Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Agric Food Chem ; 72(36): 19594-19603, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39214614

RESUMO

The Dothideomycete fungal pathogen Pyrenophora tritici-repentis (Ptr) is the causal agent of the tan spot disease of wheat. The proteinaceous necrotrophic effectors ToxA and ToxB are well characterized. A nonproteinaceous effector called ToxC has also been partially characterized. Ptr produces a number of other small molecular weight compounds, but these remain poorly characterized. In this study, two novel compounds, designated ToxE1 and ToxE2, capable of inducing chlorotic symptoms on wheat leaves in a cultivar-specific manner, were purified from Ptr liquid cultures. There is no evidence that these compounds correspond to ToxC. Most isolates produced ToxE1, ToxE2, or both, and both compounds were detected in infected wheat leaves. The structures of both analogues were elucidated by NMR spectroscopy and comprise a phthalide core structure with an amide moiety. We postulate that these compounds have a general phytotoxic effect and may have an ancillary role in disease development.


Assuntos
Ascomicetos , Benzofuranos , Micotoxinas , Doenças das Plantas , Triticum , Triticum/microbiologia , Triticum/química , Ascomicetos/química , Ascomicetos/metabolismo , Doenças das Plantas/microbiologia , Micotoxinas/química , Micotoxinas/metabolismo , Micotoxinas/toxicidade , Benzofuranos/química , Benzofuranos/farmacologia , Folhas de Planta/química , Folhas de Planta/microbiologia , Estrutura Molecular
2.
Theor Appl Genet ; 137(8): 193, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073628

RESUMO

KEY MESSAGE: A total of 65 SNPs associated with resistance to tan spot and septoria nodorum blotch were identified in a panel of 180 cultivated emmer accessions through association mapping Tan spot and septoria nodorum blotch (SNB) are foliar diseases caused by the respective fungal pathogens Pyrenophora tritici-repentis and Parastagonospora nodorum that affect global wheat production. To find new sources of resistance, we evaluated a panel of 180 cultivated emmer wheat (Triticum turgidum ssp. dicoccum) accessions for reactions to four P. tritici-repentis isolates Pti2, 86-124, 331-9 and DW5, two P. nodorum isolate, Sn4 and Sn2000, and four necrotrophic effectors (NEs) produced by the pathogens. About 8-36% of the accessions exhibited resistance to the four P. tritici-repentis isolates, with five accessions demonstrating resistance to all isolates. For SNB, 64% accessions showed resistance to Sn4, 43% to Sn2000 and 36% to both isolates, with Spain (11% accessions) as the most common origin of resistance. To understand the genetic basis of resistance, association mapping was performed using SNP (single nucleotide polymorphism) markers generated by genotype-by-sequencing and the 9 K SNP Infinium array. A total of 46 SNPs were significantly associated with tan spot and 19 SNPs with SNB resistance or susceptibility. Six trait loci on chromosome arms 1BL, 3BL, 4AL (2), 6BL and 7AL conferred resistance to two or more isolates. Known NE sensitivity genes for disease development were undetected except Snn5 for Sn2000, suggesting novel genetic factors are controlling host-pathogen interaction in cultivated emmer. The emmer accessions with the highest levels of resistance to the six pathogen isolates (e.g., CItr 14133-1, PI 94634-1 and PI 377672) could serve as donors for tan spot and SNB resistance in wheat breeding programs.


Assuntos
Ascomicetos , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Polimorfismo de Nucleotídeo Único , Triticum , Triticum/microbiologia , Triticum/genética , Triticum/crescimento & desenvolvimento , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Ascomicetos/patogenicidade , Ascomicetos/fisiologia , Fenótipo , Genótipo , Locos de Características Quantitativas , Marcadores Genéticos , Estudos de Associação Genética
3.
Plants (Basel) ; 13(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891235

RESUMO

Nitrogen (N) and silicon (Si) are mineral elements that have shown a reduction in the damage caused by tan spot (Pyrenophora tritici-repentis (Ptr)) in wheat. However, the effects of these elements were studied separately, and the N and Si interaction effect on wheat resistance to tan spot remains elusive. Histocytological and biochemical defense responses against Ptr in wheat leaves treated with Si (+Si) at low (LN) and high N (HN) inputs were investigated. Soil amendment with Si reduced the tan spot severity in 18% due to the increase in the leaf Si concentration (around 30%), but it was affected by the N level used. The superoxide dismutase (SOD) activity was higher in +Si plants and inoculated with Ptr, leading to early and higher H2O2 and callose accumulation in wheat leaf. Interestedly, phenylalanine ammonia-lyase (PAL) activity was induced by the Si supplying, being negatively affected by the HN rate. Meanwhile, catalase (CAT), and peroxidase (POX) activities showed differential response patterns according to the Si and N rates used. Tan spot severity was reduced by both elements, but their interaction does not evidence synergic effects in this disease's control. Wheat plants from -Si and HN and +Si and LN treatments recorded lower tan spot severity.

4.
Plants (Basel) ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475514

RESUMO

Many bacterial plant pathogens have a broad host range important for their life cycle. Alternate hosts from plant families other than the main (primary) host support the survival and dissemination of the pathogen population even in absence of main host plants. Metabolic peculiarities of main and alternative host plants can affect genetic diversity within and between the pathogen populations isolated from those plants. Strains of Gram-positive bacterium Curtobacterium flaccumfaciens were identified as being causal agents of bacterial spot and wilt diseases on leguminous plants, and other crop and weed plants, collected in different regions of Russia. Their biochemical properties and susceptibility to copper compounds have been found to be relatively uniform. According to conventional PCR assays, all of the isolates studied were categorised as pathovar Curtobacterim flaccumfaciens pv. flaccumfaciens, a pathogen of legumes. However, the strains demonstrated a substantial diversity in terms of virulence on several tested host plants and different phylogenetic relationships were revealed by BOX-PCR and alanine synthase gene (alaS) sequencing.

5.
Phytopathology ; 114(7): 1525-1532, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38530294

RESUMO

The necrotrophic effector ToxA is a well-studied virulence factor produced by several fungal necrotrophs. Initially cloned from the wheat tan spot pathogen Pyrenophora tritici-repentis in 1996, ToxA was found almost a decade later in another fungal pathogen, Parastagonospora nodorum, and its sister species, Parastagonospora pseudonodorum. In 2018, ToxA was detected in a third wheat fungal pathogenic species, Bipolaris sorokiniana, which causes spot blotch disease. However, unlike the case with P. tritici-repentis and P. nodorum, the ToxA in B. sorokiniana has only been investigated in recent years. In this report, five Australian B. sorokiniana isolates were assessed for the presence of ToxA. Four isolates were found to contain ToxA. While one isolate harbored the previously reported ToxA haplotype sequence (ToxA19), three isolates contain a different haplotype, designated herein as ToxA25, which has a nonsynonymous mutation resulting in an amino acid change of glycine to arginine at position 168. Both B. sorokiniana ToxA isoforms, when heterologously expressed in Escherichia coli, exhibited the classic ToxA necrosis-inducing activity on ToxA-sensitive Tsn1 cultivars. Preliminary analysis of the B. sorokiniana isolates in Australian wheat cultivars showed that isolates with ToxA19, ToxA25, or ToxA-deficient displayed various degrees of virulence, with the most aggressive isolates observed for those producing ToxA. Differences in spot blotch disease severity between Tsn1 and tsn1 cultivars were observed; however, this was not limited to the ToxA-producing isolates. The overall results suggest that the virulence of the Australian B. sorokiniana isolates is diverse, with the significance of ToxA-Tsn1 interactions depending on individual isolates.


Assuntos
Bipolaris , Proteínas Fúngicas , Haplótipos , Micotoxinas , Doenças das Plantas , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , Micotoxinas/genética , Micotoxinas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Bipolaris/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Austrália , Fatores de Virulência/genética , Virulência/genética
6.
Metabolomics ; 20(1): 19, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296869

RESUMO

INTRODUCTION: Tan Spot (TS) disease of wheat is caused by Pyrenophora tritici-repentis (Ptr), where most of the yield loss is linked to diseased flag leaves. As there are no fully resistant cultivars available, elucidating the responses of wheat to Ptr could inform the derivation of new resistant genotypes. OBJECTIVES: The study aimed to characterise the flag-leaf metabolomes of two spring wheat cultivars (Triticum aestivum L. cv. PF 080719 [PF] and cv. Fundacep Horizonte [FH]) following challenge with Ptr to gain insights into TS disease development. METHODS: PF and FH plants were inoculated with a Ptr strain that produces the necrotrophic toxin ToxA. The metabolic changes in flag leaves following challenge (24, 48, 72, and 96 h post-inoculation [hpi]) with Ptr were investigated using untargeted flow infusion ionisation-high resolution mass spectroscopy (FIE-HRMS). RESULTS: Both cultivars were susceptible to Ptr at the flag-leaf stage. Comparisons of Ptr- and mock-inoculated plants indicated that a major metabolic shift occurred at 24 hpi in FH, and at 48 hpi in PF. Although most altered metabolites were genotype specific, they were linked to common pathways; phenylpropanoid and flavonoid metabolism. Alterations in sugar metabolism as well as in glycolysis and glucogenesis pathways were also observed. Pathway enrichment analysis suggested that Ptr-triggered alterations in chloroplast and photosynthetic machinery in both cultivars, especially in FH at 96 hpi. In a wheat-Ptr interactome in integrative network analysis, "flavone and flavonol biosynthesis" and "starch and sucrose metabolism" were targeted as the key metabolic processes underlying PF-FH-Ptr interactions. CONCLUSION: These observations suggest the potential importance of flavone and flavonol biosynthesis as well as bioenergetic shifts in susceptibility to Ptr. This work highlights the value of metabolomic approaches to provide novel insights into wheat pathosystems.


Assuntos
Ascomicetos , Flavonas , Triticum , Metabolômica , Flavonóis , Açúcares
7.
Mol Plant Microbe Interact ; 37(3): 327-337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37759383

RESUMO

Pyrenophora tritici-repentis (tan spot) is a destructive foliar pathogen of wheat with global impact. This ascomycete fungus possesses a highly plastic open pangenome shaped by the gain and loss of effector genes. This study investigated the allelic variations in the chlorosis-encoding gene ToxB across 422 isolates representing all identified pathotypes and worldwide origins. To gain better insights into ToxB evolution, we examined its presence and variability in other Pyrenophora spp. A ToxB haplotype network was constructed, revealing the evolutionary relationships of this gene (20 haplotypes) across four Pyrenophora species. Notably, toxb, the homolog of ToxB, was detected for the first time in the barley pathogen Pyrenophora teres. The ToxB/toxb genes display evidence of selection that is characterized by loss of function, duplication, and diverse mutations. Within the ToxB/toxb open reading frame, 72 mutations were identified, including 14 synonymous, 55 nonsynonymous, and 3 indel mutations. Remarkably, a, ∼5.6-kb Copia-like retrotransposon, named Copia-1_Ptr, was found inserted in the toxb gene of a race 3 isolate. This insert disrupted the ToxB gene's function, a first case of effector gene disruption by a transposable element in P. tritici-repentis. Additionally, a microsatellite with 25 nucleotide repeats (0 to 10) in the upstream region of ToxB suggested a potential mechanism influencing ToxB expression and regulation. Exploring ToxB-like protein distribution in other ascomycetes revealed the presence of ToxB-like proteins in 19 additional species, including the Leotiomycetes class for the first time. The presence/absence pattern of ToxB-like proteins defied species relatedness compared with a phylogenetic tree, suggesting a past horizontal gene transfer event during the evolution of the ToxB gene. [Formula: see text] Copyright © 2024 His Majesty the King in Right of Canada, as represented by the Minister of Agriculture and Agri-Food. This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Proteínas Fúngicas , Filogenia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Triticum/genética , Triticum/microbiologia
8.
Mol Breed ; 43(7): 54, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37337566

RESUMO

Septoria nodorum blotch (SNB) and tan spot, caused by the necrotrophic fungal pathogens Parastagonospora nodorum and Pyrenophora tritici-repentis, respectively, often occur together as a leaf spotting disease complex on wheat (Triticum aestivum L.). Both pathogens produce necrotrophic effectors (NEs) that contribute to the development of disease. Here, genome-wide association analysis of a diverse panel of 264 winter wheat lines revealed novel loci on chromosomes 5A and 5B associated with sensitivity to the NEs SnTox3 and SnTox5 in addition to the known sensitivity genes for NEs Ptr/SnToxA, SnTox1, SnTox3, and SnTox5. Sensitivity loci for SnTox267 and Ptr ToxB were not detected. Evaluation of the panel with five P. nodorum isolates for SNB development indicated the Snn3-SnTox3 and Tsn1-SnToxA interactions played significant roles in disease development along with additional QTL on chromosomes 2A and 2D, which may correspond to the Snn7-SnTox267 interaction. For tan spot, the Tsc1-Ptr ToxC interaction was associated with disease caused by two isolates, and a novel QTL on chromosome 7D was associated with a third isolate. The Tsn1-ToxA interaction was associated with SNB but not tan spot. Therefore some, but not all, of the previously characterized host gene-NE interactions in these pathosystems play significant roles in disease development in winter wheat. Based on these results, breeders should prioritize the selection of resistance alleles at the Tsc1, Tsn1, Snn3, and Snn7 loci as well as the 2A and 7D QTL to obtain good levels of resistance to SNB and tan spot in winter wheat. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01400-5.

9.
Phytopathology ; 113(10): 1967-1978, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37199466

RESUMO

Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr), is an important disease of durum and common wheat worldwide. Compared with common wheat, less is known about the genetics and molecular basis of tan spot resistance in durum wheat. We evaluated 510 durum lines from the Global Durum Wheat Panel (GDP) for sensitivity to the necrotrophic effectors (NEs) Ptr ToxA and Ptr ToxB and for reaction to Ptr isolates representing races 1 to 5. Overall, susceptible durum lines were most prevalent in South Asia, the Middle East, and North Africa. Genome-wide association analysis showed that the resistance locus Tsr7 was significantly associated with tan spot caused by races 2 and 3, but not races 1, 4, or 5. The NE sensitivity genes Tsc1 and Tsc2 were associated with susceptibility to Ptr ToxC- and Ptr ToxB-producing isolates, respectively, but Tsn1 was not associated with tan spot caused by Ptr ToxA-producing isolates, which further validates that the Tsn1-Ptr ToxA interaction does not play a significant role in tan spot development in durum. A unique locus on chromosome arm 2AS was associated with tan spot caused by race 4, a race once considered avirulent. A novel trait characterized by expanding chlorosis leading to increased disease severity caused by the Ptr ToxB-producing race 5 isolate DW5 was identified, and this trait was governed by a locus on chromosome 5B. We recommend that durum breeders select resistance alleles at the Tsr7, Tsc1, Tsc2, and the chromosome 2AS loci to obtain broad resistance to tan spot.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Mapeamento Cromossômico , Doenças das Plantas/microbiologia , Interações Hospedeiro-Patógeno/genética , Triticum/genética , Triticum/microbiologia
10.
J Exp Bot ; 74(15): 4707-4720, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37201950

RESUMO

Pathogen attacks elicit dynamic and widespread molecular responses in plants. While our understanding of plant responses has advanced considerably, little is known of the molecular responses in the asymptomatic 'green' regions adjoining lesions. Here, we explore gene expression data and high-resolution elemental imaging to report the spatiotemporal changes in the asymptomatic green region of susceptible and moderately resistant wheat cultivars infected with a necrotrophic fungal pathogen, Pyrenophora tritici-repentis. We show, with improved spatiotemporal resolution, that calcium oscillations are modified in the susceptible cultivar, resulting in 'frozen' host defence signals at the mature disease stage, and silencing of the host's recognition and defence mechanisms that would otherwise protect it from further attacks. In contrast, calcium accumulation and a heightened defence response were observed in the moderately resistant cultivar in the later stage of disease development. Furthermore, in the susceptible interaction, the asymptomatic green region was unable to recover after disease disruption. Our targeted sampling technique also enabled detection of eight previously predicted proteinaceous effectors in addition to the known ToxA effector. Collectively, our results highlight the benefits of spatially resolved molecular analysis and nutrient mapping to provide high-resolution spatiotemporal snapshots of host-pathogen interactions, paving the way for disentangling complex disease interactions in plants.


Assuntos
Transcriptoma , Triticum , Triticum/genética , Triticum/microbiologia , Raios X , Suscetibilidade a Doenças , Microscopia de Fluorescência , Doenças das Plantas/microbiologia
11.
Mol Microbiol ; 119(5): 612-629, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37059688

RESUMO

The global wheat disease tan spot is caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) which secretes necrotrophic effectors to facilitate host plant colonization. We previously reported a role of the Zn2 Cys6 binuclear cluster transcription factor Pf2 in the regulation of the Ptr effector ToxA. Here, we show that Pf2 is also a positive regulator of ToxB, via targeted deletion of PtrPf2 which resulted in reduced ToxB expression and defects in conidiation and pathogenicity. To further investigate the function of Ptr Pf2 in regulating protein secretion, the secretome profiles of two Δptrpf2 mutants of two Ptr races (races 1 and 5) were evaluated using a SWATH-mass spectrometry (MS) quantitative approach. Analysis of the secretomes of the Δptrpf2 mutants from in vitro culture filtrate identified more than 500 secreted proteins, with 25% unique to each race. Of the identified proteins, less than 6% were significantly differentially regulated by Ptr Pf2. Among the downregulated proteins were ToxA and ToxB, specific to race 1 and race 5 respectively, demonstrating the role of Ptr Pf2 as a positive regulator of both effectors. Significant motif sequences identified in both ToxA and ToxB putative promoter regions were further explored via GFP reporter assays.


Assuntos
Ascomicetos , Micotoxinas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Secretoma , Ascomicetos/metabolismo , Triticum/metabolismo , Triticum/microbiologia , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Micotoxinas/metabolismo
12.
Polymers (Basel) ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904341

RESUMO

Soybeans are a valuable food product, containing 40% protein and a large percentage of unsaturated fatty acids ranging from 17 to 23%. Pseudomonas savastanoi pv. glycinea (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are harmful bacterial pathogens of soybean. The bacterial resistance of soybean pathogens to existing pesticides and environmental concerns requires new approaches to control bacterial diseases. Chitosan is a biodegradable, biocompatible and low-toxicity biopolymer with antimicrobial activity that is promising for use in agriculture. In this work, a chitosan hydrolysate and its nanoparticles with copper were obtained and characterized. The antimicrobial activity of the samples against Psg and Cff was studied using the agar diffusion method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The samples of chitosan and copper-loaded chitosan nanoparticles (Cu2+ChiNPs) significantly inhibited bacterial growth and were not phytotoxic at the concentrations of the MIC and MBC values. The protective properties of chitosan hydrolysate and copper-loaded chitosan nanoparticles against soybean bacterial diseases were tested on plants in an artificial infection. It was demonstrated that the Cu2+ChiNPs were the most effective against Psg and Cff. Treatment of pre-infected leaves and seeds demonstrated that the biological efficiencies of (Cu2+ChiNPs) were 71% and 51% for Psg and Cff, respectively. Copper-loaded chitosan nanoparticles are promising as an alternative treatment for bacterial blight and bacterial tan spot and wilt in soybean.

13.
Phytopathology ; 113(7): 1202-1209, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36750556

RESUMO

Tan spot disease is caused by Pyrenophora tritici-repentis (Ptr), one of the major necrotrophic fungal pathogens that affects wheat crops globally. Extensive research has shown that the necrotrophic fungal effectors ToxA, ToxB, and ToxC underlie the genetic interactions of Ptr race classification. ToxA and ToxB are both small proteins secreted during infection; however, the structure of ToxC remains unknown. In line with the recent discovery of the ToxC1 gene that is involved in ToxC production, a subset of 68 isolates collected from the Australian wheat cropping regions were assessed for the presence of all three effectors by pathotyping against four tan spot wheat differential lines and PCR amplification of ToxA, ToxB, and ToxC1. Based on the disease phenotypes, the 68 isolates were grouped into two races with 63 classified as race 1 and five as race 2. A representative selection of each race was tested against eight Australian commercial wheat cultivars and showed no distinction between the virulence levels. Sequencing of ToxA showed that both races had identical gene sequences of haplotype PtrA1. All the race 1 isolates possessed ToxC1 but three race 2 isolates also contained ToxC1 despite being unable to induce a spreading chlorotic symptom on the ToxC differential line. Quantitative trait loci mapping confirmed the absence of the ToxC-Tsc1 association in disease response caused by the ToxC1-containing race 2 isolate; however, ToxC1 expression was detected during plant infection. Altogether, these results suggest that there is a complex regulatory process involved in the production of ToxC within the Australian race 2 isolates.


Assuntos
Ascomicetos , Doenças das Plantas , Doenças das Plantas/microbiologia , Austrália , Locos de Características Quantitativas , Ascomicetos/genética , Triticum/genética , Triticum/microbiologia
14.
Phytopathology ; 113(7): 1180-1184, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36809076

RESUMO

ToxA is one of the most studied proteinaceous necrotrophic effectors produced by plant pathogens. It has been identified in four pathogens (Pyrenophora tritici-repentis, Parastagonospora nodorum, Parastagonospora pseudonodorum [formerly Parastagonospora avenaria f. sp. tritici], and Bipolaris sorokiniana) causing leaf spot diseases on cereals worldwide. To date, 24 different ToxA haplotypes have been identified. Some P. tritici-repentis and related species also express ToxB, another small protein necrotrophic effector. We present here a revised and standardized nomenclature for these effectors, which could be extended to other poly-haplotypic genes found across multiple species.


Assuntos
Proteínas Fúngicas , Micotoxinas , Haplótipos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Micotoxinas/genética
15.
Breed Sci ; 73(5): 445-449, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38737920

RESUMO

Tan spot, a foliar disease of Triticum spp. such as bread wheat (T. aestivum L.) and durum wheat (T. turgidum ssp. durum (Desf.) Husn.) caused by the filamentous fungus Pyrenophora tritici-repentis (Died.) Drechsler leads to serious losses of crop yield and quality in some areas in Japan. P. tritici-repentis is classified into eight races according to the combinations of three necrotrophic effectors, PtrToxA, PtrToxB, and PtrToxC encoded by ToxA, ToxB, and ToxC1, respectively. Race classification has been based on reaction of a differential variety to necrotrophic effectors, which is tested by inoculation. Recent identification of the Tox genes and development of specific DNA markers have enabled us to classify races of P. tritici-repentis collected in Japan by Tox gene genotyping. We found that 17 strains collected from Triticum spp. in Japan were mainly race 1 or 2, because they carried ToxA as a toxin gene by current race classification; wheat genotype tsn1 is resistant to ToxA. Establishment of wheat cultivars carrying tsn1 would be most effective for decreasing agronomic losses caused by the disease in Japan.

16.
Plants (Basel) ; 11(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365442

RESUMO

The bacteria Pseudomonas savastanoi pv. glycinea (Coerper, 1919; Gardan et al., 1992) (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges 1922) (Cff) are harmful pathogens of soybean (Glycine max). Presently, there are several strategies to control these bacteria, and the usage of environmentally friendly approaches is encouraged. In this work, purified essential oils (EOs) from 19 plant species and total aqueous and ethanolic plant extracts (PEs) from 19 plant species were tested in vitro to observe their antimicrobial activity against Psg and Cff (by agar diffusion and broth microdilution method). Tested EOs and PEs produced significant bacterial growth inhibition with technologically acceptable MIC and MBC values. Non-phytotoxic concentrations for Chinese cinnamon and Oregano essential oils and leather bergenia ethanolic extract, which previously showed the lowest MBC values, were determined. Testing of these substances with artificial infection of soybean plants has shown that the essential oils of Chinese cinnamon and oregano have the maximum efficiency against Psg and Cff. Treatment of leaves and seeds previously infected with phytopathogens with these essential oils showed that the biological effectiveness of leaf treatments was 80.6-77.5% and 86.9-54.6%, respectively, for Psg and Cff. GC-MS and GC-FID analyzes showed that the major compounds were 5-Methyl-3-methylenedihydro-2(3H)-furanone (20.32%) in leather bergenia ethanolic extract, cinnamaldehyde (84.25%) in Chinese cinnamon essential oil and carvacrol (62.32%) in oregano essential oil.

17.
BMC Biol ; 20(1): 239, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280878

RESUMO

BACKGROUND: In fungal plant pathogens, genome rearrangements followed by selection pressure for adaptive traits have facilitated the co-evolutionary arms race between hosts and their pathogens. Pyrenophora tritici-repentis (Ptr) has emerged recently as a foliar pathogen of wheat worldwide and its populations consist of isolates that vary in their ability to produce combinations of different necrotrophic effectors. These effectors play vital roles in disease development. Here, we sequenced the genomes of a global collection (40 isolates) of Ptr to gain insights into its gene content and genome rearrangements. RESULTS: A comparative genome analysis revealed an open pangenome, with an abundance of accessory genes (~ 57%) reflecting Ptr's adaptability. A clear distinction between pathogenic and non-pathogenic genomes was observed in size, gene content, and phylogenetic relatedness. Chromosomal rearrangements and structural organization, specifically around effector coding genes, were detailed using long-read assemblies (PacBio RS II) generated in this work in addition to previously assembled genomes. We also discovered the involvement of large mobile elements associated with Ptr's effectors: ToxA, the gene encoding for the necrosis effector, was found as a single copy within a 143-kb 'Starship' transposon (dubbed 'Horizon') with a clearly defined target site and target site duplications. 'Horizon' was located on different chromosomes in different isolates, indicating mobility, and the previously described ToxhAT transposon (responsible for horizontal transfer of ToxA) was nested within this newly identified Starship. Additionally, ToxB, the gene encoding the chlorosis effector, was clustered as three copies on a 294-kb element, which is likely a different putative 'Starship' (dubbed 'Icarus') in a ToxB-producing isolate. ToxB and its putative transposon were missing from the ToxB non-coding reference isolate, but the homolog toxb and 'Icarus' were both present in a different non-coding isolate. This suggests that ToxB may have been mobile at some point during the evolution of the Ptr genome which is contradictory to the current assumption of ToxB vertical inheritance. Finally, the genome architecture of Ptr was defined as 'one-compartment' based on calculated gene distances and evolutionary rates. CONCLUSIONS: These findings together reflect on the highly plastic nature of the Ptr genome which has likely helped to drive its worldwide adaptation and has illuminated the involvement of giant transposons in facilitating the evolution of virulence in Ptr.


Assuntos
Ascomicetos , Micotoxinas , Doenças das Plantas/microbiologia , Filogenia , Micotoxinas/genética , Ascomicetos/genética
18.
Plant Dis ; 106(12): 3083-3090, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35612573

RESUMO

In the semiarid regions of North Dakota and Montana, low annual precipitation favors production of high-quality durum wheat (Triticum turgidum subsp. durum). However, conducive weather conditions for disease epidemics have occurred more frequently in recent years. Modification of planting date can reduce disease risk by decreasing the timeframe in which a susceptible crop overlaps with conducive disease conditions. The effect of planting date on fungal leaf spotting diseases (leaf spot), ergot, Fusarium head blight (FHB), and yield of durum was evaluated in 11 experiments across four sites in eastern Montana and western North Dakota. Six durum cultivars with differing levels of susceptibility to leaf spot and FHB were planted at three planting dates from 2017 to 2019. Early planting maximized yield and influenced ergot incidence. Although there was no effect of planting date, reduced susceptibility to leaf spot and FHB was associated with a reduction in leaf spotting disease severity and deoxynivalenol, respectively, in the harvested grain. Growers in the semiarid regions of these states should prioritize the selection of disease-resistant cultivars to help manage sporadic disease outbreaks and continue to plant early to maximize yield.


Assuntos
Fusarium , Triticum , Triticum/microbiologia , Doenças das Plantas/microbiologia , North Dakota , Montana
19.
Front Plant Sci ; 13: 793925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401609

RESUMO

The necrotrophic fungal pathogen Pyrenophora tritici-repentis (Ptr) causes the foliar disease tan spot in both bread wheat and durum wheat. Wheat lines carrying the tan spot susceptibility gene Tsc1 are sensitive to the Ptr-produced necrotrophic effector (NE) Ptr ToxC. A compatible interaction results in leaf chlorosis, reducing yield by decreasing the photosynthetic area of leaves. Developing genetically resistant cultivars will effectively reduce disease incidence. Toward that goal, the production of chlorosis in response to inoculation with Ptr ToxC-producing isolates was mapped in two low-resolution biparental populations derived from LMPG-6 × PI 626573 (LP) and Louise × Penawawa (LouPen). In total, 58 genetic markers were developed and mapped, delineating the Tsc1 candidate gene region to a 1.4 centiMorgan (cM) genetic interval spanning 184 kb on the short arm of chromosome 1A. A total of nine candidate genes were identified in the Chinese Spring reference genome, seven with protein domains characteristic of resistance genes. Mapping of the chlorotic phenotype, development of genetic markers, both for genetic mapping and marker-assisted selection (MAS), and the identification of Tsc1 candidate genes provide a foundation for map-based cloning of Tsc1.

20.
Phytopathology ; 112(8): 1597-1602, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35166575

RESUMO

Pyrenophora tritici-repentis was described first as a pathogen of wheat (tan spot) in Japan in the 1920s, but, since then, no reports on P. tritici-repentis race structure or its effectors in Japan have been published. In this study, 10 single-spore isolates of P. tritici-repentis were collected from bread wheat in Japan. These isolates were evaluated for virulence on four differential wheat genotypes and tested for the presence/absence of the effector-encoding genes, ToxA and ToxB, in multiplex PCR assays. These isolates were identified as ToxA producers, of which eight were designated as race 2 (ToxA producers) and two were classified as race 1 (ToxA and ToxC producers) based on their virulence patterns. Sequence analysis of the ToxA amplicons from these 10 isolates indicated the presence of a novel ToxA haplotype (denoted PtrA2). A comparative sequence analysis and resequencing of ToxA from reference P. tritici-repentis isolates showed that all previously published ToxA haplotypes in P. tritici-repentis were identical, and are hence denoted PtrA1 in this study. A total of 163 PtrToxA sequences from global origins were already deposited in GenBank and were confirmed identical to PtrA1. Sequence variation in PtrA1 and PtrA2 open reading frames were found at three positions: one synonymous mutation at position 412 (C/G) and two nonsynonymous mutations at positions 342 and 362 that alter amino acid sequence. These mutations did not seem to affect the necrosis development on a ToxA-sensitive wheat genotype when rated for symptoms 5 to 7 days after inoculation. This is the first report correctly confirming the presence of an additional novel ToxA haplotype in P. tritici-repentis for which we have predicted its isoform and updated the ToxA haplotype evolutionary network.


Assuntos
Micotoxinas , Doenças das Plantas , Ascomicetos , Haplótipos , Japão , Micotoxinas/metabolismo , Doenças das Plantas/genética , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA