Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 832
Filtrar
1.
Adv Healthc Mater ; : e2401253, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39370571

RESUMO

The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.

2.
Cureus ; 16(8): e66029, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39221297

RESUMO

Monolithic zirconia is widely used in dentistry due to its outstanding mechanical properties, biocompatibility, and aesthetic qualities. This review examines how different polishing and finishing methods impact the performance and appearance of monolithic zirconia restorations. Derived from zirconium, zirconia is a robust ceramic that exists in monoclinic, tetragonal, and cubic forms, with properties that prevent crack propagation. Monolithic zirconia, preferred over porcelain-fused-to-metal (PFM) crowns, offers better aesthetics and avoids chipping. Various surface treatments, such as polishing and glazing, enhance zirconia's smoothness and wear characteristics. Polished zirconia is less abrasive to enamel than glazed zirconia, making it more suitable for opposing teeth. Research indicates that polished zirconia has a smoother surface and higher fracture resistance compared to other dental ceramics. Surface roughness, which is influenced by the treatment method, is crucial in minimizing wear on opposing teeth. Polished monolithic zirconia also shows high flexural strength, chipping resistance, and translucency. While both polishing and glazing reduce brightness, polishing better preserves translucency. The literature identifies polishing as the best post-processing method for enhancing zirconia's surface quality and mechanical properties without compromising its load-bearing capacity. In conclusion, polishing and finishing significantly improve the aesthetic and clinical performance of monolithic zirconia, confirming its effectiveness for durable and visually appealing dental restorations.

3.
Microb Pathog ; 195: 106905, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236967

RESUMO

Antibiotic resistance poses a persistent threat to modern medicine due to the emergence of novel antibiotic-resistant strains. Therefore, a timely understanding of antibiotic resistance and the virulence biology of pathogenic bacteria, particularly those of public health significance, is crucial for implementing effective mitigation strategies. This study aimed to investigate the virulence profiles of ten S. aureus isolates (NDa to NDj) and ten E. coli isolates (ND1 to ND10) originating from livestock and poultry, and to assess how various cell surface properties and biofilm formation abilities influence antibiotic resistance phenotypes. Antibiotic resistance profiling through phenotypic (AST) and genotypic methods (PCR) confirmed that NDa to NDe were methicillin-resistant S. aureus (MRSA) and ND1 to ND5 were extended-spectrum ß-lactamase (ESBL) producing E. coli isolates. Virulence properties such as hemolytic activity, coagulase activity, and nuclease activity were found to be independent of the antibiotic resistance phenotype in S. aureus. In contrast, biofilm formation phenotype was observed to influence antibiotic resistance phenotypes, with MRSA and ESBL E. coli isolates demonstrating higher biofilm formation potency. Chemical and enzymatic analysis of S. aureus and E. coli biofilms revealed proteins and polysaccharides as major components, followed by nucleic acids. Furthermore, cell surface properties such as auto-aggregation and hydrophobicity were notably higher in isolates with strong to medium biofilm-forming capabilities (ESBL and MRSA isolates), corroborated by genomic confirmation of various genes associated with biofilm, adhesion, and colonization. In conclusion, this study highlights that surface hydrophobicity and biofilm formation ability of MRSA (NDa to NDe) and ESBL E. coli (ND1 to ND5) isolates may influence antibiotic resistance phenotypes.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Gado , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Aves Domésticas , Fatores de Virulência , beta-Lactamases , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Animais , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , beta-Lactamases/genética , beta-Lactamases/metabolismo , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/enzimologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Aves Domésticas/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Gado/microbiologia , Virulência , Antibacterianos/farmacologia , Propriedades de Superfície , Genótipo , Fenótipo , Infecções Estafilocócicas/microbiologia
4.
PeerJ ; 12: e17796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247553

RESUMO

Benggangs are a special type of soil erosion in the hilly granite regions of the tropical and subtropical areas of Southern China. They cause severe soil and water loss, which can severely deteriorate soil quality and threat to the local ecological environment. Soils (red soil, sandy soil and detritus soil) were collected from collapsing wall of a typical Benggang in Changting County of Fujian Province, and their physicochemical and mineralogical properties were analyzed. Five different monovalent cations were used to saturate the soil samples to examine the specific ion effects on the shear strength and clay surface properties. Red soil had a higher clay content, plastic limit, liquid limit and shear strength than sandy soil and detritus soil. The studied soils mainly consisted of kaolinite, hydroxy-interlayer vermiculite, illite and gibbsite clay minerals. The soils saturated with K+, NH4 +and Cs+ had greater cohesion than the Li+- and Na+-saturated soils, e.g., the cohesion of the red soil saturated with Li+, K+, NH4 + and Cs+ cations were 1.05, 1.23, 1.45 and 1.20 times larger than that of the Na+-saturated soil, respectively. While the internal friction angle was slightly different, which indicated that different monovalent cations affected the shear strength differently. K+-, NH4 +- and Cs+-saturated clay particles had higher zeta potentials and thinner shear plane thicknesses than Li+- and Na+-saturated clay particles and showed strong specific ion effects on the clay surface properties. The changes in clay surface properties strongly affected the soil mechanical properties. Soils saturated with K+, NH4 + and Cs+ could increase the shear strength, and then increase the stability of the collapsing wall, thus might decrease the erosion intensity of Benggang. The results provide a scientific basis for the interpretation of and practical treatment of Benggang.


Assuntos
Silicatos de Alumínio , Argila , Resistência ao Cisalhamento , Solo , Propriedades de Superfície , Solo/química , Argila/química , Silicatos de Alumínio/química , China , Íons , Caulim/química
5.
J Biomed Mater Res B Appl Biomater ; 112(9): e35483, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39229802

RESUMO

Although deterioration of silicone maxillofacial prostheses is severely accentuated in smoking patients, the phenomenon has not been systematically studied. To address a gap in the literature concerning the stability of maxillofacial prostheses during service, in this contribution, the effect of cigarette smoke on the aspect and physical properties of M511 silicone elastomer was evaluated. The aspect, surface, and overall properties of the silicone material, pigmented or not, were followed by AFM, color measurements, FTIR, water contact angle measurements, TGA-DTG and DSC, hardness and compression stress-strain measurements. The types of the contaminants adsorbed were assessed by XRF, ESI-MS, MALDI-MS, and NMR spectral analyses. Important modifications in color, contact angle, surface roughness, local mechanical properties, and thermal properties were found in the silicone material for maxillofacial prostheses after exposure to cigarettes smoke. The presence of lead, nicotine, and several other organic compounds adsorbed into the silicone material was emphasized. Slight decrease in hardness and increase in Young's modulus was found. The combined data show important impact of cigarette smoke on the silicone physical properties and could indicate chemical transformations by secondary cross-linking. To our knowledge, this is the first study making use of complementary physical methods to assess the effect of cigarette smoke on the aspect and integrity of silicone materials for maxillofacial prostheses.


Assuntos
Teste de Materiais , Prótese Maxilofacial , Fumaça , Humanos , Elastômeros de Silicone/química , Nicotiana/química , Cor
6.
Eur J Oral Sci ; 132(5): e13016, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39272220

RESUMO

The study aimed to investigate the influence of H2O2-based and H2O2-free in-office bleaching on the surface and mechanical attributes of CAD/CAM composite blocks. CAD/CAM composite blocks from five different composite materials (CC1, CC2, CC3, CC4, and CC5) were randomly divided into two groups according to bleaching application (H2O2-based and H2O2-free). The surface topography, morphology, nanohardness, elastic modulus, flexural strength, and fracture toughness were measured. A paired and unpaired sample t-tests gauged the effect of pre- and post-bleaching on the substrates. The estimated mean differences (before-after bleaching) suggested an increase in surface roughness for two materials CC2 and CC4, and a significant decrease in nanohardness for material CC4 and in elastic modulus for materials CC2 and CC4 with H2O2-based bleaching, whereas H2O2-free bleaching resulted in changes compatible with no change in these properties. Flexural strength and fracture toughness showed no evidence of changes, irrespective of the bleaching gel used. Scanning electron microscopic analysis revealed erosive effects and micropore formation due to H2O2-based bleaching. H2O2-based bleaching deteriorates the surface of CAD/CAM composite materials while H2O2-free bleaching gel had an insignificant effect on both surface and bulk properties. The clinician should carefully evaluate the potential effects of H2O2-based bleaching on the surface properties of CAD/CAM composites.


Assuntos
Resinas Compostas , Desenho Assistido por Computador , Módulo de Elasticidade , Resistência à Flexão , Peróxido de Hidrogênio , Teste de Materiais , Microscopia Eletrônica de Varredura , Propriedades de Superfície , Clareadores Dentários , Clareamento Dental , Resinas Compostas/química , Peróxido de Hidrogênio/química , Clareadores Dentários/química , Materiais Dentários/química , Humanos , Dureza , Peróxidos/química , Restauração Dentária Permanente , Estética Dentária
7.
J Prosthodont ; 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300670

RESUMO

PURPOSE: The purpose of this study was to assess the effect of Ga-Al-Ar diode, Nd:YAG lasers, and chemical disinfectants (NaOCl, vinegar, and Corega) on surface roughness (Ra) and hardness (VHN) of polymethylmethacrylate (PMMA), thermoplastic polyamide, milled and 3D-printed denture base resins. MATERIALS AND METHODS: About 432 specimens of PMMA, thermoplastic polyamide, milled, and 3D-printed resins were divided into six subgroups (n = 18): distilled water (control:C), Ga-Al-Ar diode laser (L1), Nd:YAG laser (L2), 1% sodium hypochlorite (NaOCl), vinegar (AA), and Corega (CR). Each specimen's Ra and VHN were measured. Surface topography assessment was done using scanning electron microscopy (SEM). Analysis was done using ANOVA and post hoc Tukey's test (p = 0.05). RESULTS: A significant difference was noted in Ra and VHN as affected by denture base materials, surface disinfectants, and their interaction (p < 0.001). Results showed a significant increase in Ra of PMMA with NaOCL (p < 0.001), AA (p = 0.005), and CR (p = 0.009), thermoplastic polyamide with L1 (p = 0.012), L2 (p = 0.015), NaOCL AA, and CR (p < 0.001 each), milled resin with AA NaOCL, and CR (p < 0.001 each), and 3D-printed resin with L1, NaOCl, AA (p < 0.001 each), and CR (p = 0.008). The VHN increased in PMMA with NaOCL (p < 0.001), AA (p = 0.044), and CR (p < 0.001), thermoplastic polyamide with L1 (p = 0.037), milled resin with L1, L2, and CR (p < 0.001 each), and 3D-printed resin with L1, NaOCl (p < 0.001 each), and decreased with CR (p = 0.007). CONCLUSION: The tested properties showed variations affected by denture base material and surface disinfectants. Laser treatments induced smoother surfaces than chemical disinfectants. Laser improved the surface hardness of CAD-CAM resins, while chemical immersion improved that of PMMA.

8.
Sci Rep ; 14(1): 22540, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39341973

RESUMO

This research explores the efficiency of Electrical Discharge Coating (EDC) as an advanced surface modification technique using powder suspension, conventional electrodes, and 3D printed electrodes (3DPE), focusing on Ti6Al4V alloys. Conventional Ti electrodes resulted in 100% titanium content with a thickness of 110 µm, while the powder suspension coating was inadequate. The use of 3D printed electrodes showed promising results, with uniform deposition of 61.20 µm thickness and enhanced surface properties under 10 A current. Further analysis of 3D printed Ti6Al4V EDC revealed a higher Ti percentage of 44.20%, TiC formation of 84.17%, and enhanced microhardness with lower surface roughness. Thorough optimization of 3D printed electrode EDC has been undertaken. The study suggests the potential replacement of traditional electrodes such as powder metallurgy with 3D printed counterparts, advancing surface modification techniques and opening new avenues for materials engineering and manufacturing processes.

9.
Polymers (Basel) ; 16(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39339019

RESUMO

This in vitro study aimed to analyze the surface roughness (Ra) and color stability (ΔEab, ΔE00) following simulated mechanical brushing and to evaluate the microtensile (µTBS) of self-adhering resin flowable (SARF) to dentin. The selected materials were Constic, Yflow AS, and Tetric N flow (TNF/control). Thirty composite resin cylinders were fabricated for surface property evaluation. Ra and color were assessed both before and after simulated brushing. The thresholds of 50:50% perceptibility and acceptability of color differences in the evaluated resins were assessed. For µTBS analysis, fifteen molars were selected, sectioned to expose flat dentin surfaces, and restored according to the manufacturers' instructions for microtensile testing. There were statistically significant differences in Ra among the groups, with Constic exhibiting the highest Ra value (0.702 µm; p < 0.05), whereas Yflow AS presented the lowest Ra value (0.184 µm). No statistically significant difference in color was observed among the groups (p > 0.05). The 50:50% perceptibility and acceptability thresholds were set at 1.2 and 2.7 for ΔEab and 0.8 and 1.8 for ΔE 00. All the results fell within the acceptable limits. The mean µTBS values of Constic, Yflow AS, and TNF were 10.649 MPa, 8.170 MPa, and 33.669 MPa, respectively. This study revealed increased Ra and comparable color stability among all the tested composite resins after abrasion. However, the SARF exhibited lower µTBS compared to conventional using an adhesive system.

10.
Polymers (Basel) ; 16(18)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339035

RESUMO

In our continuing search for new polymer composites with antimicrobial activity, we observed that even unmodified epoxy resins exhibit significant activity. Considering their widespread use as starting materials for the realization of multifunctional nanocomposites with excellent chemical and mechanical properties, it was deemed relevant to uncover these unexpected properties that can lead to novel applications. In fact, in places where the contact with human activities makes working surfaces susceptible to microbial contamination, thus jeopardizing the sterility of the environment, their biological activity opens the way to their successful application in minimizing healthcare-associated infections. To this end, three commercial and widely used epoxy resins (DGEBA/Elan-TechW 152LR, 1; EPIKOTETM Resin MGS®/EPIKURETM RIM H 235, 2 and MC152/EW101, 3) have been investigated to determine their antibacterial and antiviral activity. After 24 h, according to ISO 22196:2011, resins 1 and 2 showed a high antibacterial efficacy (R value > 6.0 log reduction) against Staphylococcus aureus and Escherichia coli. Resin 2, prepared according to the ratio epoxy/hardener indicated by the supplier (sample 2a) and with 10% w/w hardener excess (sample 2b), exhibited an intriguing virucidal activity against Herpes Simplex Virus type-1 and Human Coronavirus type V-OC43 as a surrogate of SARS-CoV-2.

11.
Sci Total Environ ; 951: 175554, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151610

RESUMO

Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. This process occurs within special new structures, called nodules, formed mainly on legume roots. Soil bacteria, commonly known as rhizobia, fix atmospheric dinitrogen, converting it into a form that can be assimilated by plants. Various environmental factors, including a low temperature, have an impact on the symbiotic efficiency. Nevertheless, the effect of temperature on the phenotypic and symbiotic traits of rhizobia has not been determined in detail to date. Therefore, in this study, the influence of temperature on different cell surface and symbiotic properties of rhizobia was estimated. In total, 31 Rhizobium leguminosarum sv. trifolii strains isolated from root nodules of red clover plants growing in the subpolar and temperate climate regions, which essentially differ in year and day temperature profiles, were chosen for this analysis. Our results showed that temperature has a significant effect on several surface properties of rhizobial cells, such as hydrophobicity, aggregation, and motility. Low temperature also stimulated EPS synthesis and biofilm formation in R. leguminosarum sv. trifolii. This extracellular polysaccharide is known to play an important protective role against different environmental stresses. The strains produced large amounts of EPS under tested temperature conditions that facilitated adherence of rhizobial cells to different surfaces. The high adaptability of these strains to cold stress was also confirmed during symbiosis. Irrespective of their climatic origin, the strains proved to be highly effective in attachment to legume roots and were efficient microsymbionts of clover plants. However, some diversity in the response to low temperature stress was found among the strains. Among them, M16 and R137 proved to be highly competitive and efficient in nodule occupancy and biomass production; thus, they can be potential yield-enhancing inoculants of legumes.


Assuntos
Rhizobium leguminosarum , Simbiose , Rhizobium leguminosarum/fisiologia , Temperatura Baixa , Trifolium/microbiologia , Trifolium/fisiologia , Adaptação Fisiológica , Medicago/microbiologia , Medicago/fisiologia
12.
Dent Mater J ; 43(5): 667-671, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39135236

RESUMO

This study compared the effects of two surface preparation methods on two types of zirconia. Immediately prior to the placement of a monolithic zirconia crown, its morphology may be modified using a rotary cutting instrument for occlusal adjustments. The crown surface is scratched during the grinding process and, thus, requires polishing. Simplified zirconia crowns of 3Y and 5Y were fabricated and used as specimens. The surface roughness and gloss of the occlusal surfaces of specimens were measured and compared when a polishing compound was used after polishing points and when a silica-based coating was sintered. No significant differences were observed in surface roughness between 3Y and 5Y zirconia. The use of polishing compounds was effective because polishing points alone only resulted in a level of surface roughness that may cause wear on antagonist teeth. Although the silica-based coating improved surface properties, the polishing compound more effectively improved surface roughness.


Assuntos
Coroas , Polimento Dentário , Porcelana Dentária , Teste de Materiais , Propriedades de Superfície , Zircônio , Polimento Dentário/métodos , Zircônio/química , Porcelana Dentária/química , Ajuste Oclusal , Dióxido de Silício/química , Planejamento de Prótese Dentária
13.
Environ Sci Technol ; 58(37): 16535-16546, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39215709

RESUMO

Microplastics, particularly microfibers (MFs), pose a significant threat to the environment. Despite their widespread presence, the photochemical reactivity, weathering products, and environmental fate of MFs remain poorly understood. To address this knowledge gap, photodegradation experiments were conducted on three prevalent MFs: polyester (POL), nylon (NYL), and acrylic (ACR), to elucidate their degradation pathways, changes in surface morphology and polymer structure, and chemical and colloidal characterization of weathering products during photochemical degradation of MFs. The results showed that concentrations of dissolved organic carbon, chromophoric dissolved organic matter (DOM), and fluorescent components consistently increased during weathering, exhibiting a continuous release of DOM. Scanning electron microscopy and Raman spectroscopy revealed changes in the surface morphology and polymer spectra of the MFs. During the weathering experiments, DOM aromaticity (SUVA254) decreased, while spectral slope increased, indicating concurrent DOM release and degradation of aromatic components. The released DOM or nanoplastics were negatively charged with sizes between 128 and 374 nm. The production rate constants of DOM or the photochemical reactivity of MFs followed the order ACR > NYL ≥ POL, consistent with their differences in chemical structures. These findings provide an improved understanding of the photochemical reactivity, degradation pathways, weathering products, and environmental fate of microfibers in the environment.


Assuntos
Fotólise , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Microplásticos/química , Análise Espectral Raman
14.
BMC Oral Health ; 24(1): 923, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123150

RESUMO

BACKGROUND: This study aimed to explore the effects of the titanium dioxide (TiO2) concentration and particle size in hydrogen peroxide (HP) on tooth bleaching effectiveness and enamel surface properties. METHODS: TiO2 at different concentrations and particle sizes was incorporated into 40% HP gel to form an HP/TiO2 gel. The specimens were randomly divided into 8 groups: C1P20: HP + 1% TiO2 (20 nm); C3P20: HP + 3% TiO2 (20 nm); C5P20: HP + 5% TiO2 (20 nm); C1P100: HP + 1% TiO2 (100 nm); C3P100: HP + 3% TiO2 (100 nm); C5P100: HP + 5% TiO2 (100 nm); C0: HP with LED; and C0-woL: HP without LED. Bleaching was conducted over 2 sessions, each lasting 40 min with a 7-day interval. The color differences (ΔE00), whiteness index for dentistry (WID), surface microhardness, roughness, microstructure, and composition were assessed. RESULTS: The concentration and particle size of TiO2 significantly affected ΔE00 and ΔWID values, with the C1P100 group showing the greatest ΔE00 values and C1P100, C3P100, and C5P100 groups showing the greatest ΔWID values (p < 0.05). No significant changes were observed in surface microhardness, roughness, microstructure or composition (p > 0.05). CONCLUSIONS: Incorporating 1% TiO2 with a particle size of 100 nm into HP constitutes an effective bleaching strategy to achieve desirable outcomes.


Assuntos
Géis , Peróxido de Hidrogênio , Propriedades de Superfície , Titânio , Clareadores Dentários , Clareamento Dental , Titânio/química , Clareamento Dental/métodos , Peróxido de Hidrogênio/uso terapêutico , Peróxido de Hidrogênio/administração & dosagem , Humanos , Tamanho da Partícula , Esmalte Dentário/efeitos dos fármacos
15.
Sensors (Basel) ; 24(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39123869

RESUMO

Machine vision is a desirable non-contact measurement method for hot forgings, as image segmentation has been a challenging issue in performance and robustness resulting from the diversity of working conditions for hot forgings. Thus, this paper proposes an efficient and robust active contour model and corresponding image segmentation approach for forging images, by which verification experiments are conducted to prove the performance of the segmentation method by measuring geometric parameters for forging parts. Specifically, three types of continuity parameters are defined based on the geometric continuity of equivalent grayscale surfaces for forging images; hence, a new image force and external energy functional are proposed to form a new active contour model, Geometric Continuity Snakes (GC Snakes), which is more percipient to the grayscale distribution characteristics of forging images to improve the convergence for active contour robustly; additionally, a generating strategy for initial control points for GC Snakes is proposed to compose an efficient and robust image segmentation approach. The experimental results show that the proposed GC Snakes has better segmentation performance compared with existing active contour models for forging images of different temperatures and sizes, which provides better performance and efficiency in geometric parameter measurement for hot forgings. The maximum positioning and dimension errors by GC Snakes are 0.5525 mm and 0.3868 mm, respectively, compared with errors of 0.7873 mm and 0.6868 mm by the Snakes model.

16.
Int J Oral Maxillofac Implants ; : 1-28, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121371

RESUMO

Aim: To assess the roughness and hydrophilicity of nine types of dental implant surfaces, while also examining the presence of contaminants carbon and oxygen on these surfaces. Furthermore, the study investigated potential correlations between these characteristics across the analyzed surfaces. Materials and Methods: The surfaces analyzed were as follows: MI: machined (turned), Implacil implant; TOI: blasted with titanium oxide, Implacil implant; TOAEI: blasted with titanium oxide and acid-etched, Implacil implant; ZAED: blasted with zirconia and acid-etched, DSP implant; CPD: coated with calcium phosphate, DSP implant; XD: subjected to an experimental treatment (patent pending), DSP implant; DAEHAS: double acid-etched and activated with hydroxyapatite nano-crystals, SIN implant; DAES: double acid-etched, SIN implant; and AMP: untreated surface of the Plenum implant, produced by additive manufacturing. Four and five disc-shaped specimens were used in the hydrophilicity and roughness assessments, respectively. Roughness was evaluated by optical profilometry and scanning electron microscopy; hydrophilicity was determined using the sessile-drop technique; and the chemical analysis was performed using X-ray photoelectron spectroscopy. The Kruskal- Wallis, Mann-Whitney, and Spearman correlation tests were employed to analyze the data (p < 0.10). Results: Significant differences were observed among the analyzed surfaces in terms of both roughness and hydrophilicity (p < 0.001). The surface exhibiting the highest roughness was AMP, whereas the greatest hydrophilicity was exhibited by CPD. Correlations between roughness and hydrophobicity were observed for MI (r = 0.936, p = 0.009), ZAED (r = 0.957, p = 0.004), and DAES (r = 0.964, p = 0.005). The carbon concentration observed on the CPD surface was lower than that observed on the other surfaces, whereas the oxygen concentrations were similar. No correlations were observed between the presence of contaminants and the roughness or hydrophilicity characteristics. Conclusion: Roughness and hydrophilicity values exhibited considerable variation among the tested surfaces. Aside from the CPD surface, comparable concentrations of carbon and oxygen were detected. Although correlations between roughness and hydrophilicity were observed only for the ZAED, DAES, and MI surfaces, these correlations were inadequate to establish a causal relationship between the two surface characteristics.

17.
ACS Nano ; 18(32): 21091-21111, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39099105

RESUMO

Milk exosomes (mExos) have demonstrated significant promise as vehicles for the oral administration of protein and peptide drugs owing to their superior capacity to traverse epithelial barriers. Nevertheless, certain challenges persist due to their intrinsic characteristics, including suboptimal drug loading efficiency, inadequate mucus penetration capability, and susceptibility to membrane protein loss. Herein, a hybrid vesicle with self-adaptive surface properties (mExos@DSPE-Hyd-PMPC) was designed by fusing functionalized liposomes with natural mExos, aiming to overcome the limitations associated with mExos and unlock their full potential in oral peptide delivery. The surface property transformation of mExos@DSPE-Hyd-PMPC was achieved by introducing a pH-sensitive hydrazone bond between the highly hydrophilic zwitterionic polymer and the phospholipids, utilizing the pH microenvironment on the jejunum surface. In comparison to natural mExos, hybrid vesicles exhibited a 2.4-fold enhancement in the encapsulation efficiency of the semaglutide (SET). The hydrophilic and neutrally charged surfaces of mExos@DSPE-Hyd-PMPC in the jejunal lumen exhibited improved preservation of membrane proteins and efficient traversal of the mucus barrier. Upon reaching the surface of jejunal epithelial cells, the highly retained membrane proteins and positively charged surfaces of the hybrid vesicle efficiently overcame the apical barrier, the intracellular transport barrier, and the basolateral exocytosis barrier. The self-adaptive surface properties of the hybrid vesicle resulted in an oral bioavailability of 8.7% and notably enhanced the pharmacological therapeutic effects. This study successfully addresses some limitations of natural mExos and holds promise for overcoming the sequential absorption barriers associated with the oral delivery of peptides.


Assuntos
Exossomos , Lipossomos , Leite , Propriedades de Superfície , Animais , Administração Oral , Exossomos/química , Exossomos/metabolismo , Lipossomos/química , Leite/química , Peptídeos/química , Humanos , Sistemas de Liberação de Medicamentos , Camundongos , Ratos Sprague-Dawley , Ratos , Masculino
18.
Avicenna J Med Biotechnol ; 16(3): 174-179, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132630

RESUMO

Background: The surface properties of the materials used significantly influence the success and longevity of medical implants. Increasing surface roughness promotes osteoblast activity and osseointegration, while biodegradable materials such as copper have shown potential for antimicrobial applications. However, the effect of coating parameters on surface topography is not well investigated. Methods: Sputtering of copper was performed using EPOS-PVD-440 system (Zeleno-grad, Russia). The samples were examined by Scanning Electron Microscopy (SEM) with subsequent image processing in Mountains software (Digital Surf). Antibacterial efficacy was evaluated against Staphylococcus aureus by measuring the zone of inhibition. Additionally, copper ion release was monitored over time to assess its correlation with changes in surface topography. Results: Higher sputtering currents increased surface roughness and particle size, with a significant release of copper ions within the first 24 hr of immersion. Samples sputtered at higher currents exhibited coarser grain structures. The release of copper ions in the simulated biological environment led to further changes in surface topography, highlighting the critical influence of sputtering parameters on coating properties. Conclusion: Optimizing magnetron copper deposition parameters enhances the surface topography and antibacterial effectiveness of biodegradable coatings on implants.

19.
J Colloid Interface Sci ; 677(Pt B): 352-364, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39151228

RESUMO

HYPOTHESIS: Self-driven actions, like motion, are fundamental characteristics of life. Today, intense research focuses on the kinetics of droplet motion. Quantifying macroscopic motion and exploring the underlying mechanisms are crucial in self-structuring and self-healing materials, advancements in soft robotics, innovations in self-cleaning environmental processes, and progress within the pharmaceutical industry. Usually, the driving forces inducing macroscopic motion act at the molecular scale, making their real-time and high-resolution investigation challenging. Label-free surface sensitive measurements with high lateral resolution could in situ measure both molecular-scale interactions and microscopic motion. EXPERIMENTS: We employ surface-sensitive label-free sensors to investigate the kinetic changes in a self-assembled monolayer of the trimethyl(octadecyl)azanium chloride surfactant on a substrate surface during the self-propelled motion of nitrobenzene droplets. The adsorption-desorption of the surfactant at various concentrations, its removal due to the moving organic droplet, and rebuilding mechanisms at droplet-visited areas are all investigated with excellent time, spatial, and surface mass density resolution. FINDINGS: We discovered concentration dependent velocity fluctuations, estimated the adsorbed amount of surfactant molecules, and revealed multilayer coverage at high concentrations. The desorption rate of surfactant (18.4 s-1) during the microscopic motion of oil droplets was determined by in situ differentiating between droplet visited and non-visited areas.

20.
Glia ; 72(10): 1915-1929, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38982826

RESUMO

During brain maturation, astrocytes establish complex morphologies unveiling intense structural plasticity. Connexin 30 (Cx30), a gap-junction channel-forming protein expressed postnatally, dynamically regulates during development astrocyte morphological properties by controlling ramification and extension of fine processes. However, the underlying mechanisms remain unexplored. Here, we found in vitro that Cx30 interacts with the actin cytoskeleton in astrocytes and inhibits its structural reorganization and dynamics during cell migration. This translates into an alteration of local physical surface properties, as assessed by correlative imaging using stimulated emission depletion (STED) super resolution imaging and atomic force microscopy (AFM). Specifically, Cx30 impaired astrocyte cell surface topology and cortical stiffness in motile astrocytes. As Cx30 alters actin organization, dynamics, and membrane physical properties, we assessed whether it controls astrocyte migration. We found that Cx30 reduced persistence and directionality of migrating astrocytes. Altogether, these data reveal Cx30 as a brake for astrocyte structural and mechanical plasticity.


Assuntos
Citoesqueleto de Actina , Astrócitos , Movimento Celular , Conexina 30 , Astrócitos/metabolismo , Animais , Movimento Celular/fisiologia , Citoesqueleto de Actina/metabolismo , Conexina 30/metabolismo , Células Cultivadas , Camundongos , Microscopia de Força Atômica/métodos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA