Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Brain Res ; 1846: 149252, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326722

RESUMO

Temozolomide (TMZ) is the first-line chemotherapeutic agent for malignant glioma, but its resistance limited the benefits of the treated patients. In this study, the role and significance of trimethylation of histone H3 lysine 27 (H3K27me3) in TMZ resistance were investigated. Data from twenty advanced glioma patients were collected, and their pathological samples were analyzed for H3K27me3 levels. TMZ sensitivity was compared between glioma cells U87 and TMZ-resistant cells U87TR, with H3K27me3 levels determined in both cells. The effects of H3K27me3 demethylases inhibitor GSK-J4, combined with TMZ, were assessed on the proliferation and migration of U87TR cells. The results indicated that a high level of H3K27me3 predicts longer disease free survival (DFS) and overall survival (OS) in glioma patients receiving TMZ treatment. The H3K27me3 level was lower in U87TR cells compared to U87 cells. GSK-J4 increased the H3K27me3 level in U87TR cells and decreased their resistance to TMZ. In summary, this study identified a novel marker of TMZ resistance in glioma and provided a new strategy to address this challenge. These findings are significant for improving the clinical treatment of glioma in the future.

2.
Methods Mol Biol ; 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39331341

RESUMO

Autophagy is a critical cellular process involved in the degradation and recycling of cytoplasmic components, playing a dual role in cancer by either promoting cell survival or facilitating cell death. In glioblastoma (GB), autophagy has been implicated in resistance to the chemotherapeutic agent temozolomide (TMZ). This study presents a novel method to accurately measure autophagy flux in TMZ-resistant glioblastoma cells, combining advanced imaging techniques with biochemical assays. By quantifying key autophagy markers such as LC3-II and SQSTM1, our approach provides detailed insights into the dynamic processes of autophagosome formation and clearance under therapeutic stress. This method advances our understanding of autophagy in GB chemoresistance and has significant implications for the development of autophagy-targeted therapies. The ability to monitor and manipulate autophagy flux in real time offers a promising avenue for monitoring and understanding TMZ resistance and improving patient outcomes in glioblastoma treatment.

3.
Chin Clin Oncol ; 13(Suppl 1): AB045, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295363

RESUMO

BACKGROUND: Glioblastoma (GBM) is the most aggressive primary malignant brain tumor. Temozolomide (TMZ) is the most used first-line chemotherapeutic agent for GBM after surgery, but acquired resistance to TMZ frequently leads to treatment failure and is a major challenge in the clinical treatment of GBM. Increasing evidence suggests that E2F transcription factor 6 (E2F6) is associated with a variety of tumor malignant biological behaviors and drug resistance, but its biological function and underlying molecular mechanisms in GBM are unknown. METHODS: The study investigated the levels of E2F6 in both TMZ-sensitive and TMZ-resistant GBM cells and tissues using Western blotting and immunofluorescence assays. In vitro experiments were conducted to explore the impact of E2F6 on TMZ resistance and glioma stem cell stemness. These experiments included Western blotting, colony formation assay, flow cytometry assay, and TdT-mediated dUTP nick-end labeling (TUNEL) assay. Bioinformatic analyses were conducted to investigate the mechanism behind the high expression of E2F6 in TMZ-resistant cells and its correlation with caspase recruitment domain 6 (CARD6) and disulfide-linked cell adhesion protein (POSTN). The study employed bioinformatic analyses, messenger RNA (mRNA) sequencing, chromatin immunoprecipitation sequencing assay, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. To examine the function of E2F6, an intracranial xenograft tumor mouse model was used for in vivo experiments. RESULTS: It was found that CARD6 and POSTN were significantly associated with TMZ resistance and survival of GBM patients. E2F6 was up-regulated in TMZ-resistant cells and tissues. Knockdown of E2F6 down-regulated the expression of CARD6, promoted TMZ-induced apoptosis, and enhanced chemo-sensitivity, whereas its overexpression significantly increased TMZ resistance in vitro and in vivo. In addition, E2F6 can promote TMZ resistance through stem-like properties acquisition. We identified a signaling pathway related to E2F6 and POSTN, which maintains the self-renewal of GBM stem cells (GSCs). E2F6 concentrates in the promoter region of POSTN, thereby regulating the expression of GSCs-related genes cluster of differentiation 133 (CD133), Nestin, and sex-determining region Y-box 2 (SOX2), which may be involved in tumor metabolism and drug resistance processes. Down-regulation of E2F6 down-regulated the expression of POSTN and inhibited tumor growth in nude mice. CONCLUSIONS: These results suggest that the E2F6-CARD6/POSTN signaling axis regulates the malignant biological behaviors of GBM and TMZ resistance. These findings are expected to provide promising therapeutic targets for CARD6 overcoming GBM TMZ resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Humanos , Camundongos , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas Adaptadoras de Sinalização CARD/genética , Regiões Promotoras Genéticas , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Camundongos Nus
4.
Chin Clin Oncol ; 13(Suppl 1): AB002, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295415

RESUMO

BACKGROUND: Temozolomide (TMZ) resistance in glioblastoma (GBM) remains a challenge in clinical treatment and the mechanism is largely unknown. Emerging evidence shows that epigenetic modifications including DNA methylation and non-coding RNA were involved in diverse biological processes, including therapeutic resistance. However, the underlying mechanisms by which DNA methylation-mediated non-coding RNA regulates TMZ resistance remain poorly characterized. METHODS: RNA microarray and DNA methylation chips of TMZ-resistant and parental GBM cells were performed for the gain of unreported long non-coding RNA HSD52. Quantitative reverse transcription polymerase chain reaction (PCR) and fluorescence in situ hybridization assays were used to detect HSD52 levels in GBM cells and tissues. The investigation into HSD52's impact on TMZ resistance was conducted utilizing both in vitro assays and intracranial xenograft mouse models. The mechanism of HSD52 expression and its relationships with paraspeckle proteins, non-POU domain-containing octamer-binding protein (NONO) and splicing factor proline/glutamine rich (SFPQ), as well as alpha-thalassemia mental retardation X-linked (ATRX) mRNA were determined by pyrosequencing assay, chromatin immunoprecipitation, chromatin isolation by RNA purification, RNA immunoprecipitation, RNA pulldown, immunofluorescence, and western blot assays. RESULTS: HSD52 was highly expressed in high-grade glioma and TMZ-resistant GBM cells. Phosphorylated p38 mitogen-activated protein kinase (p38 MAPK)/ubiquitin specific peptidase 7 (USP7) axis mediates H3 ubiquitination, impairs the interaction between H3K23ub and DNA methyltransferase 1 (DNMT1) and the recruitment of DNMT1 at the HSD52 promoter to attenuate DNA methylation, which makes the transcription factor 12 (TCF12) more accessible to the promoter region to regulate HSD52 expression. Further analysis showed that HSD52 can serve as a scaffold to promote the interaction between NONO and SFPQ, and then increase the paraspeckle assembly and activate the paraspeckle/ataxia telangiectasia mutated (ATM) kinase pathway in GBM cells. In addition, HSD52 forms an RNA-RNA duplex with ATRX mRNA, and facilitates the association of heteromer of SFPQ and NONO with RNA duplex, thus leading to the increase of ATRX mRNA stability and level. In clinical patients, HSD52 is required for TMZ resistance and GBM recurrence. CONCLUSIONS: Our results reveal that HSD52 in GBM could serve as a therapeutic target to overcome TMZ resistance, enhancing the clinical benefits of TMZ chemotherapy.


Assuntos
Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Temozolomida , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , RNA Longo não Codificante/genética , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Masculino
5.
Cancer Lett ; 598: 217107, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-38992489

RESUMO

Glioblastoma (GBM) presents a daunting challenge due to its resistance to temozolomide (TMZ), a hurdle exacerbated by the proneural-to-mesenchymal transition (PMT) from a proneural (PN) to a mesenchymal (MES) phenotype. TAGLN2 is prominently expressed in GBM, particularly in the MES subtype compared to low-grade glioma (LGG) and the PN subtype. Our research reveals TAGLN2's involvement in PMT and TMZ resistance through a series of in vitro and in vivo experiments. TAGLN2 knockdown can restrain proliferation and invasion, trigger DNA damage and apoptosis, and heighten TMZ sensitivity in GBM cells. Conversely, elevating TAGLN2 levels amplifies resistance to TMZ in cellular and intracranial xenograft mouse models. We demonstrate the interaction relationship between TAGLN2 and ERK1/2 through co-immunoprecipitation (Co-IP) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectrometry analysis. Knockdown of TAGLN2 results in a decrease in the expression of p-ERK1/2, whereas overexpression of TAGLN2 leads to an increase in p-ERK1/2 expression within the nucleus. Subsequently, the regulatory role of TAGLN2 in the expression and control of MGMT has been demonstrated. Finally, the regulation of TAGLN2 by NF-κB has been validated through chromatin immunoprecipitation and ChIP-PCR assays. In conclusion, our results confirm that TAGLN2 exerts its biological functions by interacting with the ERK/MGMT axis and being regulated by NF-κB, thereby facilitating the acquisition of promoting PMT and increased resistance to TMZ therapy in glioblastoma. These results provide valuable insights for the advancement of targeted therapeutic approaches to overcome TMZ resistance in clinical treatments.


Assuntos
Antineoplásicos Alquilantes , Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilases de Modificação do DNA/metabolismo , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Camundongos Nus , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Temozolomida/farmacologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Life (Basel) ; 14(6)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38929657

RESUMO

Glioblastoma (GB) is the most common and most aggressive primary brain tumor in adults, with an overall survival almost 14.6 months. Optimal resection followed by combined temozolomide chemotherapy and radiotherapy, also known as Stupp protocol, remains the standard of treatment; nevertheless, resistance to temozolomide, which can be obtained throughout many molecular pathways, is still an unsurpassed obstacle. Several factors influence the efficacy of temozolomide, including the involvement of other DNA repair systems, aberrant signaling pathways, autophagy, epigenetic modifications, microRNAs, and extracellular vesicle production. The blood-brain barrier, which serves as both a physical and biochemical obstacle, the tumor microenvironment's pro-cancerogenic and immunosuppressive nature, and tumor-specific characteristics such as volume and antigen expression, are the subject of ongoing investigation. In this review, preclinical and clinical data about temozolomide resistance acquisition and possible ways to overcome chemoresistance, or to treat gliomas without restoration of chemosensitinity, are evaluated and presented. The objective is to offer a thorough examination of the clinically significant molecular mechanisms and their intricate interrelationships, with the aim of enhancing understanding to combat resistance to TMZ more effectively.

7.
Oncol Lett ; 28(2): 378, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38939621

RESUMO

Glioblastoma multiforme (GBM) is an aggressive brain cancer that occurs more frequently than other brain tumors. The present study aimed to reveal a novel mechanism of temozolomide resistance in GBM using bioinformatics and wet lab analyses, including meta-Z analysis, Kaplan-Meier survival analysis, protein-protein interaction (PPI) network establishment, cluster analysis of co-expressed gene networks, and hierarchical clustering of upregulated and downregulated genes. Next-generation sequencing and quantitative PCR analyses revealed downregulated [tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 1 (TIE1), calcium voltage-gated channel auxiliary subunit α2Δ1 (CACNA2D1), calpain 6 (CAPN6) and a disintegrin and metalloproteinase with thrombospondin motifs 6 (ADAMTS6)] and upregulated [serum amyloid (SA)A1, SAA2, growth differentiation factor 15 (GDF15) and ubiquitin specific peptidase 26 (USP26)] genes. Different statistical models were developed for these genes using the Z-score for P-value conversion, and Kaplan-Meier plots were constructed using several patient cohorts with brain tumors. The highest number of nodes was observed in the PPI network was for ADAMTS6 and TIE1. The PPI network model for all genes contained 35 nodes and 241 edges. Immunohistochemical staining was performed using isocitrate dehydrogenase (IDH)-wild-type or IDH-mutant GBM samples from patients and a significant upregulation of TIE1 (P<0.001) and CAPN6 (P<0.05) protein expression was demonstrated in IDH-mutant GBM in comparison with IDH-wild-type GBM. Structural analysis revealed an IDH-mutant model demonstrating the mutant residues (R132, R140 and R172). The findings of the present study will help the future development of novel biomarkers and therapeutics for brain tumors.

8.
Am J Transl Res ; 16(5): 1550-1567, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883343

RESUMO

OBJECT: Amplification of the epidermal growth factor receptor (EGFR) and its active mutant type III (EGFRvIII), frequently occurr in glioblastoma (GBM), contributing to chemotherapy and radiation resistance in GBM. Elucidating the underlying molecular mechanism of temozolomide (TMZ) resistance in EGFRvIII GBM could offer valuable insights for cancer treatment. METHODS: To elucidate the molecular mechanisms underlying EGFRvIII-mediated resistance to TMZ in GBM, we conducted a comprehensive analysis using Gene Expression Omnibus and The cancer genome atlas (TCGA) databases. Initially, we identified common significantly differentially expressed genes (DEGs) and prioritized those correlating significantly with patient prognosis as potential downstream targets of EGFRvIII and candidates for drug resistance. Additionally, we analyzed transcription factor expression changes and their correlation with candidate genes to elucidate transcriptional regulatory mechanisms. Using estimate method and databases such as Tumor IMmune Estimation Resource (TIMER) and CellMarker, we assessed immune cell infiltration in TMZ-resistant GBM and its relationship with candidate gene expression. In this study, we examined the expression differences of candidate genes in GBM cell lines following EGFRvIII intervention and in TMZ-resistant GBM cell lines. This preliminary investigation aimed to verify the regulatory impact of EGFRvIII on candidate targets and its potential involvement in TMZ resistance in GBM. RESULTS: Notably, GTPase Activating Rap/RanGAP Domain Like 3 (GARNL3) emerged as a key DEG associated with TMZ resistance and poor prognosis, with reduced expression correlating with altered immune cell profiles. Transcription factor analysis suggested Epiregulin (EREG) as a putative upstream regulator of GARNL3, linking it to EGFRvIII-mediated TMZ resistance. In vitro experiments confirmed EGFRvIII-mediated downregulation of GARNL3 and decreased TMZ sensitivity in GBM cell lines, further supported by reduced GARNL3 levels in TMZ-resistant GBM cells. CONCLUSION: GARNL3 downregulation in EGFRvIII-positive and TMZ-resistant GBM implicates its role in TMZ resistance, suggesting modulation of EREG/GARNL3 signaling as a potential therapeutic strategy.

9.
Phytomedicine ; 129: 155714, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723526

RESUMO

BACKGROUND: Temozolomide (TMZ) resistance is the main obstacle faced by glioblastoma multiforme (GBM) treatment. Muscone, one of the primary active pharmacological ingredients of Shexiang (Moschus), can cross the blood-brain barrier (BBB) and is being investigated as an antineoplastic medication. However, muscone treatment for GBM has received little research, and its possible mechanisms are still unclear. PURPOSE: This study aims to evaluate the effect and the potential molecular mechanism of muscone on TMZ-resistant GBM cells. METHODS: The differentially expressed genes (DEGs) between TMZ-resistant GBM cells and TMZ-sensitive GBM cells were screened using GEO2R. By progressively raising the TMZ concentration, a relatively stable TMZ-resistant human GBM cell line was established. The drug-resistance traits of U251-TR cells were assessed via the CCK-8 assay and Western Blot analysis of MGMT and TOP2A expression. Cell viability, cell proliferation, cell migration ability, and drug synergism were detected by the CCK-8 assay, colony formation assay, wound healing assay, and drug interaction relationship test, respectively. Anoikis was quantified by Calcein-AM/EthD-1 staining, MTT assay, and flow cytometry. Measurements of cell cycle arrest, apoptosis, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) were performed using cell cycle staining, Annexin V-FITC/PI labeling, JC-1 assay, and ROS assay, respectively. DNA damage was measured by TUNEL assay, alkaline comet assay, and γ-H2AX foci assay. GEPIA was used to investigate the link between the anoikis marker (FAK)/drug resistance gene and critical proteins in the EGFR/Integrin ß1 signaling pathway. Molecular docking was used to anticipate the probable targets of muscone. The intracellular co-localization and expression of EGFR and FAK were shown using immunofluorescence. The U251-TR cell line stably overexpressing EGFR was constructed using lentiviral transduction to assess the involvement of EGFR-related signaling in anoikis resistance. Western Blot was employed to detect the expression of migration-related proteins, cyclins, anoikis-related proteins, DNA damage/repair-related proteins, and associated pathway proteins. RESULTS: DEGs analysis identified 97 deregulated chemotherapy-resistant genes and 3779 upregulated genes in TMZ-resistant GBM cells. Subsequent experiments verified TMZ resistance and the hyper-expression of DNA repair-related genes (TOP2A and MGMT) in continuously low-dose TMZ-induced U251-TR cells. Muscone exhibited dose-dependent inhibition of U251-TR cell migration and proliferation, and its co-administration with TMZ showed the potential for enhanced therapeutic efficacy. By downregulating FAK, muscone reduced anoikis resistance in anchorage-independent U251-TR cells. It also caused cell cycle arrest in the G2/M phase by upregulating p21 and downregulating CDK1, CDK2, and Cyclin E1. Muscone-induced anoikis was accompanied by mitochondrial membrane potential collapse, ROS production, an increase in the BAX/Bcl-2 ratio, as well as elevated levels of Cytochrome c (Cyt c), cleaved caspase-9, and cleaved caspase-3. These findings indicated that muscone might trigger mitochondrial-dependent anoikis via ROS generation. Moreover, significant DNA damage, DNA double-strand breaks (DSBs), the formation of γ-H2AX foci, and a reduction in TOP2A expression are also associated with muscone-induced anoikis. Overexpression of EGFR in U251-TR cells boosted the expression of Integrin ß1, FAK, ß-Catenin, and TOP2A, whereas muscone suppressed the expression levels of EGFR, Integrin ß1, ß-Catenin, FAK, and TOP2A. Muscone may influence the expression of the key DNA repair enzyme, TOP2A, by suppressing the EGFR/Integrin ß1/FAK pathway. CONCLUSION: We first demonstrated that muscone suppressed TOP2A expression through the EGFR/Integrin ß1/FAK pathway, hence restoring anoikis sensitivity in TMZ-resistant GBM cells. These data suggest that muscone may be a promising co-therapeutic agent for enhancing GBM treatment, particularly in cases of TMZ-resistant GBM with elevated TOP2A expression.


Assuntos
Anoikis , DNA Topoisomerases Tipo II , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB , Quinase 1 de Adesão Focal , Glioblastoma , Integrina beta1 , Transdução de Sinais , Temozolomida , Humanos , Glioblastoma/tratamento farmacológico , Temozolomida/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Quinase 1 de Adesão Focal/metabolismo , Anoikis/efeitos dos fármacos , Integrina beta1/metabolismo , Receptores ErbB/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Cell Biochem Biophys ; 82(3): 2183-2193, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38809352

RESUMO

Temozolomide (TMZ) stands as the primary chemotherapeutic drug utilized in clinical glioma treatment, particularly for high-grade glioblastoma (GBM). However, the emergence of TMZ resistance in GBM poses a significant hurdle to its clinical efficacy. Our objective was to elucidate the role of deubiquitinating enzymes (DUBs) in GBM cell resistance to TMZ. We employed the broad-spectrum DUBs inhibitor G5 to investigate the function of DUBs in TMZ cytotoxicity against GBM cells. Eighty-two GBM cell lines with specified DUBs knockout were generated and subjected to CCK-8 assays to assess cell proliferation and TMZ resistance. Furthermore, the association between DUBs and TMZ resistance in GBM cells, along with the modulation of autophagic flux, was examined. The pan-DUBs inhibitor G5 demonstrated the ability to induce cell death and enhance TMZ toxicity in GBM cells. Subsequently, we identified potential DUBs involved in regulating GBM cell proliferation and TMZ resistance. The impact of DUBs knockout on TMZ cytotoxicity was found to be associated with their regulation of TMZ-induced autophagy. In summary, our study provides primary insights into the role of DUBs in GBM cell proliferation and TMZ resistance, and contributes to a deeper understanding of the complex function of DUBs genes underlying TMZ resistance in GBM cells.


Assuntos
Autofagia , Proliferação de Células , Enzimas Desubiquitinantes , Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Temozolomida , Humanos , Temozolomida/farmacologia , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Linhagem Celular Tumoral , Enzimas Desubiquitinantes/metabolismo , Enzimas Desubiquitinantes/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia
11.
CNS Neurosci Ther ; 30(3): e14649, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38448295

RESUMO

BACKGROUD: Glioblastoma multiforme (GBM) is among the most aggressive cancers, with current treatments limited in efficacy. A significant hurdle in the treatment of GBM is the resistance to the chemotherapeutic agent temozolomide (TMZ). The methylation status of the MGMT promoter has been implicated as a critical biomarker of response to TMZ. METHODS: To explore the mechanisms underlying resistance, we developed two TMZ-resistant GBM cell lines through a gradual increase in TMZ exposure. Transcriptome sequencing of TMZ-resistant cell lines revealed that alterations in histone post-translational modifications might be instrumental in conferring TMZ resistance. Subsequently, multi-omics analysis suggests a strong association between histone H3 lysine 9 acetylation (H3K9ac) levels and TMZ resistance. RESULTS: We observed a significant correlation between the expression of H3K9ac and MGMT, particularly in the unmethylated MGMT promoter samples. More importantly, our findings suggest that H3K9ac may enhance MGMT transcription by facilitating the recruitment of the SP1 transcription factor to the MGMT transcription factor binding site. Additionally, by analyzing single-cell transcriptomics data from matched primary and recurrent GBM tumors treated with TMZ, we modeled the molecular shifts occurring upon tumor recurrence. We also noted a reduction in tumor stem cell characteristics, accompanied by an increase in H3K9ac, SP1, and MGMT levels, underscoring the potential role of H3K9ac in tumor relapse following TMZ therapy. CONCLUSIONS: The increase in H3K9ac appears to enhance the recruitment of the transcription factor SP1 to its binding sites within the MGMT locus, consequently upregulating MGMT expression and driving TMZ resistance in GBM.


Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Histonas , Multiômica , Processamento de Proteína Pós-Traducional , Fator de Transcrição Sp1
12.
Adv Sci (Weinh) ; 11(19): e2309290, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477507

RESUMO

Temozolomide (TMZ) resistance remains the major obstacle in the treatment of glioblastoma (GBM). Lactylation is a novel post-translational modification that is involved in various tumors. However, whether lactylation plays a role in GBM TMZ resistance remains unclear. Here it is found that histone H3K9 lactylation (H3K9la) confers TMZ resistance in GBM via LUC7L2-mediated intron 7 retention of MLH1. Mechanistically, lactylation is upregulated in recurrent GBM tissues and TMZ-resistant cells, and is mainly concentrated in histone H3K9. Combined multi-omics analysis, including CUT&Tag, SLAM-seq, and RNA-seq, reveals that H3K9 lactylation is significantly enriched in the LUC7L2 promoter and activates LUC7L2 transcription to promote its expression. LUC7L2 mediates intron 7 retention of MLH1 to reduce MLH1 expression, and thereby inhibit mismatch repair (MMR), ultimately leading to GBM TMZ resistance. Of note, it is identified that a clinical anti-epileptic drug, stiripentol, which can cross the blood-brain barrier and inhibit lactate dehydrogenase A/B (LDHA/B) activity, acts as a lactylation inhibitor and renders GBM cells more sensitive to TMZ in vitro and in vivo. These findings not only shed light on the mechanism of lactylation in GBM TMZ resistance but also provide a potential combined therapeutic strategy for clinical GBM treatment.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioblastoma , Histonas , Íntrons , Proteína 1 Homóloga a MutL , Temozolomida , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Histonas/metabolismo , Histonas/genética , Íntrons/genética , Camundongos Nus , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Temozolomida/farmacologia , Feminino
13.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311053

RESUMO

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Assuntos
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilase , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Estresse Oxidativo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Biochem Cell Biol ; 102(2): 127-134, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988705

RESUMO

Glioblastoma (GBM) is the most common aggressive central nervous system cancer. GBM has a high mortality rate, with a median survival time of 12-15 months after diagnosis. A poor prognosis and a shorter life expectancy may result from resistance to standard treatments such as radiation and chemotherapy. Temozolomide has been the mainstay treatment for GBM, but unfortunately, there are high rates of resistance with GBM bypassing apoptosis. A proposed mechanism for bypassing apoptosis is decreased ceramide levels, and previous research has shown that within GBM cells, B cell lymphoma 2-like 13 (BCL2L13) can inhibit ceramide synthase. This review aims to discuss the causes of resistance in GBM cells, followed by a brief description of BCL2L13 and an explanation of its mechanism of action. Further, lipids, specifically ceramide, will be discussed concerning cancer and GBM cells, focusing on ceramide synthase and its role in developing GBM. By gathering all current information on BCL2L13 and ceramide synthase, this review seeks to enable an understanding of these pieces of GBM in the hope of finding an effective treatment for this disease.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Linhagem Celular Tumoral , Temozolomida/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Ceramidas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos
15.
Cell Biol Int ; 48(2): 143-153, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37798941

RESUMO

Protein phosphatase magnesium-dependent 1B (PPM1B) functions as IKKß phosphatases to terminate nuclear factor kappa B (NF-κB) signaling. NF-κB signaling was constitutively activated in glioma cells. At present, little is known about the role of PPM1B in glioma. In the current study, we found that the expression of PPM1B was reduced in glioma tissues and cells, and decreased expression of PPM1B was related to poor overall survival of patients. Overexpression of PPM1B inhibited the proliferation and promoted apoptosis of glioma cells. Moreover, PPM1B overexpression reduced the phosphorylation of IKKß and inhibited the nuclear localization of NF-κBp65. PDTC, an inhibitor of NF-κB signaling, reversed PPM1B-knockdown-induced cell proliferation. Furthermore, overexpression of PPM1B enhanced the sensitivity of glioma cells to temozolomide. In vivo experiments showed that overexpression of PPM1B could inhibit tumor growth, improve the survival rate of nude mice, and enhance the sensitivity to temozolomide. In conclusion, PPM1B suppressed glioma cell proliferation and the IKKß-NF-κB signaling pathway, and enhanced temozolomide sensitivity of glioma cells.


Assuntos
Glioma , NF-kappa B , Camundongos , Animais , Humanos , Temozolomida/farmacologia , NF-kappa B/metabolismo , Magnésio , Quinase I-kappa B/metabolismo , Resistencia a Medicamentos Antineoplásicos , Camundongos Nus , Glioma/metabolismo , Fosfoproteínas Fosfatases , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Proteína Fosfatase 2C
16.
Mol Biol (Mosk) ; 57(6): 31-40, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062972

RESUMO

Temozolomide resistance is a major cause of recurrence and poor prognosis in neuroglioma. Recently, growing evidence has suggested that mitophagy is involved in drug resistance in various tumor types. However, the role and molecular mechanisms of mitophagy in temozolomide resistance in glioma remain unclear. In this study, mitophagy levels in temozolomide-resistant and -sensitive cell lines were evaluated. The mechanisms underlying the regulation of mitophagy were explored through RNA sequencing, and the roles of differentially expressed genes in mitophagy and temozolomide resistance were investigated. We found that mitophagy promotes temozolomide resistance in glioma. Specifically, small ubiquitin-like modifier specific protease 6 (SENP6) promoted temozolomide resistance in glioma by inducing mitophagy. Protein-protein interactions between SENP6 and the mitophagy executive protein PTEN-induced kinase 1 (PINK1) resulted in a reduction in small ubiquitin-like modifier 2 (SUMO2)ylation of PINK1, thereby enhancing mitophagy. Our study demonstrates that by inducing mitophagy, the interaction of SENP6 with PINK1 promotes temozolomide resistance in glioblastoma. Therefore, targeting SENP6 or directly regulating mitophagy could be a potential and novel therapeutic target for reversing temozolomide resistance in glioma.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Glioma , Mitofagia , Humanos , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Mitocôndrias/metabolismo , Mitofagia/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Temozolomida/farmacologia , Temozolomida/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
17.
Neurooncol Adv ; 5(1): vdad152, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130902

RESUMO

Background: Treatment resistance and tumor relapse are the primary causes of mortality in glioblastoma (GBM), with intratumoral heterogeneity playing a significant role. Patient-derived cancer organoids have emerged as a promising model capable of recapitulating tumor heterogeneity. Our objective was to develop patient-derived GBM organoids (PGO) to investigate treatment response and resistance. Methods: GBM samples were used to generate PGOs and analyzed using whole-exome sequencing (WES) and single-cell karyotype sequencing. PGOs were subjected to temozolomide (TMZ) to assess viability. Bulk RNA sequencing was performed before and after TMZ. Results: WES analysis on individual PGOs cultured for 3 time points (1-3 months) showed a high inter-organoid correlation and retention of genetic variants (range 92.3%-97.7%). Most variants were retained in the PGO compared to the tumor (range 58%-90%) and exhibited similar copy number variations. Single-cell karyotype sequencing demonstrated preservation of genetic heterogeneity. Single-cell multiplex immunofluorescence showed maintenance of cellular states. TMZ treatment of PGOs showed a differential response, which largely corresponded with MGMT promoter methylation. Differentially expressed genes before and after TMZ revealed an upregulation of the JNK kinase pathway. Notably, the combination treatment of a JNK kinase inhibitor and TMZ demonstrated a synergistic effect. Conclusions: Overall, these findings demonstrate the robustness of PGOs in retaining the genetic and phenotypic heterogeneity in culture and the application of measuring clinically relevant drug responses. These data show that PGOs have the potential to be further developed into avatars for personalized adaptive treatment selection and actionable drug target discovery and as a platform to study GBM biology.

18.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958662

RESUMO

Chemotherapy using temozolomide is the standard treatment for patients with glioblastoma. Despite treatment, prognosis is still poor largely due to the emergence of temozolomide resistance. This resistance is closely linked to the widely recognized inter- and intra-tumoral heterogeneity in glioblastoma, although the underlying mechanisms are not yet fully understood. To induce temozolomide resistance, we subjected 21 patient-derived glioblastoma cell cultures to Temozolomide treatment for a period of up to 90 days. Prior to treatment, the cells' molecular characteristics were analyzed using bulk RNA sequencing. Additionally, we performed single-cell RNA sequencing on four of the cell cultures to track the evolution of temozolomide resistance. The induced temozolomide resistance was associated with two distinct phenotypic behaviors, classified as "adaptive" (ADA) or "non-adaptive" (N-ADA) to temozolomide. The ADA phenotype displayed neurodevelopmental and metabolic gene signatures, whereas the N-ADA phenotype expressed genes related to cell cycle regulation, DNA repair, and protein synthesis. Single-cell RNA sequencing revealed that in ADA cell cultures, one or more subpopulations emerged as dominant in the resistant samples, whereas N-ADA cell cultures remained relatively stable. The adaptability and heterogeneity of glioblastoma cells play pivotal roles in temozolomide treatment and contribute to the tumor's ability to survive. Depending on the tumor's adaptability potential, subpopulations with acquired resistance mechanisms may arise.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Linhagem Celular Tumoral , Fenótipo , Genômica , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
19.
Cells ; 12(17)2023 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-37681903

RESUMO

Treatment for the deadly brain tumor glioblastoma (GBM) has been improved through the non-invasive addition of alternating electric fields, called tumor treating fields (TTFields). Improving both progression-free and overall survival, TTFields are currently approved for treatment of recurrent GBMs as a monotherapy and in the adjuvant setting alongside TMZ for newly diagnosed GBMs. These TTFields are known to inhibit mitosis, but the full molecular impact of TTFields remains undetermined. Therefore, we sought to understand the ability of TTFields to disrupt the growth patterns of and induce kinomic landscape shifts in TMZ-sensitive and -resistant GBM cells. We determined that TTFields significantly decreased the growth of TMZ-sensitive and -resistant cells. Kinomic profiling predicted kinases that were induced or repressed by TTFields, suggesting possible therapy-specific vulnerabilities. Serving as a potential pro-survival mechanism for TTFields, kinomics predicted the increased activity of platelet-derived growth-factor receptor alpha (PDGFRα). We demonstrated that the addition of the PDGFR inhibitor, crenolanib, to TTFields further reduced cell growth in comparison to either treatment alone. Collectively, our data suggest the efficacy of TTFields in vitro and identify common signaling responses to TTFields in TMZ-sensitive and -resistant populations, which may support more personalized medicine approaches.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Neoplasias Encefálicas/terapia , Medicina de Precisão , Adjuvantes Imunológicos , Adjuvantes Farmacêuticos
20.
Nanomedicine (Lond) ; 18(12): 907-921, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37466022

RESUMO

Aim: To investigate the use of nanoparticle (NP)-encapsulated injectable thermosensitive hydrogel-formed nanogel for inhibition of postsurgical residual temozolomide (TMZ)-resistant glioblastoma (GBM) recurrence. Materials & methods: Curcumin (Cur) was coloaded with TMZ into PEG-PLGA NPs, then NPs were further encapsulated into a thermosensitive hydrogel to form a nanogel, which was injected into the resection cavity of the GBM postsurgery. Results: The prepared nanogel displayed excellent drug-loading capacity and long-term drug release. Estimated survival characteristics demonstrated that the nanogel could play a significant role in TMZ-resistant tumor inhibition with low drug-induced toxicity. The originally designed ratio of Cur/TMZ was sustained, making it an effective therapeutic outcome. Conclusion: Cur-combined TMZ-formed nanogels can be a promising candidate for the local inhibition of GBM recurrence.


In this study, the animal model used was rats suffering residual brain tumor after resection. The selected drugs were temozolomide, a first-line chemotherapeutic drug for the clinical treatment of glioma, and curcumin, an extract from the ginger plant. With the use of temozolomide, brain glioma cells gradually develop resistance, resulting in poor efficacy of temozolomide. Therefore, the purpose of this study was to construct a drug-delivery system for temozolomide-resistant brain glioma residual tumor after surgery, namely, a temperature-sensitive gel containing drug-carrying nanopreparations ­ the so-called nanogels. This drug-delivery system can directly deliver drugs to residual tumor cells in situ after surgery. In situ drug-delivery systems can reduce the dose of drugs consumed and increase their potency compared to oral or intravenous administration.


Assuntos
Neoplasias Encefálicas , Curcumina , Glioblastoma , Humanos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Nanogéis , Curcumina/farmacologia , Curcumina/uso terapêutico , Linhagem Celular Tumoral , Hidrogéis/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA