the impaired feeding of daphnids. Decreased feeding of test organisms upon exposure to toxicants has been used to evaluate sub-lethal effects occurring already in minutes to hours. This endpoint, however, has not been used systematically and the respective data are inconsistent due to heterogeneity of experimental design. The aim of this review is to evaluate the scientific literature where impaired Daphnia feeding has been used in ecotoxicological research. The search made in WoS (June 5, 2024) using combination of keywords "Daphni* AND feed* yielded 152 articles. Out of these 152 papers 46 addressed feeding of d aphnids upon exposure to various toxicants (insecticides, heavy metals, pharmaceuticals, contaminated environmental samples and toxic cyanobacteria; in total 59 different chemicals/combinations). These 46 papers formed the basis of the critical analysis presented in the current review. For 18 chemicals it was possible to compare the sensitivity of the feeding and mortality endpoints. We conclude that although the feeding inhibition of Daphnia sp. did not prove systematically more sensitive than mortality/immobilization, it is a sub-lethal endpoint that allows rapid evaluation of toxic effects of chemicals to aquatic crustaceans - important and sensitive organisms in the aquatic food web.

17.
Med Vet Entomol ; 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167411

RESUMO

Chagas disease is considered one of the most important human parasitosis in the United States. This disease is mainly transmitted by insects of the subfamily Triatominae. The chemical vector control is the main tool for reducing the incidence of the disease. However, the presence of triatomines after pyrethroids spraying has been reported in some regions, as in the case of Triatoma infestans in Argentina and Bolivia. The presence of insects can be explained by the colonization from neighbouring areas, the reduction of insecticide dose to sublethal levels due to environmental factors, and/or by the evolution of insecticide resistance. In the last two scenarios, a proportion of the insects is not killed by insecticide and gives rise to residual populations. This article focuses on the toxicological processes associated with these scenarios in triatomines. Sublethal doses may have different effects on insect biology, that is, sublethal effects, which may contribute to the control. In addition, for insect disease vectors, sublethal doses could have negative effects on disease transmission. The study of sublethal effects in triatomines has focused primarily on the sequence of symptoms associated with nervous intoxication. However, the effects of sublethal doses on excretion, reproduction and morphology have also been studied. Rhodnius prolixus and T. infestans and pyrethroids insecticides were the triatomine species and insecticides, respectively, mainly studied. Insecticide resistance is an evolutionary phenomenon in which the insecticide acts as a selective force, concentrating on the insect population's pre-existing traits that confer resistance. This leads to a reduction in the susceptibility to the insecticide, which was previously effective in controlling this species. The evolution of resistance in triatomines received little attention before the 2000s, but after the detection of the first focus of resistance associated with chemical control failures in T. infestans from Argentina in 2002, the study of resistance increased remarkably. A significant number of works have studied the geographical distribution, the resistance mechanisms, the biological modifications associated with resistance, the environmental influences and the genetic of T. infestans resistant to pyrethroid insecticides. Currently, studies of insecticide resistance are gradually being extended to other areas and other species. The aim of this article was to review the knowledge on both phenomena (sublethal effects and insecticide resistance) in triatomines. For a better understanding of this article, some concepts and processes related to insect-insecticide interactions, individual and population toxicology and evolutionary biology are briefly reviewed. Finally, possible future lines of research in triatomine toxicology are discussed.

18.
Chemosphere ; 363: 142853, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019173

RESUMO

Bees play a crucial role as pollinating insects in both natural and cultivated areas. However, the use of pesticides, such as thiamethoxam, has been identified as a contributing factor compromising bee health. The current risk assessment primarily relies on the model species Apis mellifera, raising concerns about the applicability of these assessments to other bee groups, including stingless bees. In this study, we investigated the acute toxicity of thiamethoxam on the stingless bee Frieseomelitta varia by determining the average lethal concentration (LC50) and mean lethal time (LT50). Additionally, we evaluated the enzymatic profile of Acetylcholinesterase (AChE), Carboxylesterase-3 (CaE-3), and Glutathione S-Transferase (GST), in the heads and abdomens of F. varia after exposure to thiamethoxam (LC50/10). The LC50 of thiamethoxam was determined to be 0.68 ng ai/µL, and the LT50 values were 37 days for the control group, 25 days at LC50/10, and 27 days at LC50/100. The thiamethoxam significantly decreased the survival time of F. varia. Furthermore, the enzymatic profile exhibited differences in CaE3 activity within one day in the heads and ten days in the abdomen. GST activity showed differences in the abdomen after one and five days of thiamethoxam exposure. These findings suggests that the abdomen is more affected than the head after oral exposure to thiamethoxam. Our study provides evidence of the toxicity of thiamethoxam at both the cellular and organismal levels, reinforcing the need to include non-Apis species in pollinator risk assessments. and provide solid arguments for bee protection.


Assuntos
Biomarcadores , Glutationa Transferase , Inseticidas , Tiametoxam , Abelhas/efeitos dos fármacos , Abelhas/fisiologia , Animais , Tiametoxam/toxicidade , Biomarcadores/metabolismo , Glutationa Transferase/metabolismo , Inseticidas/toxicidade , Acetilcolinesterase/metabolismo , Dose Letal Mediana , Carboxilesterase/metabolismo , Neonicotinoides/toxicidade
19.
Plant J ; 119(5): 2375-2384, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39024389

RESUMO

Weeds in agricultural settings continually adapt to stresses from ecological and anthropogenic sources, in some cases leading to resistant populations. However, consequences of repeated sub-lethal exposure of these stressors on fitness and stress "memory" over generations remain poorly understood. We measured plant performance over a transgenerational experiment with Arabidopsis thaliana where plants were exposed to sub-lethal stress induced by the herbicides glyphosate or trifloxysulfuron, stresses from clipping or shading in either one (G1) or four successive generations (G1-G4), and control plants that never received stress. We found that fourth-generation (G4) plants that had been subjected to three generations of glyphosate or trifloxysulfuron stress produced higher post-stress biomass, seed weight, and rosette area as compared to that produced by plants that experienced stress only in the first generation (G1). By the same measure, clipping and shade were more influential on floral development time (shade) and seed weight (clipping) but did not show responsive phenotypes for vegetative metrics after multiple generations. Overall, we found that plants exhibited more rapid transgenerational vegetative "stress memory" to herbicides while reproductive plasticity was stressor dependent and similar between clipping/shade and anthropogenic stressors. Our study suggests that maternal plant stress memory aids next-generation plants to respond and survive better under the same stressors.


Assuntos
Arabidopsis , Herbicidas , Herbivoria , Fenótipo , Estresse Fisiológico , Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Herbicidas/farmacologia , Herbicidas/toxicidade , Glicina/análogos & derivados , Glicina/farmacologia , Glicina/toxicidade , Glifosato
20.
Pest Manag Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995122

RESUMO

BACKGROUND: G1 strain Ganaspis brasiliensis (Ihering) has been recently released in both Europe and America as a biological control agent of the spotted wing drosophila, Drosophila suzukii (Matsumura). In initial phases of classical biological control programs, it becomes imperative to evaluate the susceptibility of parasitoids to insecticides, to identify the best alternatives to adopt in an integrated pest management and organic perspective. In this study, we evaluated lethal and sublethal effects of topical application of five different insecticides classes: neonicotinoids, diamides, pyrethroids, organophosphates and spinosyns. Additionally, we tested residual toxicity in field trials in vineyards and sweet cherry orchards. RESULTS: Adult wasps' susceptibility to different insecticides' classes were consistent between laboratory and field. Spinosad exhibited the highest toxicity, with a median lethal concentration (LC50) of 0.00372 of the maximum field dose, and the highest knock-down effect in field trials, causing 92.5 ± 5% of mortality at T0. λ-cyhalothrin showed sublethal effects on both male and female insects' longevity when applied at LC30. In field trials, deltamethrin showed the highest persistence, causing significant parasitoid mortality up to 14 days after treatment. Conversely, cyantraniliprole was the least toxic active ingredient according to both topical and residual bioassays, even though its residues caused mortality up to 7 days after the treatment in the field. CONCLUSION: Our results indicate that spinosad and λ-cyhalothrin are highly toxic to G. brasiliensis, making them incompatible with classical biological control programs. Cyantraniliprole exhibited lower toxicity, and may be considered a selective pesticide for the integrated management of D. suzukii. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA