Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Physiol Meas ; 45(5)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38749433

RESUMO

Objective.Intra-esophageal pressure (Pes) measurement is the recommended gold standard to quantify respiratory effort during sleep, but used to limited extent in clinical practice due to multiple practical drawbacks. Respiratory inductance plethysmography belts (RIP) in conjunction with oronasal airflow are the accepted substitute in polysomnographic systems (PSG) thanks to a better usability, although they are partial views on tidal volume and flow rather than true respiratory effort and are often used without calibration. In their place, the pressure variations measured non-invasively at the suprasternal notch (SSP) may provide a better measure of effort. However, this type of sensor has been validated only for respiratory events in the context of obstructive sleep apnea syndrome (OSA). We aim to provide an extensive verification of the suprasternal pressure signal against RIP belts and Pes, covering both normal breathing and respiratory events.Approach.We simultaneously acquired suprasternal (207) and esophageal pressure (20) signals along with RIP belts during a clinical PSG of 207 participants. In each signal, we detected breaths with a custom algorithm, and evaluated the SSP in terms of detection quality, breathing rate estimation, and similarity of breathing patterns against RIP and Pes. Additionally, we examined how the SSP signal may diverge from RIP and Pes in presence of respiratory events scored by a sleep technician.Main results.The SSP signal proved to be a reliable substitute for both esophageal pressure (Pes) and respiratory inductance plethysmography (RIP) in terms of breath detection, with sensitivity and positive predictive value exceeding 75%, and low error in breathing rate estimation. The SSP was also consistent with Pes (correlation of 0.72, similarity 80.8%) in patterns of increasing pressure amplitude that are common in OSA.Significance.This work provides a quantitative analysis of suprasternal pressure sensors for respiratory effort measurements.


Assuntos
Pressão , Sono , Humanos , Masculino , Sono/fisiologia , Feminino , Adulto , Pletismografia , Processamento de Sinais Assistido por Computador , Respiração , Esterno/fisiologia , Pessoa de Meia-Idade , Polissonografia , Adulto Jovem
2.
Physiol Meas ; 44(3)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608350

RESUMO

Objective.The accurate detection of respiratory effort during polysomnography is a critical element in the diagnosis of sleep-disordered breathing conditions such as sleep apnea. Unfortunately, the sensors currently used to estimate respiratory effort are either indirect and ignore upper airway dynamics or are too obtrusive for patients. One promising alternative is the suprasternal notch pressure (SSP) sensor: a small element placed on the skin in the notch above the sternum within an airtight capsule that detects pressure swings in the trachea. Besides providing information on respiratory effort, the sensor is sensitive to small cardiac oscillations caused by pressure perturbations in the carotid arteries or the trachea. While current clinical research considers these as redundant noise, they may contain physiologically relevant information.Approach.We propose a method to separate the signal generated by cardiac activity from the one caused by breathing activity. Using only information available from the SSP sensor, we estimate the heart rate and track its variations, then use a set of tuned filters to process the original signal in the frequency domain and reconstruct the cardiac signal. We also include an overview of the technical and physiological factors that may affect the quality of heart rate estimation. The output of our method is then used as a reference to remove the cardiac signal from the original SSP pressure signal, to also optimize the assessment of respiratory activity. We provide a qualitative comparison against methods based on filters with fixed frequency cutoffs.Main results.In comparison with electrocardiography (ECG)-derived heart rate, we achieve an agreement error of 0.06 ± 5.09 bpm, with minimal bias drift across the measurement range, and only 6.36% of the estimates larger than 10 bpm.Significance.Together with qualitative improvements in the characterization of respiratory effort, this opens the development of novel portable clinical devices for the detection and assessment of sleep disordered breathing.


Assuntos
Síndromes da Apneia do Sono , Sono , Humanos , Sono/fisiologia , Síndromes da Apneia do Sono/diagnóstico , Polissonografia/métodos , Respiração , Coração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA