Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202415774, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324930

RESUMO

We designed a new cyanine dye 1, with two pedant rod-like groups, capable of forming two distinct two-dimensional (2D) supramolecular polymorphs in methylcyclohexane; an H-type aggregate (Agg-H2) and a J-type aggregate (Agg-J). Importantly, these two polymorphs were not accessed through polymerization events, and instead through the thermal transformation of a third particle-like polymorph (Agg-H1) formed by the anti-cooperative assembly of 1. While Agg-H2 is generated upon cooling the solution of Agg-H1 by a thermoreversible polymorph transition, the Agg-J was obtained through a hidden pathway by combining sonication and cooling to the Agg-H1 solution. This is the first report on the obtention of H- and J-type cyanine polymorphs that in turn could be isolated in solid-state to render two new 2D photoactive materials. This paper unveils new strategies for designing 2D supramolecular polymers using calamitic residues, but also undercovers relevant aspects of pathway complexity and polymorph transitions that might be crucial for developing novel photonic systems.

2.
Adv Sci (Weinh) ; : e2406193, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39099450

RESUMO

Developing advanced engineering polymers that combine high strength and toughness represents not only a necessary path to excellence but also a major technical challenge. Here for the first time a rigid-flexible interlocking polymer (RFIP) is reported featuring remarkable mechanical properties, consisting of flexible polyurethane (PU) and rigid polyimide (PI) chains cleverly woven together around the copper(I) ions center. By rationally weaving PI, PU chains, and copper(I) ions, RFIP exhibits ultra-high strength (twice that of unwoven polymers, 91.4 ± 3.3 MPa), toughness (448.0 ± 14.2 MJ m-3), fatigue resistance (recoverable after 10 000 cyclic stretches), and shape memory properties. Simulation results and characterization analysis together support the correlation between microstructure and macroscopic features, confirming the greater cohesive energy of the interwoven network and providing insights into strengthening toughening mechanisms. The essence of weaving on the atomic and molecular levels is fused to obtain brilliant and valuable mechanical properties, opening new perspectives in designing robust and stable polymers.

3.
Chemistry ; 30(54): e202402231, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39008402

RESUMO

Supramolecular polymers (SPs) are constructed through non-covalent interactions. The dynamic or reversible nature of SPs endows them unique physical and chemical properties, such as self-adaptive and stimuli-response abilities. The topological structures of SPs play an important role in determining the physicochemical properties and functionality. Hyperbranched polymers (HBPs) are highly branched 3D macromolecules with linear, dendritic, and terminal units, which makes them versatile candidates for the construction of SPs with fascinating architectures. The resultant HBP-based SPs perfectly integrated the dynamic/reversible nature of SPs and the 3D topological features and multifunctionality of HBP polymers. To date, various types of HBP-based SPs and their assemblies have been constructed, and their potential applications have been explored as well. This article overviews the current progress on self-assembly of HBP-based SPs. The strategies for construction of HBP-based SPs and their assemblies are discussed. Typical potential applications of the assemblies of HBP-based SPs are also introduced.

4.
Small ; : e2403438, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978442

RESUMO

The role of macromolecule-macromolecule and macromolecule-H2O interactions and the resulting perturbation of the H-bonded network of H2O in the liquid-liquid phase separation (LLPS) process of biopolymers are well-known. However, the potential of the hydrated state of supramolecular structures (non-covalent analogs of macromolecules) of synthetic molecules is not widely recognized for playing a similar role in the LLPS process. Herein, LLPS occurred during the co-assembly of hydrated supramolecular vesicles (bolaamphiphile, BA1) with a net positive charge (zeta potential, ζ = +60 ± 2 mV) and a dianionic chiral molecule (disodium l-[+]-tartrate) is reported. As inferred from cryo-transmission electron microscopy (TEM), the LLPS-formed droplets serve as the nucleation precursors, dictating the structure and properties of the co-assembly. The co-assembled structure formed by LLPS effectively integrates the counter anion's asymmetry, resulting in the formation of ultrathin free-standing, chiral 2D crystalline sheets. The significance of the hydrated state of supramolecular structures in influencing LLPS is unraveled through studies extended to a less hydrated supramolecular structure of a comparable system (BA2). The role of LLPS in modulating the hydrophobic interaction in water paves the way for the creation of advanced functional materials in an aqueous environment.

5.
Angew Chem Int Ed Engl ; : e202409705, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39072904

RESUMO

Adhesives have been widely used to splice and repair materials to meet practical needs of humanity for thousands of years. However, developing robust adhesives with balanced adhesive and cohesive properties still remains a challenging task. Herein, we report the design and preparation of a robust mechanically interlocked [an]daisy chain network (DCMIN) adhesive by orthogonal integration of mechanical bond and 2-ureido-4[1H]-pyrimidone (UPy) H-bonding in a single system. Specifically, the UPy moiety plays dual roles: cross-linking for network formation and multivalent interactions with substrate for strong interfacial bonding. Mechanically interlocked [an]daisy chain, serving as the polymeric backbone of the adhesive, is able to effectively alleviate applied stress and uphold network integrity through synergistic intramolecular motions and thus significantly improve the cohesive performance. Therefore, comparative analyses with the control made of the same quadruple H-bonding network but with non-interlocked [an]daisy chain backbones demonstrate that our DCMIN possesses superior adhesion properties over a wide temperature range. These findings not only contribute to a deep understanding of the structure-property relationships between microscopic mechanical bond motions and macroscopic adhesive properties but also provide a valuable guidance for optimizing design principles of robust adhesives.

6.
Adv Mater ; 36(35): e2406252, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39004888

RESUMO

Carbon fiber (CF)-reinforced polymers (CFRPs) demonstrate potential for use in personal protective equipment. However, existing CFRPs are typically rigid, nonrecyclable, and lack of tearing resistance. In this study, flexible, recyclable, and tearing resistant polyurethane (PU)-CF composites are fabricated through complexation of reversibly cross-linked PU elastomer binders with CF fabrics. The PU-CF composites possess a high strength of 767 MPa and a record-high fracture energy of 2012 kJ m-2. The high performance of the PU-CF composites originates from the well-engineered PU elastomer binders that are obtained by cross-linking polytetrahydrofuran chains with in situ-formed nanodomains composed of hierarchical supramolecular interactions of hydrogen and coordination bonds. When subjected to tearing, the force concentrated on the damaged regions of the PU-CF composites can be effectively distributed to a wider area through the PU binders, leading to a significantly enhanced tearing resistance of the composites. The strong interfacial adhesion between PU binders and the CF fabrics enables the fracture of the CF in bundles, thereby significantly enhancing the strength and fracture energy of the composites. Because of the dynamic nature of the PU elastomer binders, the PU-CF composites can be recycled through the dissociation of the PU elastomer binders.

7.
Adv Sci (Weinh) ; 11(30): e2402932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864561

RESUMO

Singlet-to-triplet intersystem crossing (ISC) in organic molecules is intimately connected with their geometries: by modifying the molecular shape, symmetry selection rules pertaining to spin-orbit coupling can be partially relieved, leading to extra matrix elements for increased ISC. As an analog to this molecular design concept, the study finds that the lattice symmetry of supramolecular polymers also defines their triplet formation efficiencies. A supramolecular polymer self-assembled from weakly interacting molecules is considered. Its 2D oblique unit cell effectively renders it as a coplanar array of 1D molecular columns weakly bound to each other. Using momentum-resolved photoluminescence imaging in combination with Monte Carlo simulations, the study found that photogenerated charge carriers in the supramolecular polymer predominantly recombine as spin-uncorrelated carrier pairs through inter-column charge transfer states. This lattice-defined recombination pathway leads to a substantial triplet formation efficiency (≈60%) in the supramolecular polymer. These findings suggest that lattice symmetry of micro-/macroscopic structures relying on intermolecular interactions can be strategized for controlled triplet formation.

8.
Angew Chem Int Ed Engl ; 63(24): e202402644, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38716788

RESUMO

Molecular scaffolds that enable the combinatorial synthesis of new supramolecular building blocks are promising targets for the construction of functional molecular systems. Here, we report a supramolecular scaffold based on boroxine that enables the formation of chiral and ordered 1D supramolecular polymers, which can be easily functionalized for circularly polarized luminescence. The boroxine monomers are quantitatively synthesized in situ, both in bulk and in solution, from boronic acid precursors and cooperatively polymerize into 1D helical aggregates stabilized by threefold hydrogen-bonding and π-π stacking. We then demonstrate amplification of asymmetry in the co-assembly of chiral/achiral monomers and the co-condensation of chiral/achiral precursors in classical and in situ sergeant-and-soldiers experiments, respectively, showing fast boronic acid exchange reactions occurring in the system. Remarkably, co-condensation of pyrene boronic acid with a hydrogen-bonding chiral boronic acid results in chiral pyrene aggregation with circularly polarized excimer emission and g-values in the order of 10-3. Yet, the electron deficiency of boron in boroxine makes them chemically addressable by nucleophiles, but also sensitive to hydrolysis. With this sensitivity in mind, we provide first insights into the prospects offered by boroxine-based supramolecular polymers to make chemically addressable, functional, and adaptive systems.

9.
Front Immunol ; 15: 1407782, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799436

RESUMO

Introduction: The new topical formula is urgent needed to meet clinical needs for majority mild patients with psoriasis. Deucravacitinib exerts outstanding anti-psoriatic capacity as an oral TYK2 inhibitor; however, single therapy is insufficient to target the complicated psoriatic skin, including excessive reactive oxygen species (ROS) and persistent inflammation. To address this need, engineered smart nano-therapeutics hold potential for the topical delivery of deucravacitinib. Methods: hydrophobic Deucravacitinib was loaded into polyethylene glycol block-polypropylene sulphide (PEG-b-PPS) for transdermal delivery in the treatment of psoriasis. The oxidative stress model of HaCaT psoriasis was established by TNF-α and IL-17A in vitro. JC-1 assay, DCFH-DA staining and mtDNA copy number were utilized to assess mitochondrial function. 0.75% Carbopol®934 was incorporated into SPMs to produce hydrogels and Rhb was labeled to monitor penetration by Immunofluorescence. In vivo, we established IMQ-induced psoriatic model to evaluate therapeutic effect of Car@Deu@PEPS. Results: Deu@PEPS exerted anti-psoriatic effects by restoring mitochondrial DNA copy number and mitochondrial membrane potential in HaCaT. In vivo, Car@Deu@PEPS supramolecular micelle hydrogels had longer retention time in the dermis in the IMQ-induced ROS microenvironment. Topical application of Car@Deu@PEPS significantly restored the normal epidermal architecture of psoriatic skin with abrogation of splenomegaly in the IMQ-induced psoriatic dermatitis model. Car@Deu@PEPS inhibited STAT3 signaling cascade with a corresponding decrease in the levels of the differentiation and proliferative markers Keratin 17 and Cyclin D1, respectively. Meanwhile, Car@Deu@PEPS alleviated IMQ-induced ROS generation and subsequent NLRP3 inflammasome-mediated pyroptosis. Conclusion: Deu@PEPS exerts prominent anti-inflammatory and anti-oxidative effects, which may offers a more patient-acceptable therapy with fewer adverse effects compared with oral deucravacitinib.


Assuntos
Micelas , Mitocôndrias , Estresse Oxidativo , Psoríase , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Psoríase/tratamento farmacológico , Psoríase/metabolismo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Animais , Camundongos , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/patologia , Polímeros/química , Células HaCaT , Administração Cutânea , Masculino
10.
Angew Chem Int Ed Engl ; 63(23): e202405761, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38587998

RESUMO

Vitrimers offer a unique combination of mechanical performance, reprocessability, and recyclability that makes them highly promising for a wide range of applications. However, achieving dynamic behavior in vitrimeric materials at their intended usage temperatures, thus combining reprocessability with adaptivity through associative dynamic covalent bonds, represents an attractive but formidable objective. Herein, we couple boron-nitrogen (B-N) dative bonds and B-O covalent bonds to generate a new class of vitrimers, boron-nitrogen vitrimers (BNVs), to endow them with dynamic features at usage temperatures. Compared with boron-ester vitrimers (BEVs) without B-N dative bonds, the BNVs with B-N dative bonds showcase enhanced mechanical performance. The excellent mechanical properties come from the synergistic effect of the dative B-N supramolecular polymer and covalent boron-ester networks. Moreover, benefiting from the associative exchange of B-O dynamic covalent bonds above their topological freezing temperature (Tv), the resultant BNVs also possess the processability. This study leveraged the structural characteristics of a boron-based vitrimer to achieve material reinforcement and toughness enhancement, simultaneously providing novel design concepts for the construction of new vitrimeric materials.

11.
Chemistry ; 30(32): e202400394, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38584129

RESUMO

Nature owns the ability to construct structurally different polymers from the same monomers. While polymers can be classified as covalent polymers (CPs) and supramolecular polymers (SPs), it is still difficult to synthesize CPs and SPs using same monomers like nature do. Herein, M1 with two diazo salts on both the ends was designed. Additionally, hydroquinone was chosen to be M2 for the existence of two hydroxyl groups. When mixing at room temperature, M1 and M2 self-assembled to SPs via N…H hydrogen bonds. In another way, upon the exposure to ultraviolet irradiation when blending M1 with M2, CPs were fabricated in the presence of covalent bonds. The excellent thermal stability of CPs was determined by TGA and DSC, while the great corrosion resistance of covalent polymers was detected by acid or alkali immersion. In this way, constructing two kinds of polymers using the same monomers was successfully achieved. This shows tremendous potential in fields of polymer science, supramolecular chemistry, which would boom the development of polymers.

12.
Chemistry ; 30(36): e202303813, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38648278

RESUMO

Understanding solvent-solute interactions is essential to designing and synthesising soft materials with tailor-made functions. Although the interaction of the solute with the solvent mixture is more complex than the single solvent medium, solvent mixtures are exciting to unfold several unforeseen phenomena in supramolecular chemistry. Here, we report two unforeseen pathways observed during the hierarchical assembly of cationic perylene diimides (cPDIs) in water and amphiphilic organic solvent (AOS) mixtures. When the aqueous supramolecular polymers (SPs) of cPDIs are injected into AOS, initially kinetically trapped short SPs are formed, which gradually transform into thermodynamically stable high aspect ratio SP networks. Using various experimental and theoretical investigations, we found that this temporal evolution follows two distinct pathways depending on the nature of the water-AOS interactions. If the AOS is isopropanol (IPA), water is released from cPDIs into bulk IPA due to strong hydrogen bonding interactions, which further decreases the monomer concentration of cPDIs (Pathway-1). In the case of dioxane AOS, cPDI monomer concentration further increases as water is retained among cPDIs (Pathway-2) due to relatively weak interactions between dioxane and water. Interestingly, these two pathways are accelerated by external stimuli such as heat and mechanical agitation.

13.
Small ; 20(35): e2400259, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38624171

RESUMO

Organic polymer photocatalysts have achieved significant progress in photocatalytic hydrogen evolution, while developing the integrated organic polymers possessing the functions of photosensitizer, electron transfer mediator, and catalyst simultaneously is urgently needed and presents a great challenge. Considering that chalcogenoviologens are able to act as photosensitizers and electron-transfer mediators, a series of chalcogenoviologen-containing platinum(II)-based supramolecular polymers is designed, which exhibited strong visible light-absorbing ability and suitable bandgap for highly efficient photocatalytic hydrogen evolution without the use of a cocatalyst. The hydrogen evolution rate (HER) increases steadily with the decrease in an optical gap of the polymer. Among these "all-in-one" polymers, Se-containing 2D porous polymer exhibited the best photocatalytic performance with a HER of 3.09 mmol g-1 h-1 under visible light (>420 nm) irradiation. Experimental and theoretical calculations reveal that the distinct intramolecular charge transfer characteristics and heteroatom N in terpyridine unit promote charge separation and transfer within the molecules. This work could provide new insights into the design of metallo-supramolecular polymers with finely tuned components for photocatalytic hydrogen evolution from water.

14.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612886

RESUMO

Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.


Assuntos
Ciclodextrinas , Polímeros Responsivos a Estímulos , Humanos , Benzeno , Materiais Biocompatíveis , Eletricidade , Água
15.
Small ; 20(33): e2400063, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38461517

RESUMO

Most mechanochromic luminescent compounds are crystalline and highly hydrophobic; however, mechanochromic luminescent molecular assemblies comprising amphiphilic molecules have rarely been explored. This study investigated mechanochromic luminescent supramolecular fibers composed of dumbbell-shaped 9,10-bis(phenylethynyl)anthracene-based amphiphiles without any tetraethylene glycol (TEG) substituents or with two TEG substituents. Both amphiphiles formed water-insoluble supramolecular fibers via linear hydrogen bond formation. Both compounds acquired water solubility when solid samples composed of supramolecular fibers are ground. Grinding induces the conversion of 1D supramolecular fibers into micellar assemblies where fluorophores can form excimers, thereby resulting in a large redshift in the fluorescence spectra. Excimer emission from the ground amphiphile without TEG chains is retained after dissolution in water. The micelles are stable in water because hydrophilic dendrons surround the hydrophobic luminophores. By contrast, when water is added to a ground amphiphile having TEG substituents, fragmented supramolecular fibers with the same molecular arrangement as the initial supramolecular fibers are observed, because fragmented fibers are thermodynamically preferable to micelles as the hydrophobic arrays of fluorophores are covered with hydrophilic TEG chains. This leads to the recovery of the initial fluorescent properties for the latter amphiphile. These supramolecular fibers can be used as practical mechanosensors to detect forces at the mesoscale.

16.
Chempluschem ; 89(6): e202300694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38355904

RESUMO

Polymer waste is a pressing issue that requires innovative solutions from the scientific community. As a beacon of hope in addressing this challenge, the concept of sustainable supramolecular polymers (SSPs) emerges. This article discusses challenges and efforts in fabricating SSPs. Addressing the trade-offs between mechanical performance and sustainability, the ultra-tough and multi-recyclable supramolecular polymers are fabricated via tailoring mismatched supramolecular interactions. Additionally, the healing of kinetically inert polymer materials is realized through transient regulation of the interfacial reactivity. Furthermore, a possible development trajectory for SSPs is proposed, and the transient materials can be regarded as the next generation in this field. The evolution of SSPs promises to be a pivotal stride towards a regenerative economy, sparking further exploration and innovation in the realm of sustainable materials.

17.
Chirality ; 36(2): e23639, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38384148

RESUMO

Herein, the synthesis of two chiral NPBIs, (S)-1 and (R)-1, is reported and their self-assembling features investigated. The reported NPBIs form chiral supramolecular polymers with a rich dichroic pattern by the π-stacking of the aromatic backbones and the formation of an array of H-bonds between the amide functional groups. Furthermore, the peripheral 3,4,5-trialkoxy benzamide groups can form seven-membered pseudocycles by the intramolecular H-bonding interaction between the NH of the peripheral amides and one of the carbonyls of the imide units thus yielding a kinetically controlled self-assembly process. Unlike achiral NPBI 1, that has been reported to form up to four supramolecular polymorphs, the reported chiral NPBIs form only a J-type aggregated species. The results presented herein reveal how subtle changes exert an enormous influence on the supramolecular polymerization outcome.

18.
Chemistry ; 30(20): e202304033, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38190370

RESUMO

Supramolecular polymers offer tremendous potential to produce new "smart" materials, however, there remains a need to develop systems that are responsive to external stimuli. In this work, visible-light responsive hydrogen-bonded supramolecular polymers comprising photoresponsive supramolecular synthons (I-III) consisting of two hydrogen bonding motifs (HBMs) connected by a central ortho-tetrafluorinated azobenzene have been characterized by DOSY NMR and viscometry. Comparison of different hydrogen-bonding motifs reveals that assembly in the low and high concentration regimes is strongly influenced by the strength of association between the HBMs. I, Incorporating a triply hydrogen-bonded heterodimer, was found to exhibit concentration dependent switching between a monomeric pseudo-cycle and supramolecular oligomer through intermolecular hydrogen bonding interactions between the HBMs. II, Based on the same photoresponsive scaffold, and incorporating a quadruply hydrogen-bonded homodimer was found to form a supramolecular polymer which was dependent upon the ring-chain equilibrium and thus dependent upon both concentration and photochemical stimulus. Finally, III, incorporating a quadruply hydrogen-bonded heterodimer represents the first photoswitchable AB type hydrogen-bonded supramolecular polymer. Depending on the concentration and photostationary state, four different assemblies dominate for both monomers II and III, demonstrating the ability to control supramolecular assembly and physical properties triggered by light.

19.
Angew Chem Int Ed Engl ; 63(15): e202400486, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38265331

RESUMO

In biological systems, programmable supramolecular frameworks characterized by coordinated directional non-covalent interactions are widespread. However, only a small number of reports involve pure water-based dynamic supramolecular assembly of artificial π-amphiphiles, primarily due to the formidable challenge of counteracting the strong hydrophobic dominance of the π-surface in water, leading to undesired kinetic traps. This study reveals the pathway complexity in hydrogen-bonding-mediated supramolecular polymerization of an amide-functionalized naphthalene monoimide (NMI) building block with a hydrophilic oligo-oxyethylene (OE) wedge. O-NMI-2 initially produced entropically driven, collapsed spherical particles in water (Agg-1); however, over a span of 72 h, these metastable Agg-1 gradually transformed into two-dimensional (2D) nanosheets (Agg-2), favoured by both entropy and enthalpy contributions. The intricate self-assembly pathways in O-NMI-2 enable us to explore seed-induced living supramolecular polymerization (LSP) in water for controlled synthesis of monolayered 2D assemblies. Furthermore, we demonstrated the nonspecific surface adsorption of a model enzyme, serine protease α-Chymotrypsin (α-ChT), and consequently the enzyme activity, which could be regulated by controlling the morphological transformation of O-NMI-2 from Agg-1 to Agg-2. We delve into the thermodynamic aspects of such shape-dependent protein-surface interactions and unravel the impact of seed-induced LSP on temporally controlling the catalytic activity of α-ChT.


Assuntos
Proteínas , Água , Polimerização , Água/química , Adsorção , Termodinâmica
20.
Chemistry ; 30(16): e202400099, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38212246

RESUMO

Supramolecular polymers find wide applications across diverse domains, and the molecular weight exerts a critical influence on their applicability. Consequently, the measurement of molecular weight for supramolecular polymers assumes paramount significance. Gel Permeation Chromatography (GPC) requiring low-concentration condition is a common characterization employed for molecular weight determination, which is not suitable for supramolecular polymers possessing concentration-independence property. Here, to break this threshold, we synthesized M1 embodying dibenzo-24-crown-8 (DB24C8) moiety as well as dibenzylammonium salt (DBA) group, which was capable of self-assembling into supramolecular polymers terminated with aldehyde groups at its end. Upon the addition of (4- (1,2,2-Triphenylvinyl) phenyl) methylamine (TPE-NH2), supramolecular polymers underwent a transition into polyrotaxanes, for which it was led by the generation of imine bonds. By virtue of GPC, the molecular weight of polyrotaxanes was obtained, then it was available to gain the molecular weight of supramolecular polymers with the help of transformation efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA