Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 10: 1068315, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761888

RESUMO

Background: Ginseng has been used in biomedicine to prevent and treat decreased physical and mental capacities. Total ginsenosides (TG) from ginseng root which have antitumor and immune-enhancing properties, are the principal active components of Panax ginseng, while the sulphation-modified TG derivative-3 (SMTG-d3) was expected to enhance the anticancer activity in conventional medicinal treatments. Methods: The chlorosulphonic acid-pyridine technique, used for the sulfation modification of TG to improve their biological activity, and the infrared spectroscopic characteristics of TG and SMTG-d3 were investigated, and the effects of SMTG-d3 on immunocytes and cytokines relevant to tumor treatment were assessed. The MTT assay was used to assess the effect of TG and SMTG-d3 on the cytotoxicity and T-lymphocytic proliferation against mouse splenocytes. The LDH method was employed to evaluate NK activity induced by TG or SMTG-d3. The production levels of splenocytes-secreted IL-2 and IFN-γ and peritoneal macrophages-secreted TNF-α were determined using mouse ELISA kits. Results and discussion: It showed that the ideal conditions for the sulfation modification of TG: the volume ratio of chlorosulfonic acid to pyridine lower than 1:2.5; controlled amount of chlorosulfonic acid; and a yield of 51.5% SMTG-d3 (2 h, < 45°C). SMTG-d3 showed two characteristic absorption peaks at 1,230 cm-1 and 810 cm-1, indicating the formation of sulfuric acid esters and the presence of sulfuric acid groups. SMTG-d3 exhibited higher antitumor immunological activity than TG by promoting the proliferation of T lymphocytes and the production of IFN-γ and TNF-α, thus enhancing NK cell activity, and reducing cytotoxicity. The findings imply sulfated modification represents an effective method of enhancing the immunomodulatory activities of TG and could be used as the basis for developing new drug target compounds; SMTG-d3 can serve as an antitumor immunomodulator and can be considered an effective and prospective herbal formulation in clinical applications.

3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768961

RESUMO

The increasing recognition of the biochemical importance of glycosaminoglycans (GAGs) has in recent times made them the center of attention of recent research investigations. It became evident that subtle conformational factors play an important role in determining the relationship between the chemical composition of GAGs and their activity. Therefore, a thorough understanding of their structural flexibility is needed, which is addressed in this work by means of all-atom molecular dynamics (MD) simulations. Four major GAGs with different substitution patterns, namely hyaluronic acid as unsulphated GAG, heparan-6-sulphate, chondroitin-4-sulphate, and chondroitin-6-sulphate, were investigated to elucidate the influence of sulphation on the dynamical features of GAGs. Moreover, the effects of increasing NaCl and KCl concentrations were studied as well. Different structural parameters were determined from the MD simulations, in combination with a presentation of the free energy landscape of the GAG conformations, which allowed us to unravel the conformational fingerprints unique to each GAG. The largest effects on the GAG structures were found for sulphation at position 6, as well as binding of the metal ions in the absence of chloride ions to the carboxylate and sulphate groups, which both increase the GAG conformational flexibility.


Assuntos
Glicosaminoglicanos/química , Configuração de Carboidratos , Sequência de Carboidratos , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Estrutura Molecular , Cloreto de Potássio/química , Cloreto de Sódio/química , Sulfatos/química
4.
J Fungi (Basel) ; 7(10)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34682268

RESUMO

In this study, the mucilage polysaccharide (MP) from Amanita hemibapha subspecies javanica was prepared by hot water extraction and ethanol precipitation and then fractionated using anion-exchange chromatography equipped with a DEAE Sepharose fast flow column. The most immune-enhancing polysaccharide fraction 2 (MPF2) was subjected to a structural modification such as hydrolysis or over-sulphation. The sulphate and molecular weight (Mw) of over-sulphated (OS1-3) and hydrolysed (HS1-3) derivatives of MPF2 differed between 9.85% and 14.2% and 32.8 and 88.1 × 103 g/mol, respectively. Further, the immune-enhancing properties of MPF2 and its derivatives were tested on RAW264.7 and NK cells through various in vitro assays. Interestingly, a low molecular weight of HS1-3 significantly increased the nitric oxide (NO) production (p < 0.05) more than MPF2, indicating that Mw is a major factor in RAW264.7 cell stimulation. In addition, RAW264.7 cells produced various cytokines by up-regulating mRNA expression levels and the activation of nuclear factor kappa-B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. On the other hand, OS1-3-treated natural killer (NK) cells induced cytotoxicity in HepG2 cells through the expression of IFN-γ, Grandzyme-B, perforin, NKp30, and FasL. These results demonstrated that sulphate derivatives play an important role in NK cell activation. Further, this study also explores how polysaccharide binds to RAW264.7 and NK cells. MPF2 and HS3 may activate RAW264.7 cells via binding to TLR4 receptors, and OS2 could be activated through the CR3 signalling pathways.

5.
Arch Toxicol ; 95(3): 807-836, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33398420

RESUMO

This review summarises the current state of knowledge regarding the physiology and control of production of thyroid hormones, the effects of chemicals in perturbing their synthesis and release that result in thyroid cancer. It does not consider the potential neurodevelopmental consequences of low thyroid hormones. There are a number of known molecular initiating events (MIEs) that affect thyroid hormone synthesis in mammals and many chemicals are able to activate multiple MIEs simultaneously. AOP analysis of chemical-induced thyroid cancer in rodents has defined the key events that predispose to the development of rodent cancer and many of these will operate in humans under appropriate conditions, if they were exposed to high enough concentrations of the affecting chemicals. There are conditions however that, at the very least, would indicate significant quantitative differences in the sensitivity of humans to these effects, with rodents being considerably more sensitive to thyroid effects by virtue of differences in the biology, transport and control of thyroid hormones in these species as opposed to humans where turnover is appreciably lower and where serum transport of T4/T3 is different to that operating in rodents. There is heated debate around claimed qualitative differences between the rodent and human thyroid physiology, and significant reservations, both scientific and regulatory, still exist in terms of the potential neurodevelopmental consequences of low thyroid hormone levels at critical windows of time. In contrast, the situation for the chemical induction of thyroid cancer, through effects on thyroid hormone production and release, is less ambiguous with both theoretical, and actual data, showing clear dose-related thresholds for the key events predisposing to chemically induced thyroid cancer in rodents. In addition, qualitative differences in transport, and quantitative differences in half life, catabolism and turnover of thyroid hormones, exist that would not operate under normal situations in humans.


Assuntos
Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Neoplasias da Glândula Tireoide/induzido quimicamente , Animais , Humanos , Roedores , Especificidade da Espécie , Glândula Tireoide/metabolismo , Hormônios Tireóideos/biossíntese , Neoplasias da Glândula Tireoide/patologia
6.
Adv Exp Med Biol ; 1245: 39-66, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266652

RESUMO

Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose ß1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue-associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes.


Assuntos
Sulfato de Queratano , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Proteoglicanas
7.
Biochem J ; 475(15): 2511-2545, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115748

RESUMO

The aim of the present study was to examine the roles of l-fucose and the glycosaminoglycans (GAGs) keratan sulfate (KS) and chondroitin sulfate/dermatan sulfate (CS/DS) with selected functional molecules in neural tissues. Cell surface glycans and GAGs have evolved over millions of years to become cellular mediators which regulate fundamental aspects of cellular survival. The glycocalyx, which surrounds all cells, actuates responses to growth factors, cytokines and morphogens at the cellular boundary, silencing or activating downstream signaling pathways and gene expression. In this review, we have focused on interactions mediated by l-fucose, KS and CS/DS in the central and peripheral nervous systems. Fucose makes critical contributions in the area of molecular recognition and information transfer in the blood group substances, cytotoxic immunoglobulins, cell fate-mediated Notch-1 interactions, regulation of selectin-mediated neutrophil extravasation in innate immunity and CD-34-mediated new blood vessel development, and the targeting of neuroprogenitor cells to damaged neural tissue. Fucosylated glycoproteins regulate delivery of synaptic neurotransmitters and neural function. Neural KS proteoglycans (PGs) were examined in terms of cellular regulation and their interactive properties with neuroregulatory molecules. The paradoxical properties of CS/DS isomers decorating matrix and transmembrane PGs and the positive and negative regulatory cues they provide to neurons are also discussed.


Assuntos
Sistema Nervoso Central/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Sistema Nervoso Periférico/metabolismo , Animais , Humanos , Neurobiologia
8.
J Mol Endocrinol ; 61(2): M57-M65, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29720512

RESUMO

In women, establishment of pregnancy is dependent upon 'fine-tuning' of the endometrial microenvironment, which is mediated by terminal differentiation (decidualisation) of endometrial stromal fibroblasts (ESFs). We have demonstrated that intracrine steroid metabolism plays a key role in regulating decidualisation and is essential for time-dependent expression of key factors required for endometrial receptivity. The primary aim of the current study was to determine whether sulphated steroids can act as precursors to bioactive sex steroids during decidualisation. We used primary human ESF and a robust in vitro model of decidualisation to assess the expression of genes associated with sulphation, desulphation and transport of sulphated steroids in human ESF as well as the impact of the steroid sulphatase (STS) inhibitor STX64 (Irosustat). We found evidence for an increase in both expression and activity of STS in response to a decidualisation stimulus with abrogation of oestrone biosynthesis and decreased secretion of the decidualisation marker IGFBP1 in the presence of STX64. These results provide novel insight into the contribution of STS to the intracrine regulation of decidualisation.


Assuntos
Endométrio/metabolismo , Transdução de Sinais/fisiologia , Esteril-Sulfatase/metabolismo , Sulfatos/metabolismo , Animais , Implantação do Embrião/fisiologia , Feminino , Humanos , Gravidez
9.
Biochem J ; 475(3): 587-620, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439148

RESUMO

Chondroitin sulphate (CS) glycosaminoglycan chains on cell and extracellular matrix proteoglycans (PGs) can no longer be regarded as merely hydrodynamic space fillers. Overwhelming evidence over recent years indicates that sulphation motif sequences within the CS chain structure are a source of significant biological information to cells and their surrounding environment. CS sulphation motifs have been shown to interact with a wide variety of bioactive molecules, e.g. cytokines, growth factors, chemokines, morphogenetic proteins, enzymes and enzyme inhibitors, as well as structural components within the extracellular milieu. They are therefore capable of modulating a panoply of signalling pathways, thus controlling diverse cellular behaviours including proliferation, differentiation, migration and matrix synthesis. Consequently, through these motifs, CS PGs play significant roles in the maintenance of tissue homeostasis, morphogenesis, development, growth and disease. Here, we review (i) the biodiversity of CS PGs and their sulphation motif sequences and (ii) the current understanding of the signalling roles they play in regulating cellular behaviour during tissue development, growth, disease and repair.


Assuntos
Biodiversidade , Sulfatos de Condroitina/química , Glicosaminoglicanos/química , Morfogênese/genética , Sulfatos de Condroitina/genética , Glicosaminoglicanos/genética , Humanos , Proteoglicanas/química , Proteoglicanas/genética , Transdução de Sinais/genética
10.
Molecules ; 23(2)2018 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-29473839

RESUMO

The great diversity of enzymatic reactions in plant secondary metabolism allows the continuous discovery of new natural compounds and derivatives. Flavonoids, for example, can be found as aglycone or as several sorts of glycosylated, acetylated, methylated, and sulphated derivatives. This review focuses on sulphated flavonoids, an uncommon group of flavonoid derivatives found in some plant families. This work presents a compilation of sulphated flavonoids and their natural sources reported in the literature. Biosynthetic aspects and biological activities have also been reviewed, showing that these particular kinds of natural compounds play an interesting role in plant metabolism, as well as being potential candidates for the development of new drugs.


Assuntos
Flavonoides/biossíntese , Flavonoides/química , Flavonoides/farmacologia , Compostos Fitoquímicos/biossíntese , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Estrutura Molecular , Plantas/química , Plantas/metabolismo , Metabolismo Secundário , Relação Estrutura-Atividade , Sulfatos/química
11.
Expert Opin Biol Ther ; 17(12): 1573-1580, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29050497

RESUMO

INTRODUCTION: Hemophilia A is the most frequent inherited bleeding disorder and most challenging coagulation disorder. To combat this, a number of new improved rFVIII/IX concentrates have recently been approved. Some of them are derived from protein fusion biotechnology or pegylation to extend their half-life (HL). However, prophylaxis has become a standard of care to prevent arthropathy in hemophiliacs though the need of frequent venipunctures is a major obstacle to primary prophylaxis. The new Extended Half-Life (EHL) rFIX concentrates allow increased intervals, while the improved HL of new rFVIII was moderate. rFVIII Simoctocog alfa is produced in Human Embryonic Kidney (HEK) cells and the post-translational modifications performed by HEK cells are very similar to those occurring in the native FVIII. Areas covered: Herein, the author provides a review of simoctocog alfa with its contents including information on simoctocog alfa's manufacturing, clinical trials, safety and tolerability. They also give their expert opinion and future perspectives on this therapy. Expert opinion: An important advantage of simoctocog alfa is the possibility to omit at least 30% of venipunctures with prophylaxis. Consequently, the standard three times weekly bolus administrations may be reduced to twice weekly, meaning approximately 50 fewer venipunctures per year. This may be particularly helpful to children.


Assuntos
Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Ensaios Clínicos como Assunto , Fator VIII/imunologia , Fator VIII/farmacocinética , Meia-Vida , Humanos , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/uso terapêutico , Resultado do Tratamento
12.
J Biochem ; 162(6): 403-414, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28992322

RESUMO

The cytosolic sulphotransferase SULT1C3 remained the most poorly understood human SULT. The SULT1C3 gene has been shown to contain alternative exons 7 and 8, raising the question concerning their evolutionary origin and implying the generation of multiple SULT1C3 variants. Two SULT1C3 splice variants, SULT1C3a and SULT1C3d, were investigated to verify the impact of alternative C-terminal sequences on their sulphating activity. Sequence homology and gene location analyses were performed to verify the orthology of the SULT1C3 gene. The SULT1C3 gene appears to be present only in humans and other primates, but alternative exons 7b and 8b share high degrees of homology with corresponding regions of rodent SULT1C1 genes, implying their evolutionary origin being from a defunct human SULT1C1 gene. Purified recombinant SULT1C3a and SULT1C3d were analyzed for sulphating activities toward a variety of endogenous and xenobiotic compounds. While SULT1C3a displayed weaker activities and strict substrate specificity toward hydroxyl-chlorinated biphenyls, SULT1C3d exhibited broader substrate specificity toward bile acids and thyroid hormones as well as hydroxyl-chlorinated biphenyls. Molecular docking simulation suggested that Tyr249 and Met257 may play an important role in substrate recognition by SULT1C3d. Alternative splicing of exons 7 and 8 sequences resulted in differential catalytic properties of SULT1C3 variants.


Assuntos
Isoformas de Proteínas/genética , Reação em Cadeia da Polimerase em Tempo Real , Sulfotransferases/genética , Sulfotransferases/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Humanos , Concentração de Íons de Hidrogênio , Simulação de Acoplamento Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Sulfotransferases/química
13.
Bio Protoc ; 7(14): e2394, 2017 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34541128

RESUMO

Specialized secretory cells known as goblet cells in the intestine and respiratory epithelium are responsible for the secretion of mucins. Mucins are large heavily glycosylated proteins and typically have a molecular mass higher than 106 Da. These large proteins are densely substituted with short glycan chains, which have many important functional roles including determining the hydration and viscoelastic properties of the mucus gel that lines and protects the intestinal epithelium. In this protocol, we comprehensively describe the method for extraction of murine mucus and its analysis by agarose gel electrophoresis. Additionally we describe the use of High Iron Diamine-Alcian Blue, Periodic Acid Schiff's-Alcian Blue and immune-staining methods to identify and differentiate between the different states of glycosylation on these mucin glycoproteins, in particular with a focus on sulphation and sialylation.

14.
Vet Parasitol ; 226: 210-21, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27387375

RESUMO

Previously, chemical analysis of gastric fundic mucin showed that infection of sheep with Haemonchus contortus or Teladorsagia circumcincta changed the proportions of monosaccharides and decreased terminal mucin fucosylation and sialylation. To identify the effects of these parasites on the two mucin-secreting cell lineages, fundic and antral tissues were collected for histochemistry from 69 lambs aged from 3-4 to 9-10 months-of-age which had received a single infection of either H. contortus or T. circumcincta and euthanased at Day 21 or 28 post- infection respectively. All fundic tissues were stained separately with: (1) with Periodic Acid Schiff (PAS) for all mucins; (2) Alcian Blue (AB) pH 2.5 for acidic mucins (sialylated and sulphated); (3) AB pH 1 for sulphated mucins and (4) High Iron Diamine (HID) for sulphated mucins. Antral and fundic tissues from 24 lambs were also stained for acidic and neutral mucins or with specific lectins for α-1-linked fucose and for α-2,3- and α-2,6-linked sialic acids. Only mucin sulphation appeared to differ visually in uninfected lambs over this age range: there was weak staining with HID in tissues from lambs 3-6 months-of-age, but was generally more intense in those over 7 months-of-age. Sulphomucins were not apparent in surface mucous cells (SMC) or generally in the upper pits. Sialylomucins were located predominantly in the pits and glands, with small amounts of sialylated mucins in SMC and on the luminal surface, mainly in younger animals up to 6 months-of-age and less in the older animals. Parasitism markedly reduced the predominantly neutral surface mucin5AC of the SMC and pit cells, despite pit elongation in both antrum and fundus, whereas the acidic Muc6 secreted by mucus neck cells (MNC) increased along with MNC hyperplasia. Sulphated mucins were present mainly from the mid-pits downward and heavy staining was more common in older animals. In these sheep, the markedly reduced neutral mucin in the SMC and pit cells in both antrum and fundus contrasts with reported hypersecretion of mucus in the intestine, which is believed to aid in parasite expulsion. It has been proposed that intestinal goblet cell hypersecretion occurs only in resistant animals, therefore reduced mucins in the abomasum may be indicative of susceptibility to abomasal parasites.


Assuntos
Abomaso/metabolismo , Haemonchus/metabolismo , Mucinas/metabolismo , Doenças dos Ovinos/metabolismo , Trichostrongyloidea/metabolismo , Tricostrongiloidíase/veterinária , Abomaso/parasitologia , Abomaso/patologia , Fatores Etários , Animais , Fezes/parasitologia , Fundo Gástrico/metabolismo , Fundo Gástrico/parasitologia , Fundo Gástrico/patologia , Glicosilação , Hemoncose/metabolismo , Hemoncose/veterinária , Lectinas/metabolismo , Masculino , Mucina-5AC/metabolismo , Mucina-6/metabolismo , Mucinas/classificação , Naftoquinonas , Antro Pilórico/metabolismo , Antro Pilórico/parasitologia , Antro Pilórico/patologia , Ovinos , Doenças dos Ovinos/parasitologia , Tricostrongiloidíase/metabolismo
15.
Brain ; 138(Pt 5): 1339-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25842390

RESUMO

Heparan sulphate (glucosamine) 3-O-sulphotransferase 2 (HS3ST2, also known as 3OST2) is an enzyme predominantly expressed in neurons wherein it generates rare 3-O-sulphated domains of unknown functions in heparan sulphates. In Alzheimer's disease, heparan sulphates accumulate at the intracellular level in disease neurons where they co-localize with the neurofibrillary pathology, while they persist at the neuronal cell membrane in normal brain. However, it is unknown whether HS3ST2 and its 3-O-sulphated heparan sulphate products are involved in the mechanisms leading to the abnormal phosphorylation of tau in Alzheimer's disease and related tauopathies. Here, we first measured the transcript levels of all human heparan sulphate sulphotransferases in hippocampus of Alzheimer's disease (n = 8; 76.8 ± 3.5 years old) and found increased expression of HS3ST2 (P < 0.001) compared with control brain (n = 8; 67.8 ± 2.9 years old). Then, to investigate whether the membrane-associated 3-O-sulphated heparan sulphates translocate to the intracellular level under pathological conditions, we used two cell models of tauopathy in neuro-differentiated SH-SY5Y cells: a tau mutation-dependent model in cells expressing human tau carrying the P301L mutation hTau(P301L), and a tau mutation-independent model in where tau hyperphosphorylation is induced by oxidative stress. Confocal microscopy, fluorescence resonance energy transfer, and western blot analyses showed that 3-O-sulphated heparan sulphates can be internalized into cells where they interact with tau, promoting its abnormal phosphorylation, but not that of p38 or NF-κB p65. We showed, in vitro, that the 3-O-sulphated heparan sulphates bind to tau, but not to GSK3B, protein kinase A or protein phosphatase 2, inducing its abnormal phosphorylation. Finally, we demonstrated in a zebrafish model of tauopathy expressing the hTau(P301L), that inhibiting hs3st2 (also known as 3ost2) expression results in a strong inhibition of the abnormally phosphorylated tau epitopes in brain and in spinal cord, leading to a complete recovery of motor neuronal axons length (n = 25; P < 0.005) and of the animal motor response to touching stimuli (n = 150; P < 0.005). Our findings indicate that HS3ST2 centrally participates to the molecular mechanisms leading the abnormal phosphorylation of tau. By interacting with tau at the intracellular level, the 3-O-sulphated heparan sulphates produced by HS3ST2 might act as molecular chaperones allowing the abnormal phosphorylation of tau. We propose HS3ST2 as a novel therapeutic target for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Neurônios/metabolismo , Sulfotransferases/metabolismo , Proteínas tau/metabolismo , Animais , Comportamento Animal , Células Cultivadas , Humanos , NF-kappa B/metabolismo , Fosforilação , Tauopatias/metabolismo
16.
Springerplus ; 4: 815, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26722635

RESUMO

The peptide hormone gastrin17, which occurs naturally in both tyrosine sulphated and unsulphated forms, binds two ferric ions with pM affinities. The aim of this study was to investigate the hypothesis that sulphation or phosphorylation of gastrin17 altered ferric ion binding, and/or affinity for the CCK1 or CCK2 receptor. To investigate the effect of tyrosine modification on ferric ion binding, the changes in absorbance of gastrin17, gastrin17SO4 and gastrin17PO4 on addition of Fe(3+) ions were monitored. Binding of gastrin17, gastrin17SO4 and gastrin17PO4 to the human CCK1 and CCK2 receptors was assessed by competition with [(125)I]-Bolton and Hunter-labelled cholecystokinin8 in transiently transfected COS cells. Tyrosine sulphation or phosphorylation increased the affinity of gastrin17 for the first ferric ion bound from 267 to 83 pM and 14 pM, respectively, but had no effect on the stoichiometry of ferric ion binding. In contrast the affinity of gastrin17 for the second ferric ion bound was reduced from 94 pM to 7.32 µM and 671 nM, respectively. While sulphation of gastrin17 increased its affinity for the CCK2 receptor approximately 50 fold, phosphorylation had no effect on receptor binding. These results demonstrate that tyrosine modification may have profound effects on the interaction of gastrins with ferric ions and with the CCK2 receptor.

17.
Food Chem ; 170: 22-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25306313

RESUMO

The polysaccharide LbGp1 from Lycium barbarum L. was sulphated with sulphur trioxide-pyridine complex in DMF, yielding two sulphated polysaccharides, which were LbGp1-OL-SL with 13.7% sulphate content, and LbGp1-OL-SH with 27.4% sulphate content. The sulphation patterns were analysed using a GC-MS strategy. After a series of sequential chemical derivatisations, the sulphated polysaccharides were converted to partially methylated alditol acetates. All the sulphate groups were replaced by acetyl groups, maintaining the positional information of the original sulphation pattern. The number and position of sulphate substitutions were deduced by comparing the relative molar ratio from methylation analysis between native polysaccharide and sulphated derivatives. In LbGp1-OL-SL, 12.65% of sulphation located on C-5 of Ara, only 0.69% and 0.34% of sulphation occurred on C-4 and C-6 Gal, respectively; while in LbGp1-OL-SH, 24.96% of sulphate groups were found at C-5 of Ara, and 0.40% and 2.02% of sulphate groups were found at C-4 and C-6 Gal, respectively.


Assuntos
Lycium/química , Espectrometria de Massas/métodos , Polissacarídeos/química , Sulfatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA